TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Koos, R. A1 - Hofmann, M. A1 - Requena, G. A1 - Garcés, G. T1 - Explaining deviatoric residual stresses and load transfer in aluminum alloys and composites with complex microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Conference 2022: Neutrons for Mobility CY - Lenggries, Germany DA - 31.05.2022 KW - Load transfer KW - Neutron Diffraction KW - micromechanical modeling KW - Computed tomography PY - 2022 AN - OPUS4-55405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Khrapov, D. A1 - Paveleva, A. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmenev, M. A1 - Koptyug, A. T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures (TPMSS) N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - 5th International Conference on Tomography of Materials and Structures CY - Grenoble, France DA - 27.06.2022 KW - Load transfer KW - Neutron Diffraction KW - Micromechanical modeling KW - Computed tomography PY - 2022 AN - OPUS4-55406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Memmolo, V. A1 - Olino, M. A1 - Prager, Jens T1 - Application of Temperature Compensation Strategies for Ultrasonic Guided Waves to Distributed Sensor Networks N2 - The application of temperature compensation strategies is crucial in structural health monitoring approaches based on guided waves. Actually, the varying temperature influences the performance of the inspection system inducing false alarms or missed detection, with a consequent reduction of reliability and impact on probability of detection (POD). This paper quantitatively describes two different methods to compensate the temperature effect, namely the optimal baseline selection (OBS) and the baseline signal stretch (BSS) extending their application to the case of a distributed sensor networks (DSN). This latter introduces a number of possible data to explore compensation strategies which do not necessarily returns univocal results. Hence, a decision framework is needed, which takes into consideration multiple ultrasonic time traces with different arrival times and amplitude. In detail, the effect of temperature separation between baseline time-traces in OBS are investigated considering multiple couples of sensors employed in the DSN. A combined strategy that uses both OBS and a frequent value warning is introduced to find the more probable temperature with increasing reliability of the assessment. The same procedure is applied using the BSS algorithm. Finally, the use of both approaches is introduced, comparing the capability of the mixed algorithm to correctly sort temperature information from OBS and then apply the BSS combining the frequent value warning to have a unique correction all over the DSN. Theoretical results are compared, using data from two several experiments, which use different frequency analysis with either predominantly A0 mode or S0 mode data or both. The focus is given on the fact that different paths are available in a sensor network and several possible combinations of results are available. Nonetheless, introducing a frequent value warning it is possible to increase the efficiency of the OBS and BSS approaches making use of fewer signal processing algorithms. These confirm that the performance of OBS quantitatively agrees with predictions. In addition, the possibility to combine BSS approached also demonstrates that the use of compensation strategies improves detectability and localization of damage even in a DSN. This result can be used to improve the SHM system reliability, with promising perspectives in increasing POD. T2 - ASME 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE2022) CY - San Diego, CA, USA DA - 25.07.2022 KW - Performance assessment KW - Elastic waves KW - Structural Health Monitoring PY - 2022 AN - OPUS4-55427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reuter, T. A1 - Plotzki, David A1 - Borges de Oliveira, F. A1 - Wohlgemuth, F. A1 - Bauer, F. A1 - Ballach, F. A1 - Kimmig, W. A1 - Wagner, G. A1 - Watzl, C. A1 - Weiß, D. A1 - Hausotte, T. T1 - Numerical measurement uncertainty evaluation for X-ray computed tomography using simulations – A first approach to build a digital twin N2 - The ability of industrial X-ray computed tomography (CT) to scan an object with several internal and external features at once causes increasing adoption in dimensional metrology. In order to evaluate the quality of a measurement value, the task-specific measurement uncertainty has to be determined. Currently, VDI/VDE 2630 part 2.1 gives a guideline to determine the uncertainty of CT measurements experimentally by conducting repeated measurements. This is costly and time-consuming. Thus, the aim is to determine the task-specific measurement uncertainty numerically by simulations (e. g. according to the guide to expression of uncertainty in measurement (GUM) Supplement 1). To achieve that, a digital twin is necessary. This contribution presents a simple first approach how a digital twin can be built. In order to evaluate this approach, a study comparing measurements and simulations of different real CT systems was carried out by determining the differences between the measurement results of the digital twin and of the measurement results of the real-world CT systems. The results have shown a moderate agreement between real and simulated data. To improve on this aspect, a standardized method to characterize CT systems and methods to implement CT parameters into the simulation with sufficient accuracy will be developed. N2 - Die industrielle Röntgencomputertomografie (CT) wird durch ihre Fähigkeit, ein Messobjekt mit unterschiedlichen inneren und äußeren Merkmalen auf einmal zu messen, immer häufiger auch in der dimensionellen Messtechnik eingesetzt. Um die Güte eines Messwertes beurteilen zu können, muss die aufgabenspezifische Messunsicherheit ermittelt werden. Mit der Richtlinie VDI/VDE 2630 Blatt 2.1 kann derzeit die aufgabenspezifische Messunsicherheit von CT-Messungen experimentell durch eine Vielzahl an Wiederholmessungen ermittelt werden. Diese Vorgehensweise ist allerdings kosten- und zeitintensiv. Daher wird die Bestimmung der aufgabenspezifischen Messunsicherheit numerisch durch Simulationen angestrebt (z. B. Leitfaden zur Angabe der Unsicherheit beim Messen (GUM) Supplement 1). Um dieses Ziel zu erreichen, ist es notwendig, einen Digitalen Zwilling von der Messung mit dem verwendeten CT-System zu erstellen. Dieser Beitrag stellt einen ersten Ansatz zur Erstellung eines Digitalen Zwillings vor. Um diesen anschließend zu testen, wurden in einem ersten Test mehrere CT-Scans auf verschiedenen Anlagen durchgeführt und anschließend anhand der verfügbaren Parameter simuliert. Um die Qualität des jeweiligen Digitalen Zwillings einschätzen zu können, wurden die Abweichungen der resultierenden Messwerte von ihren jeweiligen Sollwerten miteinander verglichen. Die Ergebnisse zeigten eine bedingte Übereinstimmung zwischen realen und simulierten Daten. Um diese zu verbessern, wird eine standardisierte Methode zur Charakterisierung der realen CT-Systeme angestrebt. Darüber hinaus sollten Methoden entwickelt werden, die Charakterisierungsparameter in einer Simulationsumgebung hinreichend genau umzusetzen. KW - Computed tomography KW - Measurement uncertainty KW - Simulation KW - Digital twin PY - 2022 DO - https://doi.org/10.1515/teme-2022-0025 SP - 1 EP - 16 PB - De Gruyter CY - Berlin AN - OPUS4-55428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kröll, Mirco A1 - Grundtner, R. A1 - Pagano, F. A1 - Nyberg, E. A1 - Heino, V. A1 - Spaltmann, Dirk A1 - Gradt, Thomas T1 - Effects of harmonised procedures in tribology testing N2 - i-TRIBOMAT will provide the world's first Open Innovation Test Bed dedicated to analysing and simulating materials in tribological systems. In order to make necessary results of tribological tests comparable, harmonised ways to produce data are mandatory. Many sources influence the outcome of a Tribological test. Different approaches of institutes were evaluated in best practices via quality management tools minimising the impact on results. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Tribology KW - i-TRIBOMAT KW - Characterisation KW - Digitalisation KW - Harmonisation KW - Round robin tests KW - Interlaboratory tests PY - 2022 AN - OPUS4-55317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zabala, A. A1 - Aginagalde, A. A1 - Llavori, I. A1 - Spaltmann, Dirk A1 - Blunt, L. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods N2 - This work presents a critical assessment of wear volume determination methods for ball-on-flat linear reciprocating sliding tribological tests. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Wear KW - Sliding KW - Surface KW - Analysis PY - 2022 AN - OPUS4-55319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Binder, F. A1 - Bircher, B. A1 - Laquai, René A1 - Küng, A. A1 - Bellon, Carsten A1 - Meli, F. A1 - Deresch, A. A1 - Ulrich Neuschaefer-Rube, U. A1 - Hausotte, T. T1 - Methodologies for model parameterization of virtual CTs for measurement uncertainty estimation N2 - X-ray computed tomography (XCT) is a fast-growing technology for dimensional measurements in industrial applications. However, traceable and efficient methods to determine measurement uncertainties are not available. Guidelines like the VDI/VDE 2630 Part 2.1 suggest at least 20 repetitions of a specific measurement task, which is not feasible for industrial standards. Simulation-based approaches to determine task specific measurement uncertainties are promising, but require closely adjusted model parameters and an integration of error sources like geometrical deviations during a measurement. Unfortunately, the development of an automated process to parameterize and integrate geometrical deviations into XCT models is still an open issue. In this work, the whole processing chain of dimensional XCT measurements is taken into account with focus on the issues and requirements to determine suitable parameters of geometrical deviations. Starting off with baseline simulations of different XCT systems, two approaches are investigated to determine and integrate geometrical deviations of reference measurements. The first approach tries to iteratively estimate geometric deviation parameter values to match the characteristics of the missing error sources. The second approach estimates those values based on radiographs of a known calibrated reference object. In contrast to prior work both approaches only use a condensed set of parameters to map geometric deviations. In case of the iterative approach, some major issues regarding unhandled directional dependencies have been identified and discussed. Whereas the radiographic method resulted in task specific expanded measurements uncertainties below one micrometre even for bi-directional features, which is a step closer towards a true digital twin for uncertainty estimations in dimensional XCT. KW - Geometrical deviation KW - X-ray computed tomography KW - Uncertainty estimation KW - Virtual CT PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553263 DO - https://doi.org/10.1088/1361-6501/ac7b6a VL - 33 IS - 10 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Towards Characterisation of Elastic Constants of Composite Materials by means of Ultrasonic Guided Waves N2 - The availability of non-destructive methods is particularly important for composites, e.g., carbon or glass fiber-reinforced polymers because their properties strongly depend on the manufacturing process and in-service conditions. Composites are mostly used in thin-walled components which are perfectly suited for the characterisation with ultrasonic guided waves (UGWs). In this contribution, we demonstrate sensitivities of UGW to different elastic constants of a composite material. Then we present a characterisation procedure which can be used to in-fer elastic properties. Our approach is based on an inverse procedure in which the numeri-cally calculated dispersion curves are fitted to the measured curves. The acquisition is done by applying a broadband piezoelectric transducer (PZT) to excite various UGW modes and a 3D laser Doppler vibrometer (3D LDV) to record them. Compared to the approaches based on laser excitation, the PZT provides a better signal-to-noise ratio because more energy is brought into the structure. Whereas the 3D LDV compared to a 1D LDV or a PZT allows cap-turing in-plane and out-of-plane components giving more dispersion information for a better characterisation. Since the inverse procedure requires many iterations before elastic prop-erties are retrieved, an efficient tool for the calculation of the dispersion curves is necessary. For this, the Scaled Boundary Finite Element Method is used. All in all, a good agreement be-tween theoretical and experimental curves is demonstrated. T2 - ASME 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE2022) CY - San Diego, CA, USA DA - 25.07.2022 KW - Carbon fibre reinforced polymer KW - Glass fibre reinforced polymer KW - Inverse procedure PY - 2022 AN - OPUS4-55425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Przyklenk, A. A1 - Evans, Alexander A1 - Bosse, H. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Favre, G. A1 - Phillips, D. T1 - Progress of the European Metrology Network for Advanced Manufacturing N2 - The European Metrology Network (EMN) for Advanced Manufacturing has been established in June 2021. Currently nine EMNs focussing on different important topics of strategic importance for Europe exist and form an integral part of EURAMET, the European Association of National Metrology Institutes (NMI). EMNs are tasked to ▪ develop a high-level coordination of the metrology community in Europe in a close dialogue with the respective stakeholders (SH) ▪ develop a strategic research agenda (SRA) within their thematic areas ▪ provide contributions to the European Partnership on Metrology research programme Based on the analysis of existing metrology infrastructures and capabilities of NMIs, the metrology research needs for advanced manufacturing are identified in close cooperation with academic, governmental and industrial stakeholders. Here, we report on the progress of the EMN for Advanced Manufacturing. T2 - Euspen 22nd International Conference & Exhibition (Euspen 2022) CY - Genf, Switzerland DA - 30.05.2022 KW - JNP AdvManuNet KW - Metrology KW - Advanced manufacturing KW - European Metrology Network KW - EMN PY - 2022 AN - OPUS4-55805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Geophysical methods delivering input to geostatistical methods for geotechnical site characterization N2 - Geophysical methods are able to contribute significantly to geotechnical site characterization. In-situ parameters are collected and gaps between boreholes or other direct tests are filled with information. However the limited resolution has to be considered and the indirect geophysical parameters have to be translated into something geotechnically useful. Moreover, the limitations have to be evaluated when including geophysical data into geostatistical models. If done properly, the use of geophysics will help in an efficient and effective site characterization. A comprehensive overview on existing geophysical (mostly seismic) methods is given as well as information on the calibration of geophysical against geotechnical parameters, pitfalls and limitations and some hints how to include these data into geostatistical/geotechnical models. T2 - ICGoES International Conference on Geologicalk Engineering and Geosciences CY - Yogyakarta, Indonesia DA - 21.09.2022 KW - Geophysics KW - Geostatistics KW - Geotechnics PY - 2022 AN - OPUS4-55806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Gordon, Nehemia A1 - Rabin, Ira T1 - Distinguishing between seemingly identical inks using scanning μXRF and heat maps N2 - This study will present a new approach to distinguishing writing inks that have the same elemental compositions and visual appearances. The approach is based on displaying the intensity of elemental distributions as heat maps that represent data recorded with a scanning μX-ray fluorescence spectrometer. The heat maps present the data so as to facilitate digitally identifying and distinguishing between inks used to produce, correct, and reink two medieval Torah scrolls. As ritual objects, Torah scrolls had to be written in accordance with exacting standards that evolved over time. This requirement led to successive stages of modifications, sometimes over centuries. Both vitriolic and non-vitriolic inks used to modify Torah scrolls can be visually identical to each other. Furthermore, different non-vitriolic inks usually have an identical elemental composition. The solid material analysis evidence and its presentation as heat maps made it possible to discriminate between original and altered portions of text that in some cases would have been impossible. Our interdisciplinary work brought together conservation, material science, paleog-raphy, and philology to enable the identification of complex stratigraphy in multiple stages of production, correction, and reinking. ©2 0 2 2 Published by Elsevier Masson SAS. KW - Spectroscopy KW - Scanning micro-X-ray fluorescence KW - Vitriolic iron-gall inks KW - Non-vitriolic iron-gall inks KW - Heat maps KW - Torah scrolls KW - Scribal corrections PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557271 DO - https://doi.org/10.1016/j.culher.2022.07.007 SN - 1296-2074 VL - 57 SP - 142 EP - 148 PB - Elsevier Masson SAS AN - OPUS4-55727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruna, F. G. A1 - Prokop, M. A1 - Bystron, T. A1 - Loukrakpam, R. A1 - Melke, J. A1 - Lobo, C. M. S. A1 - Fink, M. A1 - Zhu, M. A1 - Voloshina, E. A1 - Kutter, M. A1 - Hoffmann, H. A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Röder, B. A1 - Bouzek, K. A1 - Paulus, B. A1 - Roth, C. T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR). The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition. KW - H3PO4 life cycle KW - XAS KW - In situ coupling KW - High-temperature fuel cells KW - Δμ XANES KW - H3PO3 PY - 2022 DO - https://doi.org/10.1021/acscatal.2c02630 SN - 2155-5435 VL - 12 IS - 18 SP - 11472 EP - 11484 PB - ACS CY - Washington, DC AN - OPUS4-55815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Witt, Julia A1 - Jain, Mohit A1 - Emmerling, Franziska T1 - In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis N2 - The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, have not been explored yet. For the first time, we report here in situ real-time monitoring of the mechanochemical formation mechanism of mixed-ligand MOFs. Our results show that binary phases can act as intermediates or competing products in one-pot and stepwise synthesis. KW - Mechanochemistry KW - Metal-organic-frameworks KW - In situ X-ray diffraction KW - Mixed-ligand MOFs PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558167 DO - https://doi.org/10.1039/D2CE00803C SP - 1 EP - 4 PB - Royal Society of Chemistry AN - OPUS4-55816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Kruschwitz, Sabine A1 - Wöstmann, Jens T1 - Overview of NDT techniques for moisture measurements in building materials N2 - Overview of NDT techniques for moisture measurements in building materials used in department 8 of BAM. T2 - ENBRI Expert Workshop "Hygrothermal testing - a necessity to guarantee durable buildings" CY - Brussels, Belgium DA - 21.09.2022 KW - Moisture KW - Building materials KW - GPR KW - NMR KW - Microwave PY - 2022 AN - OPUS4-55817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Sprachmann, J. T1 - Datasets of Antiaromatic COFs associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes" N2 - X-ray scattering and sorption data associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes". X-ray scattering data is provided for COF and POP materials, including data from stability tests, as three-column ascii files with columns q (nm-1), I (m-1) and uncertainty on I, as well as being provided in 2θ. KW - X-ray scattering KW - SAXS KW - Covalent Organic Frameworks KW - Antiaromaticity KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7509377 PB - Zenodo CY - Geneva AN - OPUS4-56868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yablokov, A. A1 - Lugovtsova, Yevgeniya A1 - Serdyukov, A. T1 - Uncertainty quantification of multimodal surface wave inversion using artificial neural networks N2 - An inversion of surface waves dispersion curves is a non-unique and ill-conditioned problem. The inversion result has a probabilistic nature, which becomes apparent when simultaneously restoring the shear wave (S-wave) velocity and layer thickness. Therefore, the problem of uncertainty quantification is relevant. Existing methods through deterministic or global optimization approaches of uncertainty quantification via posterior probability density (PPD) of the model parameters are not computationally efficient since they demand multiple solutions of the inverse problem. We present an alternative method based on a multi-layer fully connected artificial neural network (ANN). We improve the current uni-modal approach, which is known from publications, to multi-modal inversion. The learned ANN maps the phase velocity dispersion curves to values of the S-wave velocity and layers thickness. To estimate the uncertainties, we adapt the Monte-Carlo simulation strategy and project onto the resulting velocity model both frequency-dependent data noise and inverse operator errors, which are evaluated by the prediction of the training data set. The proposed combination of surface waves data processing methods, configured with each other, provides a novel surface waves multi-modal dispersion data inversion and uncertainty quantification approach. We first test our approach on synthetic experiments for various velocity models: a positive velocity gradient, a low-velocity layer and a high-velocity layer. This is done considering uni-modal inversion at first and then compared to the multi-modal inversion. Afterwards, we apply our approach to field data and compare resulting models with the body S-wave processing by the generalized reciprocal method (GRM). The experiments show high-potential results – using ANN yields the possibility to accurately estimate PPD of restored model parameters without a significant computational effort. The PPD-based comparison demonstrates advantages of a multi-modal inversion over uni-modal inversion. The trained ANN provides reasonable model parameters predictions and related uncertainties in real-time. KW - Multi-layers KW - Multichannel analysis of surface waves (MASW) KW - Characterisation of soil sites KW - Monte Carlo simulation KW - Field data PY - 2023 DO - https://doi.org/10.1190/geo2022-0261.1 SN - 0016-8033 VL - 88 IS - 2 SP - 1 EP - 43 PB - Society of Exploration Geophysicists CY - Tulsa, Okla. AN - OPUS4-56624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Kreuter, Daniel A1 - Pelkner, Matthias T1 - Flexible GMR sensors for novel flux leakage testing capabilities N2 - In order to detect small and hidden material defects or micro-cracks, weak and localized magnetic stray fields need to be detected and characterized on the magnetic surface. Current flux leakage sensor elements are rigid and rely on air gaps to detect stray fields several hundred micrometers above the surface. Furthermore, the increasing complexity of critical components, enabled by novel fabrication technologies, primarily additive manufacturing, poses a significant challenge to the available flux leakage testing technologies. The emergence of flexible magneto-electronics paves the way to a compliant form of magnetic sensors that, on one hand, are able to adapt to highly curved surfaces, allowing these measurements to be conducted on irregularly formed components, which are inaccessible for nowadays electromagnetic NDT equipment and, on the other hand, could enhance the detection limit for small magnetic stray fields, by allowing the magneto-sensitive elements to approximate the object’s surface until only a few µm, mediated by thin and flexible packaging. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Non-destructive testing KW - Flux leakage testing KW - Flexible sensorics KW - GMR Sensors KW - Flexible electronics PY - 2022 AN - OPUS4-56628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Verschaffelt, P. A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - Probability based taxonomic profiling of viral and microbiome samples using PepGM and Unipept N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference in samples of unknown taxonomic origin. PepGM uses a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets providing taxonomic confidence scores. To build the graphical model, a list of potentially present taxa needs to be inferred. To this end, we integrate Unipept, which enables the fast querying of potentially present taxa. Together, they allow for taxonomic inference with statistically sound confidence scores. T2 - HUPO 2022 world congress CY - Cancun, Mexico DA - 04.12.2022 KW - Bioinformatics KW - Mass spectrometry KW - Taxonomic analysis KW - Microbiomes PY - 2022 AN - OPUS4-56748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A graphical model for taxonomic profiling of viral proteomes N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference. inference. We introduce PepGM, a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets. Using the graphical model, our approach computes statistically sound scores for taxa based on peptide scores from a previous database search, eliminating the need for commonly used heuristics. heuristics. T2 - International conference on systems biology 2022 CY - Berlin, Germany DA - 07.10.2022 KW - Bioinformatics KW - Virus protoemics KW - Taxonomic analysis KW - Graphical models PY - 2022 AN - OPUS4-56749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A graphical model for taxonomic profiling of viral proteomes N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference. inference. We introduce PepGM, a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets. Using the graphical model, our approach computes statistically sound scores for taxa based on peptide scores from a previous database search, eliminating the need for commonly used heuristics. heuristics. T2 - European proteomics association conference 2022 CY - Leipzig, Germany DA - 03.04.2022 KW - graphical models KW - Taxonomic inference KW - Bioinformatics KW - Virus protoemics PY - 2022 AN - OPUS4-56750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A graphical model for taxonomic profiling of viral proteomes N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference. inference. We introduce PepGM, a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets. Using the graphical model, our approach computes statistically sound scores for taxa based on peptide scores from a previous database search, eliminating the need for commonly used heuristics. T2 - European bioinformatics community winter school 2022 CY - Lisbon, Portugal DA - 21.03.2022 KW - Bioinformatics KW - Virus protoemics KW - Taxonomic analysis KW - Graphical models PY - 2022 AN - OPUS4-56751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A graphical model for taxonomic profiling of viral proteomes N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference. inference. We introduce PepGM, a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets. Using the graphical model, our approach computes statistically sound scores for taxa based on peptide scores from a previous database search, eliminating the need for commonly used heuristics. T2 - HUPO conference 2021 CY - Online meeting DA - 04.12.2021 KW - Bioinformatics KW - Virus protoemics KW - Taxonomic analysis KW - Graphical models PY - 2021 AN - OPUS4-56752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R. H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding N2 - This work explores the feasibility of producing bead-on-plate welds of a CrCoNi medium entropy alloy and a CrMnFeCoNi high entropy alloy using electron beam welding. The alloys were welded in two states: one in an as-cold-rolled condition and the other in an annealed condition. In addition, the materials are welded with two different parameters. The FCC microstructure of the welds is investigated using scanning electron microscopy assisted by energy-dispersive X-ray spectroscopy and electron-backscattered diffraction. The impact of the weld on the microstructure is discussed. The heat-affected zone is negligible for the annealed condition of both medium and high entropy alloys since there is no driving force for recrystallisation and the exposure time to high temperature is insufficient for grain coarsening. The texture formed in the fusion zone is also discussed and compared to the texture in the base metal and the heat-affected zone. Although the grain growth along the (100) crystallographic direction is preferential in all cases, the crystallographic texture type differs from each weld. Higher hardness values are measured in the medium entropy alloy’s base metal and fusion zone than in the high entropy alloy. KW - Multi-principal element alloy KW - Electron backscattered diffraction KW - Electron beam welding KW - High-entropy alloy KW - Microstructure characterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568129 DO - https://doi.org/10.1016/j.matdes.2023.111609 SN - 1873-4197 VL - 225 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Faßbender, Sebastian A1 - Meermann, Björn T1 - Mercury speciation in sediments of industrially impacted water bodies in Northern Germany using SSID GC/ICP-ToF-MS N2 - Sediments and soils can act as sinks of species of inorganic mercury (Hg2+), while they are simultaneously sources of organic species, such as monomethylmercury (MMHg). Although the fraction of MMHg in total Hg of sediments is suggested to be only 0.1–1%, MMHg poses a threat for humans and wildlife due to its toxic properties, high bioaccumulation potential and the ability to pass the blood-brain barrier. One example of a highly Hg contaminated waterbody is the Finow Canal, the oldest artificial waterway still in operation in Germany. Here, Hg mass fractions of up to 100 µg/g were found in the sediment in previous studies. These are suggested to be associated with a chemical plant producing mercury-based seed dressings. Despite this high mass fraction of Hg, no Hg speciation studies have been conducted there up to now. In this study, Hg speciation in sediments of Finow Canal at locations before and after the known polluted site was conducted using species-specific isotope dilution (SSID) GC-ICP-ToF-MS. Mass fractions of up to 0.41 µg/g MMHg were determined. In addition, waterbodies around the initially polluted site were investigated and elevated concentrations were also determined around 14 km downstream. For MMHg analysis, the performance of ICP-ToF-MS for SSID GC/ICP-MS was compared with ICP-Q-MS and ICP-SF-MS. Here, isotope ratio precision was similar between the tested instruments. However, the (quasi-) simultaneous detection of the whole mass spectrum will probably offer a much higher precision of ICP-ToF-MS, when more than one isotope system is used. These results are the first evidence of the occurrence of MMHg in this region and show the need for further investigations of the whole regional ecosystem, as well as the consideration of possible measures of remediation. SSID GC-ICP-(ToF)-MS is a suitable tool for investigating species-specific (multi) isotope systems for environmental monitoring. T2 - 33. Doktorandenseminar des AK Separation Science CY - Hohenroda, Germany DA - 08.01.2023 KW - Mercury KW - GC/ICP-ToF-MS KW - Isotope dilution PY - 2023 AN - OPUS4-56816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, Tanja A1 - Kistner, Franziska A1 - Martens, L. A1 - Muth, Thilo T1 - PepGM: A graphical model for taxonomic profiling of viral proteomes N2 - In mass spectrometry based proteomics, protein homology leads to many shared peptides within and between species. This complicates taxonomic inference. inference. We introduce PepGM, a graphical model for taxonomic profiling of viral proteomes and metaproteomic datasets. Using the graphical model, our approach computes statistically sound scores for taxa based on peptide scores from a previous database search, eliminating the need for commonly used heuristics. T2 - European bioinformatics community winter school 2022 CY - Lisbon, Portugal DA - 21.03.2022 KW - Bioinformatics KW - Virus protoemics KW - Taxonomic analysis KW - Graphical models PY - 2022 AN - OPUS4-56753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nowatzky, Yannek A1 - Benner, Philipp A1 - Reinert, K. A1 - Muth, Thilo T1 - Mistle: Metaproteomic index and spectral library search engine N2 - Introduction: With the introduction of accurate deep learning predictors, spectral matching applications might experience a renaissance in tandem mass spectrometry (MS/MS) driven proteomics. Deep learning models, e.g., Prosit, predict complete MS/MS spectra from peptide sequences and give the unprecedented ability to accurately predict mass spectra that may arise from any given proteome. However, the amount of spectral data is enormous when querying large search spaces, e.g., metaproteomes composed of many different species. Current spectral library search software, such as SpectraST, is not equipped to meet run time and memory constraints imposed by such large MS/MS databases, covering several millions of peptide spectrum predictions. Methods: Inspired by the fragment index data structure that had been introduced with MSFragger, we implement an efficient peak matching algorithm for computing spectral similarity between query and library spectra. Mistle (Metaproteomic index and spectral library search engine) uses index partitioning and SIMD (Single instruction, multiple data) intrinsics, which greatly improves speed and memory efficiency for searching large spectral libraries. Mistle is written in C++20 and highly parallelized. Results: We demonstrate the efficiency of Mistle on two predicted spectral libraries for the lab-assembled microbial communities 9MM and SIHUMIx. Compared to the spectral library search engine SpectraST, Mistle shows a >10-fold runtime improvement and is also faster than msSLASH, which uses locality-sensitive hashing. Although Mistle is slower than MSFragger, Mistle‘s memory footprint is an order of magnitude smaller. Furthermore, we find evidence that the spectral matching approach to predicted libraries identifies peptides with higher precision. Mistle detects peptides not found by database search via MSFragger and in turn uncovers unnoticed false discoveries among their matches. Conclusion: In this study, we show that predicted spectral libraries can enhance peptide identification for metaproteomics. Mistle provides the means to efficiently search large-scale spectral libraries, highlighted for the microbiota 9MM and SIHUMIx. T2 - HUPO2022 CY - Cancun, Mexico DA - 04.12.2022 KW - Proteomics KW - Mass spectrometry KW - Algorithms KW - Metaproteomics PY - 2022 AN - OPUS4-56695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Beck, Uwe A1 - Hertwig, Andreas T1 - Modell based ellipsometry standards for different application cases and their application for real non-ideal systems N2 - Ellipsometry enables the investigation of material properties over a broad spectral range. As a fast and non-destructive method, it is widely used in industry for quality assurance. Despite the wide application of ellipsometry and its high industrial relevance there are some material-specific standards and there have been no generally accepted standards dealing with model validation and measurement uncertainties. The first German standard DIN50989-1: 2018 Ellipsometry – Part1: Principles (currently international standard ISO 23131: 2021) marks the beginning of a 6-part standard series for ellipsometry, which was developed under consideration of GUM. T2 - International Conference on Spectroscopic Ellipsometry (ICSE-9) CY - Beijing, China DA - 22.05.2022 KW - Spectroscopic and imaging ellipsometry KW - Standards KW - Uncertainties PY - 2022 AN - OPUS4-56698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers N2 - Recent developments in power electronics require the use of new wide bandgap compound semiconductors. Silicon carbide (SiC) is one of the most promising materials for power electronics due to its outstanding properties and commercial availability. Some types of defects in the SiC substrates or homoepitaxial SiC layers can affect the performance of electronic devices in a serious manner or make its operation even impossible. Optical methods such as imaging ellipsometry (IE) and white light interference microscopy (WLIM) were applied for fast and non-contact investigation of defects in the epitaxially grown 12 µm 4H-SiC layers on 4H- SiC substrates. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto, Portugal DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - Epitaxially grown 4H-SiC layers KW - Wide bandgap compound semiconductors PY - 2022 AN - OPUS4-56705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Koch, Matthias T1 - On-Site Detection of Volatile Organic Compounds (VOCs) N2 - Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research. KW - Volatile organic compounds KW - On-site detection KW - Mobile analytics KW - Sensors PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570885 DO - https://doi.org/10.3390/molecules28041598 VL - 28 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Steinhäuser, Lorin A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Le Diouron, V. A1 - Heath, E. A1 - Ana Kovačič, A. A1 - Potalivo, M. A1 - de Zorzi, P. A1 - Centioli, D. A1 - Naykki, T. A1 - Viidanoja, J. A1 - Gökcen, T. A1 - Budzinski, H. A1 - Le Menach, K. A1 - Selih, V. T1 - EDC-WFD: A project to deliver reliable measurements for better monitoring survey and risks assessments. N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17E2) and estriol (E3) will be included to demonstrate the reliability of the developed methods and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four selected effect-based methods (EBM) will be deeply investigated in order to improve their rationale use and their support in water quality assessment. In particular, the EBM sensitivity, specificity and accuracy on reference materials with single or mixture solutions of the five substances at a concentration of EQS values will be explored. This contribution will present the objectives and methods applied within the EDC-WFD project. T2 - EuChemS CY - Lisbon, Portugal DA - 29.08.2022 KW - WFD KW - Estrogens KW - Whole water samples KW - EQS PY - 2022 AN - OPUS4-57096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Kovačič, A. A1 - Steinhäuser, Lorin A1 - Heath, E. A1 - Lardy-Fontan, S. T1 - A method for monitoring estrogens in whole surface waters by GC-MS/MS N2 - Natural and synthetic estrogens are key endocrine-disrupting chemicals. Despite occurring at ultra-trace levels (below ng L-1), it is believed that they are contributing to an increase in feminized fish and other endocrine disruptive effects, and hence, their inclusion in the Watch list was not unexpected. One of the main sources ofestrogens to surface waters is wastewater effluent. Once in surface waters, they can partition into different compartments, i.e., water and suspended particulate matter. For this reason, there is an urgent need for a methodology to monitor estrogen levels below the environmental quality standards (EQS) set by the Water Framework Directive requirements. In this study, a precise and accurate gas chromatography-mass spectrometry method (GC-MS/MS) for the analysis of estrone (E1), 17β-estradiol (17β-E2), 17α-estradiol (17α- E2), 17-alpha-ethinylestradiol (EE2), and estriol (E3) in whole water samples with ng L-1 limit of quantification (LOQ) was developed and validated in accordance with CEN/TS 16800:2020 guidelines. T2 - IMSC 2022 CY - Maastricht, Netherlands DA - 27.08.2022 KW - EDC KW - WFD KW - GC-MS PY - 2022 AN - OPUS4-57097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Quadtree decomposition as a meshing strategy for guided waves simulations using the scaled boundary finite element method N2 - Structural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finite element method (SBFEM) and quadtree meshes. Problems as non-conforming regions in the mesh due to the space tree decomposition can be easily avoided using SBFEM’s polygonal elements. Moreover, the semi-analytical nature of the SBFEM allows the modeling of arbitrarily long prismatic/undamaged regions of the waveguides without an increase in the computational burden. T2 - DAGA 2022 CY - Stuttgart, Germany DA - 21.03.2022 KW - Wave defect interaction KW - Scaled Boundary Finite Element Method KW - Quadtree meshes KW - Image-based models KW - Transient analysis PY - 2022 SP - 887 EP - 890 CY - Stuttgart AN - OPUS4-57153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pollack, M. A1 - Heck, M. A1 - Wilhelm, M. A1 - Weidner, Steffen T1 - Functionalized poly(ethylene glycol)s (PEGs) as a reference material for detection of polymeric end groups via SEC hyphenated with FTIR and 1H-NMR (80 MHz) N2 - Benchtop 1H-NMR and FTIR have both been successfully developed for size-exclusion chromatography (SEC) applications. The latest implementations of these methods by Wilhelm and collaborators[1-3] have taken advantage of commerically available low-cost equipment, and a provide a means to obtain slice-by-slice spectra for the monitoring of functional groups in polymer separations. Demonstrated applications include the detection of highly diluted chains in a polymer blend (e.g., PS/PMMA), copolymer content determination (e.g., styrene-methyl methacrylate), and butadiene isomer detection. To synthesize and characterize an end-labelled low molecular wt. poly(ethylene glycol) as a model polymer to aid in the development and validation of spectroscopic detection (FTIR and 1H-NMR) for SEC applications. A particular focus is to improve quantitation and/or detection of highly diluted funtional groups (e.g., polymer chain ends or sparsely functionalized chains) In the first approach, an isocyanate with IR- and NMR-active functional groups was reacted with PEG (4000 and 10000 g/mol) to form end-functionalized chains by means of an addition reaction. The functionalization of the 10000 g/mol PEG was found to be non-homogeneous (not discussed further). The 4000 g/mol PEG was successfully functionalized to 100%, found to be homogeneous across the molecular weight distribution and could therefore serve as a model polymer for analysis by the coupled methods. T2 - 10th International Symposium on the Separation and Charcterization of Natural and Synthetic Macromolecules CY - Amsterdam, Netherlands DA - 01.02.2023 KW - PEG KW - Reference materials KW - NMR KW - MALDI-TOF MS PY - 2023 AN - OPUS4-57071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Fioresi, R. A1 - Faglioni, F. A1 - Bruno, Giovanni T1 - Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures N2 - The greatest challenge when using deep convolutional neural networks (DCNNs) for automatic segmentation of microstructural X-ray computed tomography (XCT) data is the acquisition of sufficient and relevant data to train the working network. Traditionally, these have been attained by manually annotating a few slices for 2D DCNNs. However, complex multiphase microstructures would presumably be better segmented with 3D networks. However, manual segmentation labeling for 3D problems is prohibitive. In this work, we introduce a method for generating synthetic XCT data for a challenging six-phase Al–Si alloy composite reinforced with ceramic fibers and particles. Moreover, we propose certain data augmentations (brightness, contrast, noise, and blur), a special in-house designed deep convolutional neural network (Triple UNet), and a multi-view forwarding strategy to promote generalized learning from synthetic data and therefore achieve successful segmentations. We obtain an overall Dice score of 0.77. Lastly, we prove the detrimental effects of artifacts in the XCT data on achieving accurate segmentations when synthetic data are employed for training the DCNNs. The methods presented in this work are applicable to other materials and imaging techniques as well. Successful segmentation coupled with neural networks trained with synthetic data will accelerate scientific output. KW - Automatic segmentation KW - 3D deep convolutional neural network (3D DCNN) KW - Dice score KW - Metal matrix composite (MMC) KW - Modified U-Net architectures KW - Multi-phase materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571243 DO - https://doi.org/10.3390/jimaging9020022 VL - 9 IS - 2 SP - 1 EP - 23 PB - MDPI AN - OPUS4-57124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Selleng, C. A1 - Meng, Birgit T1 - Prompt phase analyses of ultrahigh-performance concrete N2 - Powder X-ray diffraction is a time-consuming and challenging task, especially for preparation of sensitive phases like ettringite and calcium-silicate-hydrate (C-S-H) phases. Fine-grained ultrahigh-performance concrete (UHPC) with an average grain size <100 μm could be investigated directly without time-consuming milling. As a proof of concept, small UHPC cylinders with plain surfaces were investigated with a newly designed sample holder. The comparison with conventionally prepared powder shows the feasibility of fast qualitative phase analysis using this approach. As a great benefit, a depth-dependent analysis, as well as a comparison of surface layers and core material, was carried out. KW - Ultrahigh-performance concrete (UHPC) KW - X-ray diffraction (XRD) KW - Sample holder KW - Fast measurement KW - Spatial analyses PY - 2018 DO - https://doi.org/10.1061/(ASCE)MT.1943-5533.0002163 SN - 1943-5533 SN - 0899-1561 VL - 30 IS - 3 SP - 06018001, 1 EP - 06018001, 5 PB - American Society of Civil Engineers CY - Reston, VA, USA AN - OPUS4-43879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Peys, A. A1 - Onisei, S. A1 - Banerjee, D. A1 - Pontikes, Y. T1 - The fate of iron during the alkali-activation of synthetic (CaO-)FeOx-SiO2 slags: An Fe K-edge XANES study N2 - Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali-activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe-rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali Silicate solutions have been studied by means of X-ray absorption near-edge structure (XANES) spectroscopy at the Fe K-edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali-activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe-rich slags studied here are not Fe-analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter. KW - Alkali-activated slag KW - Inorganic polymers KW - Iron speciation KW - Nonferrous slag KW - X-ray absorption near-edge structure KW - X-ray absorption spectroscopy PY - 2018 DO - https://doi.org/10.1111/jace.15354 SN - 1551-2916 SN - 0002-7820 VL - 101 IS - 5 SP - 2107 EP - 2118 PB - John Wiley & Sons, Inc. AN - OPUS4-43880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. A1 - Rosenfeld, A. A1 - Mermillod-Blondin, A. T1 - Time-resolved microscopy of fs-laser-induced heat flows in glasses N2 - Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials. KW - Femtosecond laser KW - Phase-contrast microscopy KW - Heat diffusion KW - Glasses PY - 2018 DO - https://doi.org/10.1007/s00339-017-1465-5 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 60, 1 EP - 6 PB - Springer-Verlag AN - OPUS4-43739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasri, J. A1 - Chulvi, Katherine A1 - Eltayeb, N. E. T1 - Crystal structures of (E)-1-naphthaldehyde oxime and (E)-phenanthrene-9-carbaldehyde oxime N2 - The aldoximes C11H9NO (I) and C15H11NO (II), synthesized in ca 90%yield, by treatment of 1-naphthaldehyde or phenanthrene-9-carbaldehyde, respectively, with hydroxylamine hydrochloride and sodium carbonate, have been characterized by IR, 1H, 13C and DEPT-135 NMR spectroscopies, and also by singlecrystal X-ray diffraction analysis. The molecules of (I) and (II) are conformationally similar, with the aldoxime substituent groups lying outside the planes of the naphthalene or phenanthrene rings, forming dihedral angles with them of 23.9 (4) and 27.9 (6)°, respectively. The crystal structures of both (I) and (II) are similar with a single intermolecular O—H...N hydrogenbonding interaction, giving rise to the formation of one-dimensional polymeric chains extending along the 21 (b) screw axes in each. KW - Crystal structure KW - Aromatic aldehydes KW - E-aldoximes KW - Hydrogen bonding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-443351 DO - https://doi.org/10.1107/S2056989018002116 SN - 2056-9890 VL - 74 SP - 332 EP - 336 PB - International Union of Crystallography CY - Chester AN - OPUS4-44335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanova, N. A1 - Tumanov, N. A1 - Robeyns, K. A1 - Fischer, Franziska A1 - Fusaro, L. A1 - Morelle, F. A1 - Ban, V. A1 - Hautier, G. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. A1 - Emmerling, Franziska T1 - Opening Pandora’s Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals N2 - Proline has been widely used for various cocrystallization applications, including pharmaceutical cocrystals. Combining enantiopure and racemic flurbiprofen and proline, we discovered 18 new crystal structures. Liquid-assisted grinding proved highly efficient to explore all the variety of crystal forms. A unique combination of stateof-the-art characterization techniques, comprising variable temperature in situ X-ray diffraction and in situ ball-milling, along with other physicochemical methods and density functional theory calculations, was indispensable for identifying all the phases. Analyzing the results of in situ ball-milling, we established a stepwise mechanism for the formation of several 1:1 cocrystals via an intermediate 2:1 phase. The nature of the solvent in liquidassisted grinding was found to significantly affect the reaction rate and, in some cases, the reaction pathway. KW - Mechanochemistry KW - Polymorphs KW - In situ PY - 2018 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b01436 DO - https://doi.org/10.1021/acs.cgd.7b01436 VL - 18 IS - 2 SP - 954 EP - 961 PB - American Chemical Society AN - OPUS4-44365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medina, A. A1 - Ol, M. V. A1 - Greenblatt, D. A1 - Müller-Vahl, H. A1 - Strangfeld, Christoph T1 - High-Amplitude Surge of a Pitching Airfoil: Complementary Wind- and Water-Tunnel Measurements N2 - RECENT interest in gust response, rotorcraft forward flight and wind energy, among other applications, has focused on streamwise oscillations of nominally two-dimensional airfoils in attached and separated flows. The airfoil may be simultaneously held at constant incidence or execute some maneuver, such as pitch. The relative freestream is spatially uniform but temporally unsteady, and this can be accomplished in a ground-test facility in two ways. The first method is to vary the output of the prime mover, such as the rotational speed of the impeller or the blower driving a wind tunnel, or (alternatively) to vary the pressure drop in the tunnel, thereby varying the flow speed in the test section, despite nominally constant primemover revolutions per minute. The second method is used to keep the tunnel’s operating speed constant, as well as to move the test article in the streamwise direction, fore and aft (for example, via an electric linear motor), such that the relative freestream speed felt by the test article varies according to some waveform. Typically, the latter approach is chosen in water tunnels, where there is too much tunnel-circuit inertia to vary the flow speed directly but where the usually low tunnel test section flow speeds enable large excursions in the relative freestream by oscillation of the test article. In fact, outright reverse flow is possible by moving the test article in the laboratory frame at a higher speed than the water-tunnel flow speed. In either case, a sinusoidal relative-speed waveform is the most intuitively realizable, and this can be combined with similar oscillations in the airfoil incidence angle or other kinematics. Although the two methods of realizing streamwise oscillations are mechanically distinct, experimental comparisons between an oscillating test article in a water tunnel and a stationary test article in a wind tunnel with a louvermechanismhave demonstrated agreement in themeasured lift and drag histories. Such experimentswere performed by Granlund et al. for a 10% freestream amplitude oscillation and fixed airfoil incidence, comparing a free-surface water tunnel and a closed-circuit wind tunnel. After buoyancy was subtracted from the wind-tunnel data (resulting from the louver pressure drop) and the model inertia subtracted from the water-tunnel data (resulting from acceleration of the test article), the remaining lift and drag histories matched well at the low freestream oscillation amplitude regime. The work of Granlund et al. was later extended to high-advance-ratio streamwise oscillations of 50% amplitude by Greenblatt et al., where the aerodynamic histories of the water-tunnel and wind-tunnel facilities were compared in combined pitch and freestreamoscillations (governed by relative pitch phase), pure pitch oscillations, and purely freestream oscillations. Agreement between the two facilities’ data for fixed-incidence streamwise oscillations was reasonably good, and in fact, better than agreement in just the static lift and drag, evidently owing to differences in blockage and model-support systems. Additionally, Greenblatt et al. determined there was no strong coupling between simultaneous freestream oscillations and pitch oscillations on resultant lift and moment coefficients. KW - Wind energy KW - Dynamic stall KW - Deep stall KW - Airfoil surging KW - Airfoil pitching PY - 2018 DO - https://doi.org/10.2514/1.J056408 SN - 0001-1452 SN - 1533-385X VL - 56 IS - 4 SP - 1703 EP - 1709 PB - American Institute of Aeronautics and Astronautics AN - OPUS4-43994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. W. T1 - A new strategy for metal labeling of glycan structures in antibodies N2 - Quantitative analysis of complex proteins is a challenging task in modern bioanalytical chemistry. Commonly available isotope labels are still suffering from limitations and drawbacks, whereas new metal labels open numerous possibilities in mass spectrometric analyses. In this work, we have developed a newmetal labeling strategy to tag glycan structures of proteins, more particularly antibodies. The oligosaccharide glycans were selectively trimmed to the last N-acetylglucosamine to which an artificial azide containing galactose residue was bound. This azide can be used for subsequent cycloaddition of an alkyne. Therefore, we developed a lanthanide-containing macrocyclic reagent to selectively connect to this azido galactose. In summary, the glycan structures of an antibody can be labeled with a metal functionality using this approach. Furthermore, the functionality of the antibodies can be fully maintained by labeling the Fc glycans instead of using labeling reagents that target amino or thiol groups. This approach enables the possibility of using elemental, besides molecular mass spectrometry, for quantitative analyses or imaging experiments of antibodies in complex biological samples. KW - Antibody KW - Metal labeling KW - Glycans KW - DOTA KW - Lanthanide PY - 2018 DO - https://doi.org/10.1007/s00216-017-0683-1 SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 1 SP - 21 EP - 25 PB - Springer AN - OPUS4-44000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Zscherpel, Uwe A1 - Ewert, Uwe ED - Russo, Paolo T1 - Handbook of X-ray imaging: Physics and technology N2 - Industrial Radiology is used for volumetric inspection of industrial objects. By penetration of these objects (typically weldments, pipes or castings) with X-ray or Gamma radiation the 3D-volume is projected onto a 2D image detector. The X-ray film is the oldest radiographic image detector and still in wide use in industry. The industrial X-ray film systems used today differ from these used in medicine. Medical film systems are described well in the literature, but industrial film systems not. So we start with a description of the properties and standards for industrial film systems. The requirements on image quality are defined by several standards and can be verified with different image quality indicators (IQIs). They describe the ability of the human being to detect small and low contrast indications in a noisy image background. The essential parameters for digital industrial radiology are described. Since about 30 years electronic image detectors are gradually replacing the industrial film. These detectors are based on storage phosphor imaging plates in combination with Laser scanners (“Computed Radiography”, CR) or a variety of different digital detector arrays (DDA). Typical applications of CR and DDAs are discussed as well as new possibilities by digital image processing, which is enabled by the computer based image handling, processing and analysis. KW - Industrial radiology KW - Industrial radiography KW - NDT films KW - Computed radiography KW - Digital detector arrays PY - 2018 SN - 978-1-4987-4152-1 SP - Chapter 30, 595 EP - 617 PB - CRC Press CY - Boca Raton, FL, USA AN - OPUS4-44026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kothavale, S. A1 - Jadhav, A. G. A1 - Scholz, Norman A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Corrigendum to "Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms" [Dyes Pigments 137 (2017) 329-341] N2 - We designed and synthesized triphenylamine based and coumarin fused rhodamine hybrid dyes and characterized using 1H, 13C NMR and HR-LCMS analysis. Both the newly synthesized hybrid dyes were found to show red shifted absorption as well as emissions and large Stokes shift (40e68 nm) as compared to the small Stokes shift (25e30 nm) of reported dyes Rhodamine B and 101. Photophysical properties of these dyes were studied in different solvents and according to the solvents acidity or basicity they preferred to remain in their spirocyclic or open form in different ratio. We studied the spirocyclic as well as open form derivatives of these dyes for their viscosity sensitivity in three different mixture of solvents i.e. polar-protic [EtOH-PEG 400], polar-aprotic [toluene-PEG 400] and non-polaraprotic [toluene-paraffin]. They are found to show very high viscosity sensitivity in polar-protic mixture of solvents [EtOH-PEG 400] and hence concluded that both polarity as well as viscosity factor worked together for the higher emission enhancement rather than only viscosity factor. As these dyes showed very high viscosity sensitivity in their spirocyclic as well as open form, they can be utilized as viscosity sensors in visible as well as deep red region. We also correlated our experimental finding theoretically by using Density Functional theory computations. KW - Dye KW - Fluorescence KW - Synthesis KW - Quantum yield KW - Lifetime KW - Coumarin KW - Rhodamine KW - Probe KW - Viscosity PY - 2018 DO - https://doi.org/10.1016/j.dyepig.2017.06.021 SN - 0143-7208 SN - 1873-3743 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 149 SP - 929 PB - Elsevier CY - Amsterdam AN - OPUS4-44038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -