TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - The Meticulous Approach: Fully traceable X-ray scattering data via a comprehensive lab methodology N2 - To find out if experimental findings are real, you need to be able to repeat them. For a long time, however, papers and datasets could not necessarily include sufficient details to accurately repeat experiments, leading to a reproducibility crisis. It is here, that the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) tries to implement change – at least for small- and wide-angle X-ray scattering (SAXS/WAXS). In the MOUSE project, we have combined: a) a comprehensive laboratory workflow with b) a heavily modified, highly automated Xenocs Xeuss 2.0 instrumental component. This combination allows us to collect fully traceable scattering data, with a well-documented data flow (akin to what is found at the more automated beamlines). With two full-time researchers, the lab collects and interprets thousands of datasets, on hundreds of samples for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. While these numbers do not light a candle to those achieved by our hardworking compatriots at the synchrotron beamlines, the laboratory approach does allow us to continually modify and fine-tune the integral methodology. So for the last three years, we have incorporated e.g. FAIR principles, traceability, automated processing, data curation strategies, as well as a host of good scattering practices into the MOUSE system. We have concomitantly expanded our purview as specialists to include an increased responsibility for the entire scattering aspect of the resultant publications, to ensure full exploitation of the data quality, whilst avoiding common pitfalls. This talk will discuss the MOUSE project1 as implemented to date, and will introduce foreseeable upgrades and changes. These upgrades include better pre-experiment sample scattering predictions to filter projects on the basis of their suitability, exploitation of the measurement database for detecting long-term changes and automated flagging of datasets, and enhancing MC fitting with sample scattering simulations for better matching of odd-shaped scatterers. T2 - S4SAS CY - Online meeting DA - 01.09.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Data organization KW - Automation KW - Traceability PY - 2021 AN - OPUS4-53273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark side of Science N2 - We all may have started out as bright-eyed students trying to do science to the best of our abilities, but over time, some of us have gradually drifted to the dark side. The dark side of science has an impressive publication rate in high-ranking journals, good success with funding agencies, and rocks the world with stellar findings. Unfortunately, these findings aren't real, either by accident or on purpose. As the presenter and his colleagues found, trying to correct or even dispute any of these findings in literature is a supremely complex and time-consuming effort. With no recent reduction in the frequency of such false findings, it is up to us to try to stem the flow. Besides looking at examples, we need to understand the underlying driving forces behind this dark scientific movement. By combining this understanding with a refresher of the core scientific principles, we can then develop the necessary argumentative tools and mechanisms that may prevent our own slide down the slippery slope. This talk will therefore start out with several entertaining examples of probably accidental, as well as definitely deliberate, false scientific findings in literature (and in particular in the field of materials research). We will then take a brief look at the possible causes for these developments, after which some tools will be presented that can help both the fresh as well as the well-seasoned scientist to rise up against the dark side. T2 - DGM special event (invited lecture) CY - Online meeting DA - 23.06.2021 KW - Scientific fraud KW - Reproducibility crisis KW - Bad science KW - Scientific method KW - Publication pressure PY - 2021 AN - OPUS4-53274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser-based building material sorting for the processing of construction and demolition waste for the circular economy N2 - A joint project of partners from industry and research institutions for the research and construction of an analysis system for an automated, sensor-supported sorting of construction and demolition waste will be presented. This is intended to supplement or replace the previously practiced manual sorting, which harbors many risks and dangers for the staff and only enables obvious, visually detectable differences for separation. The method of laser-induced breakdown spectroscopy is to be used in combination with hyperspectral sensors. Due to the jointly processed information (data fusion), this should lead to a significant improvement in the separation of types. In addition to the sorting of different materials (concrete, main masonry building materials, organic components, glass, etc.), impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.) could also be detected and separated. The subsequent recycling and sales opportunities are examined, such as the use of recycled aggregates in concrete, the recycling of building materials containing sulphate as a gypsum substitute for the cement industry or the agglomeration of synthetic lightweight aggregates for lightweight concrete or as a substrate for green roofs. At the same time, it is investigated whether soluble components (sulfates, heavy metals, etc.) can be detected by LIBS without a wet chemical analysis and what impact the recycling materials have on the environment. The entire value chain is examined using the example of the Berlin location in order to minimize economic / technological barriers and obstacles on a cluster level and to sustainably increase the recovery and recycling rates. T2 - Materials Week 2021 CY - Online meeting DA - 07.09.2021 KW - Laser induced breakdown spectroscopy KW - Building waste KW - Circular economy KW - Material sorting PY - 2021 AN - OPUS4-53286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Vaslin-Reimann, S. A1 - Philipp, Rosemarie T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The poster presents the main achievements of the capacity building project ALCOREF “Forensic alcohol reference materials”. The project was part of the European Metrology Programme for Innovation and Research (EMPIR). Altogether 43 certified ethanol in water reference materials (CRMs) in the mass fraction range of 0.1 to 7 mg/g were developed by project partners. These CRMS are suitable for the calibration and verification of evidential breath alcohol analysers according to the requirements of the International Organisation of Legal Metrology (OIML). Furthermore, 10 new or improved Calibration and Measurement Capability (CMC) claims for purity assessment of ethanol and ethanol quantification were prepared. Newly established measurement capabilities and the new CRMs were successfully tested in three intercomparisons conducted as official intercomparisons of EURAMET Technical Committee for Metrology in Chemistry. T2 - 20th International Metrology Congress CIM CY - Lyon, France DA - 07.09.2021 KW - Certified reference material KW - EMPIR project KW - Evidential breath alcohol measurement PY - 2021 AN - OPUS4-53288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lee, Hee-Jin A1 - Rühl, Isabel A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - Phosphorus sum parameter analysis using HR-CS-GFMAS N2 - Organophosphate (OP) esters (OPEs) are widely used as flame retardants (FRs) and can for that purpose be found in textiles, furnitures, electronics and more. They can also be used as plasticizers or lubricants. OPEs have been found in air, water and sediment as environmental pollutants and are associated with potential health risks like cancer. In this study, a method for the phosphorus sum parameter analysis using HR-CS-GFMAS was optimized for environmental (water) samples. For this purpose, three FR substances (TPP, VPA, TDCPP) were used. T2 - SALSA Make and Measure ... and Machines CY - Online meeting DA - 16.09.2021 KW - HR-CS-GFMAS KW - Phosphorus KW - Organophosphate esters KW - Flame retardants PY - 2021 AN - OPUS4-53303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, I. A1 - Memmolo, V. A1 - Tschöke, K. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Lugovtsova, Yevgeniya A1 - Eremin, A. A1 - Moll, J. T1 - Performance Assessment for a Guided Wave-Based SHM System Applied to a Stiffened Composite Structure N2 - To assess the ability of structural health monitoring (SHM) systems, a variety of prerequisites and contributing factors have to be taken into account. Within this publication, this variety is analyzed for actively introduced guided wave-based SHM systems. For these systems, it is not possible to analyze their performance without taking into account their structure and their applied system parameters. Therefore, interdependencies of performance assessment are displayed in an SHM pyramid based on the structure and its monitoring requirements. Factors influencing the quality, capability and reliability of the monitoring system are given and put into relation with state-of-the-art performance analysis in a non-destructive evaluation. While some aspects are similar and can be treated in similar ways, others, such as location, environmental condition and structural dependency, demand novel solutions. Using an open-access data set from the Open Guided Waves platform, a detailed method description and analysis of path-based performance assessment is presented.The adopted approach clearly begs the question about the decision framework, as the threshold affects the reliability of the system. In addition, the findings show the effect of the propagation path according to the damage position. Indeed, the distance of damage directly affects the system performance. Otherwise, the propagation direction does not alter the potentiality of the detection approach despite the anisotropy of composites. Nonetheless, the finite waveguide makes it necessary to look at the whole paths, as singular phenomena associated with the reflections may appear. Numerical investigation helps to clarify the centrality of wave mechanics and the necessity to take sensor position into account as an influencing factor. Starting from the findings achieved, all the issues are discussed, and potential future steps are outlined. KW - Reliability assessment KW - Ultrasonic Guided Waves KW - Structural Health Monitoring KW - Probability of detection KW - Path-based analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558853 DO - https://doi.org/10.3390/s22197529 VL - 22 IS - 19 SP - 1 EP - 28 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman microspectroscopy elucidates Early Medieval art technology: high-fired gypsum mortar and Egyptian blue from the church St. Peter above Gratsch (South Tyrol, Northern Italy) N2 - Raman microspectroscopy enables imaging of the distributions of mineral phases as well as physical properties of materials, such as crystal orientations and crystallinities, with down to sub-micrometre resolution. In a combination with other spectroscopic and microscopic techniques, this approach was applied to the analysis and elucidation of ancient production technologies of stucco fragments made of high-fired gypsum mortar and Egyptian blue pigment discovered on a monochrome wall painting fragment originating from the Early Medieval (5th/6th century AD) construction phase of the church St. Peter above Gratsch in South Tyrol (Northern Italy). T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - Raman microspectroscopy KW - Gypsum KW - Pigments PY - 2022 AN - OPUS4-55896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559028 DO - https://doi.org/10.1038/s41598-022-19923-w SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sechi, R. A1 - Fackeldey, K. A1 - Chewle, Surahit A1 - Weber, M. T1 - SepFree NMF: A toolbox for analyzing the kinetics of sequential spectroscopic data N2 - This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension “measured times” versus “measured wavenumbers” and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M = WH, with W representing the components’ fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra. KW - Kinetics from experiments KW - Separability assumption KW - Sequential spectroscopic data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559046 DO - https://doi.org/10.3390/a15090297 SN - 1999-4893 VL - 15 IS - 9 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fackeldey, K. A1 - Röhm, J. A1 - Niknejad, A. A1 - Chewle, Surahit A1 - Weber, M. T1 - Analyzing Raman spectral data without separabiliy assumption N2 - Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the time-resolved-Raman-sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example. KW - Non-negative matrix factorization KW - NMF KW - Raman spectra KW - Separability condition KW - PCCA+ PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559051 DO - https://doi.org/10.1007/s10910-020-01201-7 SN - 1572-8897 VL - 59 SP - 575 EP - 596 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - ESAS - CSSC CY - Brno, Czech Republic DA - 04.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - SALSA - Communicating Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Multielemental analysis of MIC organisms grown on solid steel samples by means of single cell-ICP-ToF-MS N2 - Inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) enables the analysis of the multi-element fingerprint of individual cells due to a (quasi-)simultaneous detection of about 70 elements of the periodic table. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed which ensures the analysis of intact cells. It allows the studies of archaea at a single cell level which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - DGMS Young Scientists Fall Meeting 2022 CY - Hünfeld, Germany DA - 28.09.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-55910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effect and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields (QY). For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. For the reliable and accurate determination of QY which is the key performance parameter for the comparison of different luminophores, we certified a set of 12 quantum yield standards, which absorb and emit in the wavelength range from 300 nm to 1000 nm. T2 - Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-55914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Bliesener, Lilly A1 - Weiss, Tilman A1 - Koch, Matthias T1 - Marker Substances in the Aroma of Truffles N2 - The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results. KW - Truffle KW - Volatile organic compounds; KW - Gas chromatography KW - Mass spectrometry KW - Canine olfactometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556116 DO - https://doi.org/10.3390/molecules27165169 SN - 1420-3049 VL - 27 IS - 16 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-55611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Dayani, Shahabeddin A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Britzke, Ralf A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers in a wide range of research areas since more than 20 years. These fields include biology, cultural heritage, medicine, and also materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. A recent upgrade of key equipment at the BAMline expands the imaging capabilities towards shorter acquisition times. Therefore, in-situ and operando experiments can now be routinely conducted. Also, different energy resolutions can be set up to optimize flux and energy resolution as desired. This requires an adaptation of the used reconstruction methods in order to perform necessary analyses also during the experiment. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - 5th Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities (SNI 2022) CY - Berlin, Germany DA - 05.09.2022 KW - BAMline KW - X-ray imaging KW - Tomography PY - 2022 AN - OPUS4-55692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs – Results of a research project N2 - Since 1997, the Committee for Health-related Evaluation of Building Products (AgBB) has been developing the basis for building regulations for protection against indoor health risks that may arise when building products are used. In 2009, the AgBB decided to include relevant VVOCs in the assessment procedure. The ISO 16000-6 (2021) states that the use of the thermal desorption gas chromatography technique is appropriate for VVOCs, if adaptations are considered. However, a suitable method for the trustworthy quantification of VVOC emissions from building products and in the indoor air is still missing. This webinar will present the results of a research project on the development of a procedure for VVOC analysis: • identification of the gaps towards standardization • investigations on gas standards and the suitability of chromatography columns • investigations on sorbent combinations and water management • validation of the method and screening of VVOC emissions from building products. T2 - Webinar organized by Umweltbundesamt and BAM CY - Online meeting DA - 13.09.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spallanzani, Roberta A1 - Koga, K. A1 - Cichy, S. A1 - Wiedenbeck, M. A1 - Schmidt, B. A1 - Oelze, Marcus A1 - Wilke, M. T1 - Lithium and boron difusivity and isotopic fractionation in hydrated rhyolitic melts N2 - Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the difusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having diferent Li and B contents; these were studied in difusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B difusion of 57±4 kJ/mol and 152±15 kJ/mol with pre-exponential factors of 1.53 × 10–7 m2/s and 3.80× 10–8 m2 /s, respectively. Lithium isotopic fractionation during difusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li difusivities and isotopic fractionation results difer somewhat from earlier published values, but overall confrm that Li difusivity increases with water content. Our results on B difusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confrm that B difusivity is limited by viscous fow in silicate melts. Our results on Li and B difusion present a new tool for understanding degassing-related processes, ofering a potential geospeedometer to measure volcanic ascent rates. KW - Hydrated silicate melts KW - Stable isotopes KW - Diffusion KW - Isotopic fractionation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554496 DO - https://doi.org/10.1007/s00410-022-01937-2 VL - 177 IS - 8 SP - 1 EP - 17 PB - Springer AN - OPUS4-55449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Benemann, Sigrid A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - This study presents a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Core-shell particles KW - 3D image analysis KW - Roughness KW - SEM tilting KW - Batch analysis PY - 2022 AN - OPUS4-55452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Yang, J. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - Fluorescence temperature sensing of NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ nanoparticles at low and high temperatures N2 - NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ upconversion nanoparticles (UCNPs) were prepared using a solvothermal method, and the effects of key factors such as the content of sensitiser Nd 3+ and Yb3+ on their luminescence properties were investigated. The nanoparticles are homogeneous in size and well dispersed. Under 808 nm excitation, it can produce strong upconversion fluorescence. At the same time, the nanoparticles have good temperature-sensing properties at the thermally coupled energy levels of 700 nm and 646 nm for Tm3+. Using its fluorescence intensity ratio (FIR), accurate temperature measurements can be performed, and it has been found that it exhibits different temperature sensing properties in low and high-temperature regions. The maximum relative sensitivity was found to be 0.88% K-1 and 1.89% K-1 for the lowtemperature region of 285 K-345 K and the high-temperature region of 345 K-495 K. The nanoparticles were applied to the internal temperature measurement of lithium batteries and the actual high-temperature environment, respectively, and were found to have good temperature measurementt performance. KW - Fluorescence KW - Sensor KW - Temperature KW - Ratiometric KW - Lanthanide KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Upconversion nanoparticle PY - 2022 DO - https://doi.org/10.1088/1361-6528/ac84e4 SN - 1361-6528 VL - 33 IS - 34 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-55454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schumacher, David A1 - Hohendorf, Stefan T1 - How does a Moka Pot work? 2D X-Ray video gives insights! N2 - This sequence of X-Ray images shows how one of the most common Italian moka pots actually work! The sequence starts with a completely prepared moka pot (water in the bottom part, coffee in the middle and hot plate on). During the process the water starts to boil and the steam pressure pushes the hot water through the coffee into the bassin at the top of the pot. This video sequence and additional explanations can also be found on Wikipedia. KW - X-Ray KW - Moka Pot KW - Coffee KW - Radiography KW - Espressokanne PY - 2022 DO - https://doi.org/10.5281/zenodo.7003489 PB - Zenodo CY - Geneva AN - OPUS4-55558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - New possibilities in single cell analysis via ICP-ToF-MS – zooming into the region where materials meet environment N2 - Materials are key for our modern communities; current life seems nearly impossible without concrete, plastic and metal. In particular metals play important roles in all areas of our daily life - from building materials to high tech products. However, due to the increasing consumption of metals and corresponding waste production, an elevated release of metals from buildings and consumer goods into the environment takes place. Furthermore, metals in direct contact with the environment undergo corrosion processes which leads also to a release of metals into the (aquatic) environment. Besides this immediate metal release, the lifespan of products/buildings are substantially reduced – hence unnecessary economic costs arise. Thus, research in this regard is needed within the force field of metal/material  environment. However, to evaluate the environmental impact of materials as well as developing “safe” materials, new analytical methods are highly needed. One promising powerful tool in this regard is single cell-ICP-ToF-MS for multi-elemental analysis on a single cell/organism level. Within this presentation the concept, strength as well as challenge of single cell-ICP-MS are briefly introduced. Afterwards, two application examples are presented: (i) assessing the environmental impact of metals and (ii) the impact of the environment on metal-based materials and the derivation of potential environmental-friendly material protection strategies. These applications highlight the strength of new analytical approaches to explore the durability and safety of newly developed materials. Thus, analytical chemistry is one corner stone to transformation of modern society into circular economy (CEco). (i) Diatoms are located at the bottom of the food chain. Thus, toxicological relevant metals taken up by diatoms can possibly accumulate within the food web and cause harmful effects. Diatoms are a common test system in ecotoxicology. To investigate potential metal uptake and harmful effects on a single cell level, we developed an on-line single cell-ICP-ToF-MS approach for multi-elemental diatom analysis. Our approach is a new potential tool in ecotoxicological testing for metal-based materials. (ii) Next to classical corrosion processes, microorganisms are responsible for so called microbially influenced corrosion (MIC). MIC is a highly unpredictable process relying on the interaction pathways between cells and the metal surface. To shed light on MIC processes and derivate potential metal protection strategies, we applied single cell-ICP-ToF-MS for MIC research on a single bacteria/archaea level. It turned out that microorganism are taking up particular metals from alloys - thus, single bacteria-ICP-ToF-MS will enable the development of environmental friendly corrosion protection strategies. T2 - 10th Nordic Conference on Plasma Spectrochemistry CY - Loen, Norway DA - 12.06.2022 KW - sc-ICP-ToF-MS KW - Material - Environment interaction KW - Diatom, Bacteria PY - 2022 AN - OPUS4-55533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Multi-color nanosensors for ratiometric measurements of acidic, neutral, and basic pH based on silica and polystyrene particles N2 - pH presents one of the most important analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor mediated internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labelled or stained with a multitude of sensor dyes, have several advantages as compared to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by staining and/or labelling with different fluorophores and sensor molecules are surface-functionalized particles like silica (SiO2) and polystyrene (PS) particles. Here we present a platform of blue-red-green fluorescent pH nanosensors for the measurement of acidic, neutral, and basic pH utilizing both types of matrices and two spectrally distinguishable sensor dyes with an integrated reference dye and demonstrate its applicability for cellular studies. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Nanosensors KW - pH sensing KW - Silica- and polystyrene particles KW - Ratiometric sensors KW - Fluorescence PY - 2022 AN - OPUS4-55597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer T1 - Obituary of Christiane Maierhofer N2 - Obituary for Christiane Maierhofer, the head of the department "Thermographic Methods" at BAM (2015-2022). KW - Obituary KW - In Memoriam PY - 2022 DO - https://doi.org/10.1080/17686733.2022.2105019 SN - 1768-6733 SN - 2116-7176 VL - 19 IS - 4 SP - 221 EP - 222 PB - Taylor & Francis CY - London AN - OPUS4-55603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, J. A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - LIBS KW - NDT KW - Circular economy KW - Recycling KW - Material classification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555531 UR - http://www.ndt.net/?id=27220 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, Jenny A1 - Landmann, Mirko A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 - The International Symposium on Nendestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Material classification KW - Circular economy KW - LIBS KW - Recycling PY - 2022 AN - OPUS4-55554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Landmann, Mirko A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Laser-based sorting of construction and demolition waste for the circular economy N2 - Closed material cycles and unmixed material fractions are required to achieve high recovery and recycling rates in the building industry. The growing diversity of construction and demolition waste is leading to increasing difficulties in separating the individual materials. Manual sorting involves many risks and dangers for the executing staff and is merely based on obvious, visually detectable differences for separation. An automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) and visual (VIS)/ near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.). Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic/technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates. First LIBS measurements show promising results in distinguishing various material types. A meaningful validation shall be achieved with further practical samples. Future works will investigate the combination of LIBS and VIS/NIR spectroscopy in a fully automated measurement setup with conveyor belt speeds of 3 m/s. T2 - 6th fib Congress 2022 CY - Oslo, Norway DA - 12.06.2022 KW - LIBS KW - Data fusion KW - Circular economy KW - Recycling KW - Material classification PY - 2022 SP - 1 EP - 7 AN - OPUS4-55555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schumacher, David A1 - Waske, Anja T1 - XCT data of metallic feedstock powder with pore size analysis N2 - X-Ray computed tomography (XCT) scan of 11 individual metallic powder particles, made of (Mn,Fe)2(P,Si) alloy. The data set consists of 4 single XCT scans which have been stitched together [3] after reconstruction. The powder material is an (Mn,Fe)2(P,Si) alloy with an average density of 6.4 g/cm³. The particle size range is about 100 - 150 µm with equivalent pore diameters up to 75 µm. The powder and the metallic alloy are described in detail in [1, 2]. KW - Additive Manufacturing KW - Feedstock powder KW - Powder Characterization KW - X-Ray Computed Tomography PY - 2022 DO - https://doi.org/10.5281/zenodo.5796487 PB - Zenodo CY - Geneva AN - OPUS4-55556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Büyüksahin, Kaan A1 - Stolpe, Heiko A1 - Lay, Vera T1 - Bore hole probe for ultrasound-based quality control of sealing constructions N2 - Several countries, which use or used nuclear power, started to destruct nuclear power plants. Thus, large amounts of radioactive waste have to be stored safely during the next decades. Large underground caverns will be used a nuclear waste disposal. Once the cavern is full, a sealing construction is required. The sealing should avoid the contact to any fluids or substances of the storage barrels and reduce hazardous radiation. T2 - International Symposium Non-Destructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasonic testing KW - Nuclear waste PY - 2022 AN - OPUS4-55530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Given, Joseph A1 - Lehleitner, Johannes T1 - First insights into the human-related risks of tunnel inspection N2 - Whereas human factors (HF) in the non-destructive testing (NDT) of metallic components are a poorly investigated topic (in comparison to other industrial fields such as aviation), HF in the inspection of concrete components are even less known. Studies have shown that there is always some variability between individuals in their inspection results and that HF affect the reliability of NDT inspections. The aim of the ongoing WIPANO project is to draft a standard for a holistic reliability assessment, with concrete inspection as one case study. This includes also the HF. A human-oriented Failure Modes and Effects Analysis (FMEA) was carried out to do the following: a) identify possible human-related risks in tunnel inspection processes using a laser scan method (including data collection,evaluation, and assessment of tunnel damage) and b) evaluate these human-related risks as regards their possible causes, consequences and probability of occurrence – in addition with respect to existing and possible preventive measures. The results show that the causes for possible failures can lie within people, the physical environment, technology, organisation, and extra-organisational environment. Whereas current preventive measures rely mostly on the individual and quality management practices, there is potential for even larger improvement at the organisational and extra-organisational level. The FMEA results were also used to develop a quantification method to further understand the HF in tunnel inspection, which could possibly be included in the information into the overall reliability assessment. The usage of qualitative and quantitative data collected through the human-FMEA within the proposed quantification method shows promise that HF can be quantified and could offer broader understanding of HF influences on inspection in various industries. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Human Factors KW - Failure Modes and Effects Analysis KW - FMEA KW - Tunnel Inspection KW - NDT Reliability KW - Quantification PY - 2022 AN - OPUS4-56015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blankschän, M. A1 - Kanzler, D. A1 - Bertovic, Marija A1 - Rosenthal, Martina A1 - Liebich, R. T1 - Influence of illuminance on indication detectability during visual testing N2 - Visually detecting irregularities on components is a complex process, influenced by physical, technical, and human factors. Current standards mainly focus on illuminance, demanding highest accuracy for it, without providing scientific justification. In this research, 63 inspectors visually inspected forgings, with and without crack-like indications. The influence of illuminance on probability of detection was investigated. Therefore, illuminance was varied in three steps (200 lx, 350 lx, 500 lx). Human factors (e.g., experience, motivation) were recorded by using questionnaires. The results show no significant difference in probability of detection between the three illuminance levels. Equal probability of detection rates could be achieved at illuminances below and at the required threshold (500 lx). A difference in illuminance was found between the measurement point and the test area of the respective participant. This leads to higher assumed illuminance than present on the component. Compared with the measurement accuracy of the used illuminance meter, none of these deviations could be used to explain the similar results at different illuminance. The fact that illuminance has a significant influence in detecting indications has been disproven for this case. Whether human factors can provide explanation for the results remains unclear. This will be investigated in further research. KW - Illuminance KW - Non-destructive testing KW - Probability of detection KW - Reliability KW - Visual inspection PY - 2022 DO - https://doi.org/10.1515/mt-2022-0112 VL - 64 IS - 10 SP - 1532 EP - 1543 PB - De Gruyter AN - OPUS4-56019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture distribution in amorphous porous materials N2 - Mesopores dominate the material moisture and influence the gas diffusion through materials such as concrete or sandstone T2 - Nano@bam Round Table Nano Materials CY - Berlin, Germany DA - 14.10.2022 KW - Physisorption KW - Mesopores KW - Amorphous materials PY - 2022 AN - OPUS4-55998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Given, Joseph A1 - Lehleitner, Johannes T1 - First insights into the human-related risks of tunnel inspection N2 - Whereas human factors (HF) in the non-destructive testing (NDT) of metallic components are a poorly investigated topic (in comparison to other industrial fields such as aviation), HF in the inspection of concrete components are even less known. Studies have shown that there is always some variability between individuals in their inspection results and that HF affect the reliability of NDT inspections. The aim of the ongoing WIPANO project is to draft a standard for a holistic reliability assessment, with concrete inspection as one case study. This includes also the HF. A human-oriented Failure Modes and Effects Analysis (FMEA) was carried out to do the following: a) identify possible human-related risks in tunnel inspection processes using a laser scan method (including data collection,evaluation, and assessment of tunnel damage) and b) evaluate these human-related risks as regards their possible causes, consequences and probability of occurrence – in addition with respect to existing and possible preventive measures. The results show that the causes for possible failures can lie within people, the physical environment, technology, organisation, and extra-organisational environment. Whereas current preventive measures rely mostly on the individual and quality management practices, there is potential for even larger improvement at the organisational and extra-organisational level. The FMEA results were also used to develop a quantification method to further understand the HF in tunnel inspection, which could possibly be included in the information into the overall reliability assessment. The usage of qualitative and quantitative data collected through the human-FMEA within the proposed quantification method shows promise that HF can be quantified and could offer broader understanding of HF influences on inspection in various industries T2 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Human Factors KW - Failure Modes and Effects Analysis KW - FMEA KW - Tunnel Inspection KW - NDT Reliability KW - Quantification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560138 SP - 1 EP - 5 AN - OPUS4-56013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, S. A1 - Palani, I. A. A1 - Paul, C. P. A1 - Funk, Alexander A1 - Gokuldoss, P. K. T1 - Wire Arc Additive Manufacturing of NiTi 4D Structures: Influence of Interlayer Delay N2 - Shape memory alloy structures for actuator and vibration damper applications may be manufactured using wire arc additive manufacturing (W AAM), which is one of the additive manufacturing technologies. Multilayer deposition causes heat accumulation during W AAM, which rises the preheat temperature of the previously created layer. This leads to process instabilities, which result in deviations from the desired dimensions and mechanical properties changes. During W AAM deposition of the wall structure, a systematic research is carried out by adjusting the interlayer delay from 10 to 30 s. When the delay period is increased from 10 to 30 s, the breadth decreases by 45% and the height increases by 33%. Grain refinement occurs when the interlayer delay duration is increased, resulting in better hardness, phase transformation temperature, compressive strength, and shape recovery behavior. This study shows how the interlayer delay affects the behavior of W AAM-built nickel-titanium alloy (NiTi) structures in a variety of applications. KW - Wire are additive manufacturing KW - Shape memory alloy KW - Nitinol KW - Interlayer delay PY - 2022 DO - https://doi.org/10.1089/3dp.2021.0296 SN - 2329-7662 SP - 1 EP - 11 PB - Liebert CY - New Rochelle, NY AN - OPUS4-55795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - Non-destructive testing application examples using the NMR core-analyzing tomograph N2 - Nuclear magnetic resonance (NMR) with focus on 1H protons is increasingly applied for non-destructive testing applications. Besides mobile NMR, laboratory devices such as the NMR core-analyzing tomograph are used. As their magnetic field is more homogeneous, they enable measurements with higher signal-to-noise ratios (SNR), but with limited sample sizes. The tomograph presented here (8.9 MHz) was constructed for a maximum sample diameter of 70 mm and length of up to 1 m. The resolution, the echo time (min. 50 µs), the SNR and the measurement type can be adjusted by means of exchangable coils. The tomograph enables measurements along the complete sensitive length, slice-selective and even 2- or 3-dimensional measurements. A movable sample lifting system thereby allows a precise positioning of the sample. T2 - Magnetic Resonance in Porous Medie (MRPM) 2022 CY - Online meeting DA - 21.08.2022 KW - Spalling KW - Nuclear magnetic resonance KW - Tomography KW - Moisture transport KW - Frost salt attach PY - 2022 AN - OPUS4-55828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Aguilar, A. A1 - Forero, I. A1 - Alvarado-Gil, J. T1 - Photothermal characterization of polyester composites loaded with parallelly arranged graphite rods N2 - One of the biggest challenges in the measurement of thermal properties is to measure inhomogeneous materials This work focuses on measuring the thermal properties of cylindrical polyester resin composite materials loaded with graphite rods oriented in the direction of the resin thickness, varying the graphite concentrations starting from zero to 8 75 of volumetric fraction and changing the distribution of graphite rods inside the polyester matrix T2 - International Conference in Photoacoustics and Photothermal Phenomena (ICPPP21) CY - Bled, Slovenia DA - 19.06.2022 KW - Heat diffusion KW - Heterogeneous materials PY - 2022 AN - OPUS4-55384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brence, Blaž A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Kraemer, P. A1 - Prager, Jens T1 - Determination of a notch depth using ultrasonic guided waves N2 - In non-destructive testing and structural health monitoring, ultrasonic guided waves (UGWs) are of great interest for finding and characterizing structural flaws. The interaction of the waves with the flaws can often not be described analytically due to waves’ complexity. This makes numerical simulations and experiments indispensable. However, mentioned field of research is still relatively young and most of the methods focus on flaw localization, using time of flight of the reflected signal. This leaves many possibilities for further research, especially when it comes to separate analysis of different propagating modes. It is well-known that ultrasonic wave modes convert when interacting with flaws. When a fundamental mode (A0 or S0) encounters a notch, it interacts and converts to another fundamental mode. In this contribution, this effect is used to analyze the depth of a notch. Firstly, numerical simulations are presented, which show notch depth proportionality to amplitude ratio of fundamental modes. To validate these results, experiments were carried out on a metal plate with a shallow notch which was gradually deepened. UGWs were excited using a polymer-based interdigital transducer (IDT) and detected with a 3D laser Doppler vibrometer. The IDT is employed to ensure excitation of a single mode and thus to reduce the complexity of the analysis. Good agreement between numerical and experimental results has been found. The results show the potential of UGWs not only for defect reconstruction and localization, but also its precise sizing. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Lamb waves KW - Numerical simulation KW - Selective excitation PY - 2022 AN - OPUS4-55502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Mirtsch, Mona A1 - Blind, K. A1 - Castka, P. T1 - Impact of the COVID-19 pandemic on accredited conformity assessment bodies: insights from a multinational study N2 - The COVID-19 pandemic posed new and manifold challenges to organizations and their operations worldwide. Conformity assessment bodies (CABs), such as testing or medical laboratories, certification, and inspection bodies, were also affected by the associated disruptions. Their role in this crisis is highly relevant, as CABs are essential pillars of the quality infrastructure: their activities ensure that products and services meet requirements as defined in standards and regulations, thereby contributing to their safety and reliability. The question arises of how CABs and their operations were affected by the pandemic and how they responded. To this end, we present the results of an international survey of 986 CABs of all types in Germany, the UK, Italy, and New Zealand. Overall, CABs reported, on average, a reduction in demand for their services during the pandemic, facing restrictions in all countries. In addition, the pandemic had an overall negative impact on the CABs’ investment and innovation activities. However, investments in digital infrastructure were increased as a countermeasure, with CABs reporting a higher need for digitalization. The paper highlights and discusses results from in-depth analyses relevant to policymakers and industry alike. KW - Quality Infrastructure KW - Digitalization KW - Testing laboratories KW - Conformity assessment KW - Certification KW - Conformity assessment body KW - Corona KW - Covid-19 KW - Resilience PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556396 DO - https://doi.org/10.1007/s00769-022-01514-x SP - 1 EP - 14 PB - Springer AN - OPUS4-55639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pütz, E. A1 - Smales, Glen Jacob A1 - Jegel, O. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Tuning ceria catalysts in aqueous media at the nanoscale: how do surface charge and surface defects determine peroxidase- and haloperoxidase-like reactivity N2 - Designing the shape and size of catalyst particles, and their interfacial charge, at the nanometer scale can radically change their performance. We demonstrate this with ceria nanoparticles. In aqueous media, nanoceria is a functional mimic of haloperoxidases, a group of enzymes that oxidize organic substrates, or of peroxidases that can degrade reactive oxygen species (ROS) such as H2O2 by oxidizing an organic substrate. We show that the chemical activity of CeO2−x nanoparticles in haloperoxidase- and peroxidaselike reactions scales with their active surface area, their surface charge, given by the ζ-potential, and their surface defects (via the Ce3+/Ce4+ ratio). Haloperoxidase-like reactions are controlled through the ζ-potential as they involve the adsorption of charged halide anions to the CeO2 surface, whereas peroxidase-like reactions without charged substrates are controlled through the specific surface area SBET. Mesoporous CeO2−x particles, with large surface areas, were prepared via template-free hydrothermal reactions and characterized by small-angle X-ray scattering. Surface area, ζ-potential and the Ce3+/Ce4+ ratio are controlled in a simple and predictable manner by the synthesis time of the hydrothermal reaction as demonstrated by X-ray photoelectron spectroscopy, sorption and ζ-potential measurements. The surface area increased with synthesis time, whilst the Ce3+/Ce4+ ratio scales inversely with decreasing ζ-potential. In this way the catalytic activity of mesoporous CeO2−x particles could be tailored selectively for haloperoxidase- and peroxidase-like reactions. The ease of tuning the surface properties of mesoporous CeO2x particles by varying the synthesis time makes the synthesis a powerful general tool for the preparation of nanocatalysts according to individual needs. KW - SAXS KW - Ceria KW - Zeta potential PY - 2022 DO - https://doi.org/10.1039/D2NR03172H SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-55649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni T1 - Micro Non-Destructive Testing and Evaluation N2 - What is meant by ‘Micro Non-Destructive Testing and Evaluation’? This was the central subject of debate in this Special Issue. At present, sub-millimeter-size components or even assemblies are pervading the industrial and scientific world. Classic examples are electronic devices and watches (as well as parts thereof), but recent examples encompass additively manufactured lattice structures, stents, or other microparts. Moreover, most assemblies contain micro-components. Testing such components or their miniaturized parts would fit well within the topic of micro non-destructive testing and evaluation. In all cases, performance and integrity testing, quality control, and dimensional tolerances need to be measured at the sub-millimeter level (ideally with a spatial resolution of about a micron); most of the time, such features and components are embedded in much larger assemblies, which also need to be taken into account. The solution to this dilemma (i.e. measuring large parts with high resolution) depends on the part and on the problem under consideration. Another possible definition of micro non-destructive testing and evaluation can relate to the characterization of micro-features (e.g., the microstructure) in much larger specimens, such as damage in concrete cores or porosity in additively manufactured components. A further aspect is the use of microscopic probes to evaluate macroscopic properties. This is the case, for instance but not at all exclusively, in the use of diffraction techniques to determine macroscopic stress. The splits between testing and characterization at the micro-level (or of micro parts) from one side and handling of macroscopic assemblies on the other represent a great challenge for many fields of materials characterization. On top of that, including the use of microscopic methods to test integrity would add a further level of complexity. Imaging, mechanical testing, non-destructive testing, measurement of properties, structural health monitoring, and dimensional metrology all need to be re-defined if we want to cope with the multi-faceted topic of micro non-destructive testing and evaluation. The challenge has already been accepted by the scientific and engineering communities for a while but is still far from being universally tackled. This Special Issue yields an interesting answer to the questions posed above. It presents the progress made and the different aspects of the challenge as well as at indicates the paths for the future of NDT&E. KW - Ultrasound KW - Materials Characterization KW - Residual Stress KW - Thermography Computed KW - Tomography KW - Non-destructive Testing KW - Magnetic Methods PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556849 DO - https://doi.org/10.3390/ma15175923 VL - 15 IS - 17 SP - 1 EP - 3 PB - MDPI CY - Basel, Schweiz AN - OPUS4-55684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Falahat, A M A1 - Kardjilov, N A1 - Woracek, R A1 - Boin, M A1 - Markötter, Henning A1 - Kuhn, L T A1 - Makowska, M A1 - Strobl, M A1 - Pfretzschner, B A1 - Banhart, J A1 - Manke, I T1 - Temperature dependence in Bragg edge neutron transmission measurements N2 - A systematic study has been carried out to investigate the neutron transmission signal as a function of sample temperature. In particular, the experimentally determined wavelength-dependent neutron attenuation spectra for a martensitic steel at temperatures ranging from 21 to 700°C are compared with simulated data. A theoretical description that includes the Debye–Waller factor in order to describe the temperature influence on the neutron cross sections was implemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying temperatures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher temperatures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to quantify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining quantifiable results. KW - Neutron Bragg edge imaging KW - Debye–Waller factor KW - Temperature-dependent neutron transmission KW - Super martensitic stainless steel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556896 DO - https://doi.org/10.1107/S1600576722006549 VL - 55 IS - Pt 4 SP - 919 EP - 928 PB - International Union of Crystallography AN - OPUS4-55689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Britzke, Ralf A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - Upgraded imaging capabilities at the BAMline (BESSY II) N2 - The BAMline at the BESSY II synchrotron X-ray source has enabled research for more than 20 years in widely spread research fields such as materials science, biology, cultural heritage and medicine. As a nondestructive characterization method, synchrotron X-ray imaging, especially tomography, plays a particularly important role in structural characterization. A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (based on an sCMOS camera) also allows exploiting the higher flux with reduced readout times. Furthermore, an installed slip ring allows the sample stage to continuously rotate. The latter feature enables tomographic observation of processes occurring in the time scale of a few seconds. KW - Synchrotron radiation KW - Computed tomography KW - Double-multilayer monochromators KW - Pink beams KW - X-ray optics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556907 DO - https://doi.org/10.1107/S1600577522007342 SN - 1600-5775 VL - 29 IS - Pt 5 SP - 1292 EP - 1298 PB - International Union of Crystallography CY - Chester AN - OPUS4-55690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Serrano Munoz, Itziar A1 - Sintschuk, Michael A1 - Bruno, Giovanni T1 - Hard X-Ray Imaging Capabilities at BAMline (BESSY II) N2 - The BAMline at the 3rd generation synchrotron X-ray source BESSY II has been supporting researchers in a wide range of research areas for over 20 years. In addition to materials science, these fields also include biology, cultural heritage, and medicine. Being a non-destructive characterization method, synchrotron X-ray imaging, in particular tomography (SXCT), plays a particularly important role in structural characterization. A recent upgrade of key BAMline equipment expands the imaging capabilities: The upgraded dual multilayer monochromator offers flexibility by providing different energy spectra to optimize flux and energy resolution as desired. Different spectra (8 – 60 keV with ΔE/E 0.01%, 1.5%, 4% and pink beam) can be selected. The upgraded detector (in white beam configuration, equipped with an sCMOS camera) allows the higher flux to be exploited with reduced readout times. Shorter tomographic acquisition times in the range of seconds are now possible. Hence, in-situ and operando examinations are routinely available. An integrated slip ring allows continuous rotation of the sample stage for ease of wiring. The pink beam option allows tomographic observation of processes occurring in the time domain of a few seconds with a resolution down to ~ 1 µm. Different scan methods, optimized for quality and speed are available and discussed. Examples of energy related materials from fuel cell and battery research are shown. An optional end station allows refraction enhanced imaging (synchrotron X-Ray refraction radiography (SXRR) and tomography (SXRCT)). That includes an analyzer Si-crystal in Bragg alignment between sample and detector. This technique obtains sensitivity to smaller structures (cracks, pores) down to a few wavelengths, while obtaining field of view sizes in the range of several mm. Besides medicine (e.g., teeth explants), several applications are found in material science, like studies on diesel particulate filters, ceramics, additively manufactured (AM) alloys and metal matrix composites (MMC). The in-situ capabilities include mechanical load (tension and compression) and heating up to 1100°C. A case study, the microstructural evolution during heat treatment of an AM AlSi10Mg, will be shown. T2 - 15th International Conference on X-Ray Microscopy (XRM 2022) CY - Online meeting DA - 19.06.2022 KW - BAMline KW - X-ray imaging KW - Tomography PY - 2022 AN - OPUS4-55691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Terborg, R. T1 - Measurement and calculation of x-ray production efficiencies for copper, zirconium, and tungsten N2 - Electron probe microanalysis (EPMA) is based on physical relations between measured X-ray intensities of characteristic lines and their Xray production efficiency, which depends on the specimen composition. The quality of the analysis results relies on how realistically the physical relations describe the generation and emission of X-rays. Special experiments are necessary to measure X-ray production efficiencies. A challenge in these experiments is the determination of the detection efficiency of the spectrometer as a function of the photon energy. An energy-dispersive spectrometer was used in this work, for which the efficiency was determined at metrological synchrotron beamlines with an accuracy of ±2%. X-ray production efficiencies for the L series and the Kα series of copper and zirconium and for the M and L series of tungsten were determined at energies up to 30 keV in a scanning electron microscope. These experimental values were compared with calculated X-ray production efficiencies using physical relations and material constants applied in EPMA. The objective of the comparison is the further improvement of EPMA algorithms as well as extending the available database for X-ray production efficiencies. Experimental data for the X-ray production efficiency are also useful for the assessment of spectrum simulation software. KW - Copper KW - Electron probe microanalysis KW - Tungsten KW - X-ray production efficiency KW - Zirconium PY - 2022 DO - https://doi.org/10.1017/S1431927622012351 VL - 28 IS - 6 SP - 1865 EP - 1877 PB - Oxford University Press CY - Oxford AN - OPUS4-55711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Klewe, Tim A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Application of LIBS to identify construction and demolition waste for circular economy N2 - Responsible treatment of the environment and resources is a key element of sustainability. The building and construction industry is one of the largest consumers of natural resources. Consequently, there is a particular need for regulations and technologies that help to create closed material cycles. From the technological point of view, such efforts are complicated by the growing material diversity and the amount of composites contained in present and future construction and demolition waste (CDW). Nowadays, simple but proven techniques like manual sorting are mainly used. However, this practice not only poses health risks and dangers to the staff performing the work, but also relies on merely obvious, visually striking differences. Automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. The preliminary results for the identification of a wide variety of building materials with LIBS are presented. T2 - XII Laser Induced Breakdown Spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Construction and demolition waste KW - Circular economy PY - 2022 AN - OPUS4-55679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Oelze, Marcus A1 - Rosner, M. A1 - Rienitz, O. T1 - Isotope reference materials N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. In the past, the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance or food authenticity studies, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICP-MS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICP-MS. Isotope reference materials (iCRM) are indispensable to enable a reliable method validation or in rare cases even SI-traceability. The fast development and the broad availability of ICP-MS also lead to an expansion of the classical research areas and new elements are under investigation. Irrespective of the investigated element or the knowledge of the user all isotope ratio applications require reference materials either for correction of instrumental isotope fractionation, for method validation or to provide a common accepted basis as needed for delta measurements. This presentation will outline the basic principles and illustrate the urgent need for new iCRMs. Consequently, the production and certification of iCRMs will be discussed and illustrated by examples of already completed certification projects. Finally, plans for future iCRMs to be produced at BAM will be presented. T2 - ICP-MS Anwender*innentreffen 2022 CY - Leoben, Austria DA - 05.09.2022 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Comparability KW - Uncertainty KW - Isotope reference materials KW - Delta scale PY - 2022 AN - OPUS4-55681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -