TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Charactrization of Co(polyamide)s Molar mass distribution; Functionalization; supression of end group effects in favor of sequence distribution analysis; Evidence of of randomization with increasing reaction time T2 - Polyamide Meeting, DSM CY - Sittard, The Netherlands DA - 20.04.2018 KW - Liquid chromatography KW - Mass spectrometry of polymers PY - 2018 AN - OPUS4-44747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epping, Ruben A1 - Falkenhagen, Jana T1 - Characterization of small heterogeneities in polymers by analysis of UPLC/ESI-MS reconstructed ion chromatograms N2 - From simple molar mass disperse homopolymers over copolymers to functionalized, 3-dimensional structures containing various distributions, the complexity of polymeric materials has become more and more sophisticated in recent years. With applications in medicine, pharmacy, smart materials or for the semiconductor industry the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, here a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. We used SEC for the separation because unlike other separation modes the separation in this mode solely should occur due to the hydrodynamic volume with no interference of other interactions. This simplifies the interpretation and the above mentioned heterogeneities should show a slight difference in hydrodynamic volume. ESI mass spectrometry can offer more than an access to mass dependent information like MMD, end group masses or CCD in polymer analysis. The online coupling to SEC allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible or accessible only by time consuming or expensive methods. Because these heterogeneities might vary with the molar mass, analysis of the whole MMD-Peak (here the total ion current (TIC)) would not lead to the desired information. The broadening of the chromatographic peaks in this case does not origin from the already well known band broadening factors in chromatography from diffusion. This band broadening is attributed to the nature and composition of the analyte itself. Surprisingly there is very little investigation into the peak width or peak shape due to analyte structure itself found in literature. It is also shown, that with proper calibration even quantitative information could be obtained. This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples we demonstrate the possibilities and limitations of this approach. T2 - HTC-15 CY - Cardiff, UK DA - 24.01.2018 KW - UPLC/ESI-MS KW - Reconstructed chromatograms KW - Polymer analysis KW - Microstructure PY - 2018 AN - OPUS4-44137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - 3D reconstruction and quantification of dislocation substructures from TEM stereo pairs N2 - Dislocations are the carriers of plastic deformation. As such, their characterization offers important information on the properties they affect. In this contribution, a new tool is presented, which is incorporated in Amira ZIB Edition and allows for three-dimensional (3D) imaging and quantification of dislocations substructures from thick regions an electron-transparent specimen. In the tool, the dislocation segments are traced on diffraction contrast images that are obtained in the transmission electron microscope (TEM). The uncertainties related to the experimental setup and to the proposed method are discussed on the base of a tilt series. T2 - AVIZO / AMIRA User Meeting CY - Berlin, Germany DA - 14.11.2018 KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) PY - 2018 AN - OPUS4-47394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Pöthkow, K. A1 - Paetsch, O. A1 - Hege, H.-C. T1 - Three-dimensional reconstruction and quantification of dislocation substructures from transmission electron microscopy stereo pairs N2 - A great amount of material properties is strongly influenced by dislocations, the carriers of plastic deformation. It is therefore paramount to have appropriate tools to quantify dislocation substructures with regard to their features, e.g., dislocation density, Burgers vectors or line direction. While the transmission electron microscope (TEM) has been the most widely-used equipment implemented to investigate dislocations, it usually is limited to the two-dimensional (2D) observation of three-dimensional (3D) structures. We reconstruct, visualize and quantify 3D dislocation substructure models from only two TEM images (stereo pairs) and assess the results. The reconstruction is based on the manual interactive tracing of filiform objects on both images of the stereo pair. The reconstruction and quantification method are demonstrated on dark field (DF) scanning (S)TEM micrographs of dislocation substructures imaged under diffraction contrast conditions. For this purpose, thick regions (> 300 nm) of TEM foils are analyzed, which are extracted from a Ni-base superalloy single crystal after high temperature creep deformation. It is shown how the method allows 3D quantification from stereo pairs in a wide range of tilt conditions, achieving line length and orientation uncertainties of 3% and 7°, respectively. Parameters that affect the quality of such reconstructions are discussed. KW - Dislocation KW - Diffraction contrast KW - Scanning transmission electron microscopy (STEM) KW - Stereoscopy KW - Visualization PY - 2018 DO - https://doi.org/10.1016/j.ultramic.2018.08.015 SN - 0304-3991 VL - 195 SP - 157 EP - 170 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-46355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Epping, Ruben T1 - Coupling of chromatographic and spectrometric techniques for polymer characterization N2 - Coupling of chromatographic and spectrometric techniques for polymer characterization; focus topics: LCxMALDI-TOF-MS and UPLC x ESI-TOF-MS T2 - 16. Tagung des Arbeitskreises Polymeranalytik CY - Online meeting DA - 22.03.2022 KW - Liquid chromatography KW - Mass spectrometry KW - Polymers KW - Two-dimensional chromatography (2D-LC) PY - 2022 AN - OPUS4-54567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Eddah, Mustapha A1 - Bajer, Evgenia A1 - Markötter, Henning A1 - Kranzmann, Axel T1 - Destructive and non-destructive 3D-characterization of inner metal structures in ceramic packages N2 - Ceramic multilayer packages provide successful solutions for manifold applications in telecommunication, microsystem, and sensor technology. In such packages, three-dimensional circuitry is generated by combination of structured and metallized ceramic layers by means of tape casting and multilayer technology. During development and for quality assurance in manufacturing, characterization of integrity, deformation, and positioning of the inner metal features is necessary. Visualization with high resolution and material contrast is needed. Robot-assisted 3D-materialography is a useful technique to characterize such multimaterial structures. In that, many sections of the specimen are polished and imaged automatically. A three-dimensional representation of the structure is created by digital combination of the image stack. A quasi non-destructive approach is to perform X-ray computer tomography (CT) with different beam energies. The energies are chosen to achieve a good imaging of either the metal features, or the ceramic matrix of the structure. The combination of the respective tomograms results in a high contrast representation of the entire structure. Both methods were tested to characterize Ag and Ag/Pd conductors in a ceramic multilayer package. The results were compared in terms of information content, effort, and applicability of the methods. T2 - 98th DKG Annual Meeting - CERAMICS 2023 CY - Jena, Germany DA - 27.03.2023 KW - Ceramics KW - Synchrotron CT KW - 3D materialography PY - 2023 AN - OPUS4-57268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raschpichler, C. A1 - Goroncy, C. A1 - Langer, B. A1 - Antonsson, E. A1 - Wassermann, B. A1 - Graf, C. A1 - Klack, Patrick A1 - Lischke, T. A1 - Rühl, E. T1 - Surface Properties and Porosity of Silica Particles Studied by Wide-Angle Soft X-ray Scattering N2 - Wide-angle soft X-ray scattering on free silica particles of different porosity prepared in a beam is reported. The explored q region is mostly dominated by features due to surface roughness and bulk porosity. A comprehensive experimental and theoretical analysis of silica particles of different porosity is presented for various incident photon energies. A correlation analysis, based on the theory of Porod, is used to test the validity of exact Mie theory in different pore density limits. The ability of the discrete dipole scattering model (DDSCAT) to resolve local effects, caused by various pore distributions, is discussed. Characteristic differences between the soft X-ray scattering patterns of the particle samples of different surface properties and porosity are detected. For all mentioned cases, it was confirmed that the effective radius concept of the Guinier model can be successfully extended to Mie theory and DDSCAT in describing the additive contributions of the primary particles, including a thin inhomogeneous solvent-rich surface shell and empty bulk pores. Close agreement, within ±15%, between the calculated and observed pore sizes and porosity values is reached. The influence of pores is alternatively described either in terms of secondary Mie scattering, which is modulated by the local internal electrical field within the particles, or by an independent Mie scattering process induced by the incident field on isolated pores. It is found that for the typical pore/particle size ratios the latter approach presents the best choice. KW - Wide-Angle Soft X‑ray Scattering KW - Silica KW - Porosity PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c04308 SN - 1932-7447 SN - 1932-7455 VL - 124 SP - 16663 EP - 16674 AN - OPUS4-51089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greco, A. A1 - Starostin, V. A1 - Karapanagiotis, C. A1 - Hinderhofer, A. A1 - Gerlach, A. A1 - Pithan, L. A1 - Liehr, Sascha A1 - Schreiber, Frank A1 - Kowarik, Stefan T1 - Fast fitting of reflectivity data of growing thin films using neural networks N2 - X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study Shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and alpha-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8–18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed. KW - Artificial neural networks KW - X-ray reflectivity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498997 DO - https://doi.org/10.1107/S1600576719013311 SN - 1600-5767 VL - 52 SP - 1342 EP - 1347 PB - Wiley AN - OPUS4-49899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569198 DO - https://doi.org/10.1038/s41598-023-28203-0 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -