TY - CONF A1 - Ziegler, Mathias A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Characterization of defects in fibre reinforced composites (FRC) using passive and active thermography N2 - Impact damages and delaminations in fibre-reinforced composites (FRC) might not be visible at the surface, but could have an influence on the resistance and on the long-term behaviour of the component. Therefore, and especially for safety relevant structures, non-destructive methods are required for the assessment of such damages. Active thermography methods are suitable to characterize damages after loading using different kind of excitation techniques and various configurations of infrared (IR) camera and heating sources. Here, flash lamps, impulse excitation with infrared radiator and lock-in technique with halogen lamps or widened laser beams are suited. In addition, non-optical sources like sonotrodes (requiring direct contact to the structure) or induction generators (only suited for carbon fibre reinforced polymer (CFRP) structures) could be applied as well. For the investigation of the evolution of the damage during the impact, passive thermography can be applied in-situ. Elastic and plastic deformations alter the temperature of the structure and thus the temperature on the surface. In this contribution, at first the general principles of quantitative defect characterisation in FRC using active thermography with flash, impulse and lock-in excitation are described. Optical and thermal properties of the FRC material and its anisotropy are considered. Results of phase differences obtained at flat bottom holes with flash and lock-in thermography are compared for qualifying both methods for quantitative defect characterization. Secondly, the damage evolution of CFRP and GFRP structures under impact load and static tensile loading is described. The spatial and temporal evolution of the surface temperature enables us to distinguish matrix cracks or fibre-matrix separation from delaminations between the layers. Afterwards, all results for loading defects, obtained by passive and active thermography, are compared with each other. Fig. 1 and 2 show the difference of passive and flash thermography obtained at impact and tensile loaded CFRP plates, respectively. As one purpose of these investigations is the development of standards within national (DIN) and European (CEN) standardisation bodies, new draft and final standards are presented and further needs are discussed at the end of the presentation. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Flash thermography KW - Lock-in thermography KW - CFRP KW - GFRP PY - 2018 AN - OPUS4-46283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Studemund, T. A1 - Ziegler, Mathias T1 - Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects N2 - Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah DA - 16.07.2017 KW - Laser applications KW - Thermography KW - VCSEL KW - Subsurface defects PY - 2018 SN - 978-0-7354-1644-4 DO - https://doi.org/10.1063/1.5031547 SN - 0094-243X VL - 1949 SP - UNSP 060001, 1 EP - 8 AN - OPUS4-45171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Mayr, G. T1 - Thermography using High-Power Laser Arrays N2 - Due to their high irradiance and wide modulation bandwidth, high-power lasers open up a wide field of application. For example, the classical methods of pulse and lock-in thermography can be realized in high quality. In addition, structured heating is also possible by using arrays of such lasers. This makes it possible to implement new thermographic methods, such as interference-based detection of cracks or super resolution. T2 - Fifth NDTonAIR Training Event: Thermography Workshop CY - Linz, Austria DA - 13.02.2019 KW - Thermography KW - Laser Thermography KW - Super Resolution KW - Thermal Waves KW - NDT PY - 2019 AN - OPUS4-47491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - A comparison of different techniques for photothermal super resolution image reconstruction N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows an improved reconstruction of closely located defects. This new technique has also been studied using 1D laser arrays in active thermography. The post-processing can be roughly described by two steps: 1. Finding a sparse basis representation using a reconstruction algorithm such as the Fourier transform, 2. Application of an iterative joint sparsity (IJOSP) method to the firstly reconstructed data. For this reason, different methods in post-processing can be compared using the same measured data set. The focus in this work was the variation of reconstruction algorithms in step 1 and its influence on the results from step 2. More precise, the measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution image reconstruction using structured 1d laser illumination N2 - The separation of two closely spaced defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying super resolution algorithms, such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Different data processing techniques before applying the IJOSP algorithm as well as the influence of regularization parameters in the data processing techniques are discussed. Moreover, the degradation of super resolution reconstruction goodness by the choice of experimental parameters such as laser line width or number of measurements is shown. The application of the super resolution results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Ziegler, Mathias T1 - Thermal wave field engineering using structured 1D laser illumination N2 - Thermal waves are solutions of the heat diffusion equation for periodic boundary conditions and can be seen analogously to strongly damped waves. Although the underlying differential equation differs from the wave equation, the essential property for analogy between both equations is linearity such that superposition applies. This linearity is maintained even after a linear transformation, such as the Fourier transform from time to frequency domain. It follows that the temporal superposition principle is already used in active thermography, e.g. in pulsed thermography, as a superposition of many individual frequencies. However, the systematic spatial superposition has not yet been fully exploited, mainly due to a lack of suitable energy sources. As a first step, we are investigating how thermal wave fields of arbitrary space-time structures can be engineered using structured laser illumination. The proof of principle was shown using a laser coupled projector. Unfortunately, the available optical output power was limited due to the thermal stress limit of the device. That is why we are working towards a more sophisticated moving 1D array of high-power diode lasers. We characterized the novel light source and believe that apart from the benefit of spatial and temporal illumination it can combine the temporal regimes of impulse and lock-in thermography. In a second step, we investigate moving and oscillating line sources with different line shapes. We use a Green’s Function ansatz to analytically model the thermal wave propagation of structured 1D laser illumination in isotropic materials. Furthermore, we show some methods how they can be implemented. With this technique, we were able to accelerate our detection method firstly presented in for vertical narrow defects by factor three. Generally, we believe that this technique opens up similar opportunities than in other NDE methods. High-resolution ultrasound, for example, is also based on the superposition of single emitters and a recent concept suggests an option to deal with the diffusion wave character of the thermal waves. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena” CY - Erice, Italy DA - 06.09.2018 KW - Thermal wave KW - Thermal wave field KW - Thermal engineering KW - Structured laser illumination KW - 1d laser KW - Laser array KW - Laser thermography PY - 2018 AN - OPUS4-46193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Ziegler, Mathias T1 - Two-dimensional interference of photothermally generated moving thermal waves N2 - Structured illumination using high-power diode lasers generates a two-dimensional interference of thermal waves. In addition, the sources and the sample are moving relative to each other. Using different configurations, we investigate the validity of the temporal and spatial superposition principle of the heat diffusion equation for these cases both experimentally and by numerical-analytical modelling. Furthermore, we investigate the potential of this approach for non-destructive testing. T2 - 14th Quantitative Infrared Thermography Conference CY - Berlin, Germany DA - 24.05.2018 KW - Thermography KW - Thermal Wave KW - VCSEL KW - Laser KW - Thermal diffusion PY - 2018 AN - OPUS4-45621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane T1 - Benefits & peculiarities of using highpower lasers for lock-in thermography N2 - Optical lock-in thermography is a completely contactless and very sensitive NDE technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive, do not need any work safety measures and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Altogether using lasers considerably increases the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in testing [1, 2]. We report on the mentioned benefits of using such high-power lasers and analyze the range of materials to be tested using lock-in thermography in dependence on the laser irradiance, the modulation frequency, the infrared camera as well as the optical and thermal material parameters. In this context, we also address a number of systematic errors caused by the use of ideal and non-ideal heat sources. For example, the measured phase angle in lock-in thermography depends on the irradiance and the modulation bandwidth of the source. This in turn has a decisive influence on the uncertainty in the quantification of, e.g. layer thicknesses. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Laser thermography KW - Lock-in thermography KW - NDT PY - 2018 AN - OPUS4-46282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Photothermal radiometry with an infrared camera allows the contactless temperature measurement of multiple surface pixels simultaneously. A short light pulse heats the sample. The heat propagates through the sample by diffusion and the corresponding temperature evolution is measured at the sample’s surface by an infrared camera. The main drawback in radiometric imaging is the loss of the spatial resolution with increasing depth due to heat diffusion, which results in blurred images for deeper lying structures. We circumvent this information loss due to the diffusion process by using blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The structured illumination is realized by parallel laser lines from a vertical-cavity surface-emitting laser (VCSEL) array controlled by a random binary pattern generator. By using 150 different patterns of structured illumination and our iterative joint sparsity algorithm, it was possible to resolve 1 mm thick lines at a distance down to 0.5 mm, which results in a resolution enhancement of approximately a factor of four compared to the resolution of 5.9 mm for homogenous illuminated thermographic reconstruction. KW - Super-resolution imaging KW - Thermography KW - Blind structured illumination KW - VCSEL array PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1655247 SN - 1768-6733 VL - 17 IS - 4 SP - 268 EP - 278 PB - Taylor & Francis Group CY - Milton, UK AN - OPUS4-49122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas K, R. A1 - Unnikrishnakurup, S. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Balasubramaniam, K. T1 - Laser line scanning thermography for surface breaking crack detection modeling and experimental study N2 - Crack detection in metallic samples at high surface temperature, hostile and hazardous environments, etc. is challenging situation in any manufacturing industries. Most of the present NDE methods are suitable only for lower surface temperatures, especially room temperature. In this situation, we need a fast and non-contact NDT method which can be applied even in high sample surface temperature. Laser thermography is one of the techniques having a high potential in non-contact inspection. As a preliminary investigation, in this article, we have studied the potentiality of laser line thermography in crack detection at room temperature. In laser line thermography, a continuous wave (CW) laser is used to generate a laser line, which in turn is used to scan the metal surface. The heat distribution over the sample surface is recorded by an infrared thermal (IR) camera. Two different approaches are reported in this work. Firstly, a stationary laser line source and its interaction with cracks; secondly, moving laser line source scanning over a surface with crack. When the distance between crack centre to laser line centre increases, crack detectability will decrease; and when laser power increases, crack detectability will increase. A dedicated image processing algorithm was developed to improve the detectability of the cracks. To understand the heat transfer phenomenon, a simplified 3D model for laser thermography was developed for the heat distribution during laser heating and was validated with experimental results. Defects were incorporated as a thermally thin resistive layer (TTRL) in numerical modeling, and the effect of TTRL in heat conduction is compared with experimental results. KW - Thermography KW - Laser Thermography KW - Cracks KW - FEM KW - NDT PY - 2019 DO - https://doi.org/10.1016/j.infrared.2019.103141 VL - 104 SP - 103141 PB - Elsevier B.V. AN - OPUS4-49941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas, K. R. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Rajagopal, P. A1 - Balasubramaniamam, K. T1 - Defect detection in steel bars up to 600 °C using laser line thermography N2 - Crack detection in steel bars at high surface temperatures is a critical problem in any manufacturing industry. Surface breaking cracks are the major problems during the billet casting. Many NDT techniques are proven its capability in crack detection at room temperature. Here, we are demonstrating the possibility of exposure of cracks using laser line thermography at higher surface temperatures (up to 600 °C). A continuous-wave (CW) laser is used to excite the sample kept at higher surface temperatures. The temperature distribution over the sample due to the laser line scanning is captured using a temperature calibrated infrared (IR) thermal camera. The response of the sample temperature in crack detection is investigated using a validated FE model. The impact of the oxide layer in crack detection is investigated by using two types of samples; one without any oxide layer and the second is with the oxide layer. The influence of laser power in the detection of defects at high temperatures is studied. 3D numerical models were developed for the cases; when the sample is with oxide layer and without any oxide layer for a better understanding of physics. The surface temperature rise due to laser heating is higher for the scaled sample compared to the no-scale sample. The presence of the oxide layer above the parent metal will reduce the reflectivity of the surface. Lower reflectivity will lead to increased absorption of incident energy so that the surface temperature rise will be higher than the surface with no scale. Thermal contrast linearly depends on laser power, which means higher laser power will increase the defect detectability even at a higher surface temperature. KW - Laser thermography KW - High temperature KW - Modeling KW - Surface cracks KW - Non-destructive testing PY - 2020 DO - https://doi.org/10.1016/j.infrared.2020.103565 SN - 1350-4495 VL - 111 SP - 103565 PB - Elsevier B.V. AN - OPUS4-51573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Kidangan, R. A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we Report the capability of laser thermography in crack detection at elevated temperature. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermal contrast KW - Laser Thermography KW - FEM KW - Surface cracks KW - NDT PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499113 DO - https://doi.org/10.21611/qirt.2018.076 SN - 2371-4085 VL - 2018 SP - 685 EP - 686 AN - OPUS4-49911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. A1 - Haltmeier, M. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Photothermal radiometry with an infrared camera allows the contactless temperature measurement of multiple surface pixels simultaneously. A short light pulse heats the sample. The heat propagates through the sample by diffusion and the corresponding temperature increase is measured at the samples surface by an infrared camera. The main drawback in radiometric imaging is the loss of the spatial resolution with increasing depth due to heat diffusion, which results in blurred images for deeper lying structures. We circumvent this information loss due to the diffusion process by using blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. T2 - Fifth NDTonAIR Training Event: Thermography Workshop CY - Linz, Austria DA - 13.02.2019 KW - Super resolution KW - Thermography KW - Laser Thermography KW - Compressed Sensing KW - NDT PY - 2019 AN - OPUS4-49912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Karagianni, Christina A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Photothermal super resolution image reconstruction using structured 1D laser illumination N2 - The separation of two closely spaced defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying super resolution algorithms, such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Different data processing techniques before applying the IJOSP algorithm as well as the influence of regularization parameters in the data processing techniques are discussed. Moreover, the degradation of super resolution reconstruction goodness by the choice of experimental parameters such as laser line width or number of measurements is shown. The application of the super resolution results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. T2 - Quantitative Nondestructive Evaluation Conference 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Photothermal KW - Thermography KW - Laser PY - 2019 SP - Paper 8593, 1 PB - ASME AN - OPUS4-50924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate this by imaging a line pattern and a star-shaped structure through a metal sheet with a resolution four times better than the width of the thermal point-spread-function. The ground-breaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function similar to the Abbe limit for a certain optical wavelength. T2 - 14th Quantitative InfraRed Thermography Conference, QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Compressed Sensing KW - Super Resolution PY - 2018 AN - OPUS4-49940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavasarytė, Lina A1 - Azevedo do Nascimento, Allana A1 - Cysne Barbosa, Ana Paula A1 - Trappe, Volker A1 - Melo, Daniel T1 - Effects of particle size and particle concentration of poly (ethylene-co-methacrylic acid) on properties of epoxy resin N2 - Self-healing polymers have been developed to improve durability and reduce costs associated with maintenance during service. The addition of thermoplastics to thermosets to produce mendable polymers appears as a promising selfhealing technique. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was added to epoxy resin and the effects of EMAA addition on epoxy properties were evaluated. Specimens with two different contents of thermoplastic and particles sizes were manufactured. A two-level full factorial experimental design was used to evaluate the effect of particle size and particle content on properties of epoxy modified with addition of EMAA. Tensile tests and dynamic mechanical analysis (DMA) were used and the evaluated responses were tensile strength, modulus of elasticity, and glass transition temperature (Tg). X-ray computed tomography (XCT) was used to investigate particle size and concentration after manufacturing. It was found that the particle concentration has greater effects on stress–strain behavior of epoxy while Tg was not significantly affected by neither of the analyzed entrance variables. KW - Fracture KW - Self-healing KW - Epoxy KW - Thermoplastic PY - 2024 DO - https://doi.org/10.1002/app.55677 SN - 0021-8995 SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-60205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - How to quantify the exact amount and establish metrological traceability of sulphur in biodiesel by ICP-IDMS and in copper samples by ICP-IDMS, GDMS, LA-ICP-MS, and LA-ICP-IDMS N2 - The quantification of the exact amount of sulphur is a big challenge due to a lack of SI-traceability and inconsistent results, when different methods are compared. Therefore, a reference procedure is required which allows SI-traceable values. In this work three procedures were developed for the quantification of the total sulphur amount in biodiesel by using inductively coupled plasma-isotope dilution mass spectrometry (ICP-IDMS), pure copper metals and copper alloys by ICP-IDMS and external calibration for GDMS and LA-ICP-MS at low concentration levels. The most critical parts of the sulphur quantification were sulphur purification and pre-concentration. Sulphur-matrix separation procedures were developed to serve both sample types. For biodiesel samples the sulphur was purified and matrix separated by an anion exchange chromatographic procedure. The analytical procedure was fully validated by the use of a certified reference material, a step-by-step validation and an inter-laboratory comparison at CCQM key comparison level. In the case of copper samples, the copper matrix was separated from sulphur by adding ammonia which forms a complex with the copper while releasing the sulphur prior to a chromatographic separation using a weak cation resin. After that the sulphur fraction was further purified by chromatographic means using first an anion ion exchange method and second a chelating resin. The method was validated by appropriate certified reference materials. The developed procedures enable sulphur measurements at the low g·g-1 level with sufficiently low measurement uncertainties (< 2 %, Urel). The external calibration was performed to produce reliable measurement results for the routine analytical techniques GDMS and LA-ICP-MS. Matrix-matched reference materials whith exactly known amount of sulphur obtained by ICP-IDMS beforehand, were used as calibrators to quantify sulphur in copper samples. The metrological traceability to the SI for the mass fraction of sulphur is established for all presented procedures by an unbroken chain of comparisons, each accompanied by an uncertainty budget. T2 - CCQM Workshop on Advances in Metrology in Chemistry and Biology CY - Sèvres, France DA - 09.04.2019 KW - Copper KW - Sulfur KW - IDMS KW - SI traceability PY - 2019 AN - OPUS4-47931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, Michael A1 - Oelze, Marcus A1 - Frick, Daniel A. A1 - Di Rocco, Tommaso A1 - Liesegang, Moritz A1 - Stuff, Maria A1 - Wiedenbeck, Michael T1 - Silicon and oxygen isotope fractionation in a silicified carbonate rock N2 - Silicon isotope fractionation during silicification is poorly understood and impedes our ability to decipher paleoenvironmental conditions from Si isotopes in ancient cherts. To investigate isotope fractionation during silica-for-carbonate replacement we analyzed the microscale Si and O isotope composition in different silica phases in a silicified zebra dolostone as well as their bulk δ18O and Δ’17O compositions. The subsequent replacement of carbonate layers is mimicked by decreasing δ18O and δ30Si. The textural relationship and magnitude of Si and O isotope fractionation is best explained by near-quantitative silica precipitation in an open system with finite Si. A Rayleigh model for silicification suggests positive Ɛ30/28Si during silicification, conforming with predictions for isotope distribution at chemical equilibrium from ab-initio models. Application of the modelled Ɛ30Si-T relationship yields silicification temperatures of approx. 50°C. To reconcile the δ18Ochert composition with these temperatures, the δ18O of the fluid must have been between -2.5 and -4 ‰, compositions for which the quartz phases fall close to the oxygen equilibrium fractionation line in three-isotope space. Diagenetic silica replacement appears to occur in O and Si isotopic equilibrium allowing reconstructions of temperatures of silicification from Si isotopes and derive the δ18O composition of the fluid – a highly desired value needed for accurate reconstructions of the temperature- and δ18O histories of the oceans. KW - Silicon isotopes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603430 DO - https://doi.org/10.1016/j.chemgeo.2024.122120 SN - 0009-2541 VL - 658 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Guerra, M.F. A1 - Martinón-Torres, M. A1 - Lemasson, Q. A1 - Moignard, B. A1 - Pacheco, C. A1 - Pichon, L. A1 - Macdonald, L. A1 - Hess, M. A1 - Tissot, I. ED - Guerra, M. F. ED - Martinón-Torres, M. ED - Quirke, S. T1 - Analytical approaches to Egyptian goldwork N2 - The structure and composition of ancient gold objects retain information about their long history of manufacture, from the exploitation of the ore to the finishing touches, as well as evidence of their use, deposition, and degradation. By developing an efficient analytical strategy, it is possible to retrieve that information. This chapter sets the necessary foundation 131to explore fully the analytical results presented in the following chapters of this volume. The techniques employed in the analyses of the Egyptian jewellery are described and the analytical parameters provided. For more established techniques, only brief introductions are presented, while more recent developments are presented in greater detail. KW - Gold KW - Synchrotron KW - D2XRF KW - Egypt PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586039 DO - https://doi.org/10.17863/CAM.99681 SP - 131 EP - 191 AN - OPUS4-58603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Nondestructive thermographic detection of internal defects using pixel-pattern based laser excitation and photothermal super resolution reconstruction N2 - In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using laser coupled high-power DLP projector technology the complexity for achieving true two-dimensional super resolution can be dramatically reduced taking a crucial step forward towards widespread practical viability. Furthermore, based on the latest developments in high-power DLP projectors, we present their first application for structured pulsed thermographic inspection of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is proposed along with an appropriate heuristic to find the regularization parameters necessary for the numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, opening the door for the application of machine learning based methods for future improvements towards full automation of the method. Finally, the proposed method is experimentally validated and shown to outperform several established conventional thermographic testing techniques while conservatively improving the required measurement times by a factor of 8 compared to currently available photothermal super resolution techniques. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570551 DO - https://doi.org/10.1038/s41598-023-30494-2 SN - 2045-2322 VL - 13 SP - 1 EP - 13 PB - Nature Research AN - OPUS4-57055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Maldague, X. T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577795 DO - https://doi.org/10.21611/qirt.2022.1005 SN - 2371-4085 SP - 1 EP - 7 PB - QIRT Council AN - OPUS4-57779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. T1 - Thermographic super resolution reconstruction using 2D pseudo-random pattern illumination N2 - Thermographic non-destructive testing is based on the interaction of thermal waves with inhomogeneities. The propagation of thermal waves from the heat source to the inhomogeneity and to the detection surface according to the thermal diffusion equation leads to the fact that two closely spaced defects can be incorrectly detected as one defect in the measured thermogram. In order to break this spatial resolution limit (super resolution), the combination of spatially structured heating and numerical methods of compressed sensing can be used. The improvement of the spatial resolution for defect detection then depends in the classical sense directly on the number of measurements. Current practical implementations of this super resolution detection still suffer from long measurement times, since not only the achievable resolution depends on performing multiple measurements, but due to the use of single spot laser sources or laser arrays with low pixel count, also the scanning process itself is quite slow. With the application of most recent high-power digital micromirror device (DMD) based laser projector technology this issue can now be overcome. T2 - ICPPP21: International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551224 UR - https://indico.ung.si/event/5/contributions/237/ AN - OPUS4-55122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias ED - Zalameda, J. N. ED - Mendioroz, A. T1 - Full-frame thermographic super-resolution with 2D-structured laser heating N2 - Thermographic super-resolution techniques allow the resolution of defects/inhomogeneities beyond the classical limit, which is governed by the diffusion properties of thermal wave propagation. Photothermal super-resolution is based on a combination of an experimental scanning strategy and a numerical optimization which has been proven to be superior to standard thermographic methods in the case of 1D linear defects. In this contribution, we report on the extension of this approach towards a full frame 2D photothermal super-resolution technique. The experimental approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample. In our work we extend the possibilities of the method to efficiently detect and resolve defect cross sections with a fully 2D-structured blind illumination. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Thermography KW - super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 DO - https://doi.org/10.1117/12.2586093 VL - 11743 SP - 11743-26, 10 PB - SPIE AN - OPUS4-52524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - 2D-Photothermal Super Resolution with Sparse Matrix Stacking N2 - Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we report on the extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 SN - 978-3-9819376-4-0 DO - https://doi.org/10.5162/SMSI2021/C2.2 VL - SMSI 2021 - Sensors and Instrumentation SP - 183 EP - 184 AN - OPUS4-52589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Full-frame thermographic super-resolution with 2D-structured laser heating N2 - Thermographic super-resolution techniques allow the resolution of defects/inhomogeneities beyond the classical limit, which is governed by the diffusion properties of thermal wave propagation. Photothermal super-resolution is based on a combination of an experimental scanning strategy and a numerical optimization which has been proven to be superior to standard thermographic methods in the case of 1D linear defects. In this contribution, we report on the extension of this approach towards a full frame 2D photothermal super-resolution technique. The experimental approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample. In our work we extend the possibilities of the method to efficiently detect and resolve defect cross sections with a fully 2D-structured blind illumination. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11743/117430T/Full-frame-thermographic-super-resolution-with-2D-structured-laser-heating/10.1117/12.2586093.full AN - OPUS4-52526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, Peter A1 - Jung, Peter A1 - Caire, Giuseppe A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive testing N2 - The work to be presented focuses on our most recent studies to laser excited super resolution (SR) thermography. The goal of nondestructive testing with SR is to facilitate the separation of closely spaced defects. Photothermal SR can be realized by performing structured illumination measurements in com-bination with the use of deconvolution algorithms in post-processing. We explain that stepwise as well as continuous scanning techniques are applicable to generate structured illumination measurements. Finally, we discuss the effect of experimental parameters and image processing techniques to find the optimal SR technique which leads to the highest reconstruction quality within laser thermography. T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Super resolution KW - Laser thermography KW - Nondestructive testing KW - Laser scanning KW - Photothermal imaging PY - 2021 SP - 181 EP - 182 AN - OPUS4-52780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - 2D-Photothermal super-resolution with sparse matrix stacking N2 - Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we re-port on the extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample. T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 AN - OPUS4-52579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Kimata, M. ED - Shaw, J. A. ED - Valenta, C. R. T1 - Investigations on photothermal super resolution reconstruction using 2D-structured illumination patterns N2 - Active thermography as a nondestructive testing modality suffers greatly from the limitations imposed by the diffusive nature of heat conduction in solids. As a rule of thumb, the detection and resolution of internal defects/inhomogeneities is limited to a defect depth to defect size ratio greater than or equal to one. Earlier, we demonstrated that this classical limit can be overcome for 1D and 2D defect geometries by using photothermal laser-scanning super resolution. In this work we report a new experimental approach using 2D spatially structured illumination patterns in conjunction with compressed sensing and computational imaging methods to significantly decrease the experimental complexity and make the method viable for investigating larger regions of interest. T2 - Future Sensing Technologies Conference 2021 CY - Online meeting DA - 15.11.2021 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 DO - https://doi.org/10.1117/12.2603838 VL - 11914 SP - 124 EP - 131 PB - International Society for Optics and Photonics. SPIE AN - OPUS4-53745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.1117/12.2586078 SN - 0277-786X VL - 11743 SP - 1 EP - 11 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-53247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias T1 - Surface breaking crack detection algorithm for flying spot and line thermography based on the Canny approach N2 - In this work we introduce an algorithm based on the well-known Canny approach for effectual crack detection in thermographic films obtained using flying spot thermography (FST) or flying line thermography (FLT). The proposed algorithm performs faster than another algorithm, for crack detection, based on the application of two Sobel filters (one in x and another one in y directions). For FLT it is shown that processing 10-25 % of the thermograms of a thermographic film required to scan a whole sample is enough to obtain good results. In contrast, using the Sobel filter approach requires the processing of twice the thermographic film length. Experimental measurements are performed on a metallic component of complex shape which contains real defects, that is, surface breaking cracks due to industrial use. The specimen is tested using flying line thermography. Three different scanning speeds are tested: 10, 30 and 60 mms-1 with laser powers of 50, 60 and 120 W respectively. The sample and an infrared camera are aligned and fixed on a motorized linear stage. The diode laser LDM500 (500 W max power) is fixed on an optical bench separately from the linear stage. The results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography based on the Sobel filter. It is shown that the proposed algorithm based on the Canny approach, can be used in automated systems for thermographic non-destructive testing. T2 - SPIE Future Sensing Technologies 2021 CY - Online meeting DA - 14.11.2021 KW - Flying line thermography KW - Flying spot thermography KW - Canny approach KW - automated thermographic nondestructive testing PY - 2021 DO - https://doi.org/10.1117/12.2603913 SP - 119140M-1 EP - 119140M-6 AN - OPUS4-53961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 AN - OPUS4-53249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, Peter A1 - Jung, Peter A1 - Caire, Giuseppe A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive testing N2 - The work to be presented focuses on our most recent studies to laser excited super resolution (SR) thermography. The goal of nondestructive testing with SR is to facilitate the separation of closely spaced defects. Photothermal SR can be realized by performing structured illumination measurements in com-bination with the use of deconvolution algorithms in post-processing. We explain that stepwise as well as continuous scanning techniques are applicable to generate structured illumination measurements. Finally, we discuss the effect of experimental parameters and image processing techniques to find the optimal SR technique which leads to the highest reconstruction quality within laser thermography. T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Super resolution KW - Laser thermography KW - Nondestructive testing KW - Laser scanning KW - Photothermal imaging PY - 2021 AN - OPUS4-52781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Influence of the number of measurements on detecting internal defects using photothermal super resolution reconstruction with random pixel patterns N2 - In this work, the limits of using spatially structured heating combined with subsequent photothermal super resolution reconstruction for the thermographic detection and resolution of internal defects are investigated. The approach is based on the application of modern high-power laser projector technology, which is used to repeatedly project varying spatially structured 2D pixel patterns to photothermally heat the object under test. After processing the generated thermographic data using nonlinear convex optimisation in conjunction with exploiting the joint-sparse nature of the defect signals within the individual measurements, a high-resolution 2D-sparse defect/inhomogeneity map is obtained. The main focus of the investigation is set on the influence of the number of individual measurements on the achievable reconstruction quality. Using numerical simulations based on an analytical representation of the forward solution to the underlying inverse problem, the convergence rate over performed measurements of the achievable reconstruction quality is determined. Finally, all findings are experimentally validated by reconstructing a set of internal defects in an additively manufactured sample. In this work, it is shown that for a variety of different defect separation distances, the projection of 50 different pixel patterns allows for a good trade-off between experimental complexity and reconstruction quality. KW - Super resolution KW - Digital micromirror device KW - Digital light processing KW - Internal defects PY - 2023 DO - https://doi.org/10.1080/17686733.2023.2223392 SN - 2116-7176 SP - 1 EP - 11 PB - Taylor & Francis AN - OPUS4-57778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Mendioroz, A. ED - Avdelidis, N. P. T1 - Thermographic testing using 2D pseudo-random illumination and photothermal super resolution reconstruction N2 - Due to the diffusive nature of heat propagation in solids, the detection and resolution of internal defects with active thermography based non-destructive testing is commonly limited to a defect-depth-to-defect-size ratio greater than or equal to one. In the more recent past, we have already demonstrated that this limitation can be overcome by using a spatially modulated illumination source and photothermal super resolution-based reconstruction. Furthermore, by relying on compressed sensing and computational imaging methods we were able to significantly reduce the experimental complexity to make the method viable for investigating larger regions of interest. In this work we share our progress on improving the defect/inhomogeneity characterization using fully 2D spatially structured illumination patterns instead of scanning with a single laser spot. The experimental approach is based on the repeated blind pseudo-random illumination using modern projector technology and a high-power laser. In the subsequent post-processing, several measurements are then combined by taking advantage of the joint sparsity of the defects within the sample applying 2D-photothermal super resolution reconstruction. Here, enhanced nonlinear convex optimization techniques are utilized for solving the underlying ill-determined inverse problem for typical simple defect geometries. As a result, a higher resolution defect/inhomogeneity map can be obtained at a fraction of the measurement time previously needed. T2 - Thermosense: Thermal Infrared Applications XLIV CY - Orlando, Florida, USA DA - 05.04.2022 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2022 DO - https://doi.org/10.1117/12.2618562 SN - 0277-786X VL - 12109 SP - 1 EP - 10 PB - SPIE AN - OPUS4-54909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Overcoming the Spatial Resolution Limits imposed by the Thermal MTF with Thermographic Photothermal Super Resolution Reconstruction N2 - The achievable spatial resolution of active thermographic testing is inherently limited by the diffusive nature of heat conduction in solids. This degradation of the achievable spatial resolution for a semi-infinite body acting on a defect signal can be approximated by spatial convolution with the Green’s function of the heat PDE. As the degradation in spatial resolution is dependent on the depth 𝐿, a common rule of thumb specifies that for proper detection, any defect should feature a spatial extension greater or equal to the depth it is located at. However, as the exact shape of a defect can have a large impact on its severity, at best a proper reconstruction of the defect shape should be performed, which therefore must also deal with the aforementioned adverse effects of heat conduction. One recent method to overcome the spatial resolution limit of thermographic testing is the photothermal super resolution reconstruction method. It is based on performing multiple active thermographic measurements on the same region of interest (ROI) with varying spatially structured heating and subsequent numerical reconstruction of the measured defect signals by solving a severely ill-posed inverse reconstruction problem relying on heavy regularization. By extending the experimental implementation of the method to make use of random-pixel patterns projected onto the ROI using a laser-coupled DLP-projector, defect reconstructions can now be performed within a reasonable time frame (~15 min per ROI) at high accuracy. Compared to conventional thermographic testing methods, the photothermal super resolution reconstruction stands out by resulting in a sparse representation of the defect structure of the ROI, making it especially well-suited to further automatic defect classification and quality assurance measures in an Industry 4.0 context. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS: 67th Course: Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 24.09.2023 KW - Thermography KW - Super resolution KW - NDT KW - Internal defects KW - DLP PY - 2023 AN - OPUS4-58472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 AN - OPUS4-55262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Ziegler, Mathias T1 - Robot-assisted laser thermography - Towards automatic characterization of surface defects N2 - By means of laser thermography, surface defects, in particular surface breaking cracks, can be detected with high sensitivity. Basically, this requires a focused heat source (high-power laser), a thermographic camera and a relative movement between laser and test object, as well as a suitable evaluation algorithm to distinguish between surface defects and defect-free areas. In this paper we report on a method in which the relative motion is realised by a robot to fully inspect large and non-planar test objects such as rail sections, turbine blades, gears, etc. We show the influence of the excitation laser, which can be varied in terms of spot geometry, wavelength, and scan scheme, and we demonstrate our evaluation algorithms with the aim of automatically detecting surface defects. T2 - 16th Quantitative Infrared Thermography Conference CY - Paris, France DA - 04.07.2022 KW - Flying line thermography KW - Surface breaking defects KW - Robot-assisted thermography PY - 2022 AN - OPUS4-55560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Ziegler, Mathias T1 - Robot-assisted laser thermography for surface breaking crack detection on complex shaped components N2 - Laser thermography using a focused (spot or line) beam has proved to be effective for detection of surface breaking cracks on planar samples. In this work, we use the same principle, but applied to complex shaped components, like a rail cross-section, a gear, and a gas turbine blade. We use a six-axis robot to move the sample in-front of our thermographic setup. Several scanning-path and thermographic parameters are explored: scanning speed, density of points in each scanning slice, laser power, camera framerate. Additionally, we explore semi-automatic evaluation algorithms for crack detection, as well as 2D-to-3D registration of the found indications. T2 - SPIE Future Sensing Technologies 2023 CY - Yokohama, Japan DA - 18.04.2023 KW - Flying line thermography KW - Crack-detection algorithms PY - 2023 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12327/1232715/Robot-assisted-infrared-thermography-for-surface-breaking-crack-detection-on/10.1117/12.2666757.short AN - OPUS4-57594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Automatic inspection of surface breaking cracks using laser scanning thermography N2 - In this work, we report on a method for automatic inspection of components using laser scanning thermography, in which the relative motion is performed by a robot to fully inspect complex test objects such as turbine blades. We demonstrate our evaluation algorithms with the aim of automatically detecting surface defects on calibrated specimens. We show the influence of the excitation laser, which can be varied in terms of spot geometry, wavelength, and scan scheme. Additionally, we show some advantages, versatility, and current challenges of using a programmed robot for non-destructive evaluation in thermography. T2 - International Conference in Photoacoustics and Photothermal Phenomena (ICPPP21) CY - Bled, Slovenia DA - 19.06.2022 KW - Flying line thermography KW - Surface breaking defects KW - Canny approach PY - 2022 AN - OPUS4-55386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana T1 - Trace element analysis with synchrotron radiation N2 - Trace elements are chemical elements whose concentration in a material is very low. The exact definition depends on the application and varies for example between 100 micrograms per gram in analytical chemistry and 1000 micrograms per gram in geology. The ability to detect trace elements fast and quantitatively is of great importance in many areas of science and technology. With its high brilliance and flexibility in the excitation conditions, synchrotron radiation is an ideal tool for detecting traces even in small sample quantities. In this contribution I will report about the use of X-ray fluorescence(XRF)for qualitative and quantitative element sensitiveanalysis. In addition to the fundamentals of XRF and its quantification methods, the advantages and problems of different geometries like e.g. microXRF, Total Reflection X-ray Fluorescence (TXRF)or Double Dispersive XRF (D²XRF) will be discussed. Practical examples from BAMline from the research fields of medicine, geology and archaeometry will complete the lecture. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - Synchrotron KW - BAMline KW - XRF PY - 2020 AN - OPUS4-51890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - Witte, S. A1 - Beyer, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, H. A1 - Streli, C. T1 - A new experimental setup for time- and laterally-resolved X-ray absorption fine structure spectroscopy in a 'single shot' N2 - In this work, a new setup for dispersive XAFS measurements is presented. This reproducible and scanningfree setup yields both time- and laterally-resolved XAFS experiments in a ‘single-shot’. It allows a straightforward adjustment for probing different elements covering many relevant applications in materials science. An incoming energetic broadband beam is diffracted by a Si (111) crystal after passing through the sample and collected by an area sensitive detector. Depending on the energy range of the incoming beam, XANES and/or EXAFS spectra can be recorded with a time resolution down to 1 s. The feasibility of this setup was demonstrated at the BAMline at BESSY II (Berlin, Germany) with reference Fe and Cu foils and the results are hereby presented and discussed. Additionally, an application where time resolution on the second scale is required is briefly evaluated. The presented example concerns studying early stages of zinc(II)2-methylimidazolate (ZIF-8) crystallization. This is particularly important for biomedical applications. KW - X-ray spectroscopy KW - X-ray absorption fine structure KW - Time-resolved KW - Laterally-resolved KW - Experimental setup PY - 2019 DO - https://doi.org/10.1039/c8ja00313k SN - 0267-9477 SN - 1364-5544 VL - 34 IS - 1 SP - 239 EP - 246 PB - Royal Society of Chemistry CY - London AN - OPUS4-47207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning: examples from BAMline N2 - Various applications for artificial intelligence in the context of spectroscopy will be presented. in particular, examples from BAMline will be presented. After a short introduction to synchrotron radiation, artificial intelligence algorithms for the quantification of X-ray fluorescence measurement are discussed. In the second example, information retrieval by natural language processing is discussed. T2 - Analytical Academy CY - Online meeting DA - 02.06.2020 KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron PY - 2020 AN - OPUS4-51898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a DO - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 DO - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - X-Ray fluorescence with synchrotron radiation basics and applications N2 - In this talk, the features of X-ray fluorescence analysis with synchrotron radiation will be presented. First, the basics of the origin of synchrotron radiation and X-ray fluorescence analysis and the experimental setup will be discussed. Then, examples of trace element detection, micrometer resolution, and application of the X-ray color camera will be shown. T2 - HZB Photon school 2020 CY - Berlin, Germany DA - 09.03.2020 KW - Synchrotron KW - BAMline KW - XRF KW - Machine learning PY - 2020 AN - OPUS4-51894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In X-ray fluorescence (XRF), a sample is excited with X-rays, and the resulting characteristic radiation is detected to detect elements quantitatively and qualitatively. Quantification is traditionally done in several steps: 1. Normalization of the data 2. Determination of the existing elements 3. Fit of the measured spectrum 4. Calculation of concentrations with fundamental parameters / MC simulations / standard based The problem with standard based procedures is the availability of corresponding standards. The problem with the calculations is that the measured intensities for XRF measurements are matrix-dependent. Calculations must, therefore, be performed iteratively (= time consuming) in order to determine the chemical composition. First experiments with gold samples have shown the feasibility of machine learning based quantification in principle. A large number of compositions were simulated (> 10000) and analyzed with a deep learning network. For first experiments, an ANN (Artificial Neural Network) with 3 hidden layers and 33x33x33 neurons was used. This network learned the mapping of spectra to concentrations using supervised learning by multidimensional regression. The input layer was formed by the normalized spectrum, and the output layer directly yielded the searched values. The applicability for real samples was shown by measurements on certified reference materials. T2 - Denver X-ray Conference CY - Lombard, IL, USA DA - 05.08.2019 KW - Machine learning KW - Artificial intelligence KW - Neural network KW - XRF KW - Synchrotron PY - 2019 AN - OPUS4-48903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fittschen, U. A1 - Hampel, S. A1 - Till, H. A1 - Gross, A. A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Ingerle, D. A1 - Streli, C. A1 - Radtke, Martin T1 - Improving surface sensitive XRF using ink jet printing and information from the angle dependent signal N2 - Total Reflection X-ray Fluorescence (TXRF) is a small footprint, ressource efficient micro-analytical tool for trace elemental determination. However, depending on the matrix TXRF is also challenging in several ways: the preparation of a representative aliquot maybe difficult for slurries, shading effects and matrix effects may occur and the applicability of an IS maybe hampered by interferences (fitting may be impaired as well) or inhomogeneities. It is therefore crucial to understand and if applicable mitigate the influence of the before mentioned phenomena. We have used the small volume approach using pL droplets to study shading in TXRF previously.Using this approach thin specimens in a favorable geometry are prepared with a well defined morphology; this way minimizing matrix effects and shading. To be used as standard it is also necessary to determine the delivered elemental amounts. Here we will present on the performance of a commercial ink-jet printer cartridge to deliver defined volumes and elemental amounts. The microscopic specimens obtained have been successfully applied to determine relative sensitivities in TXRF and prepare references to study coded apertures in grazing incidence full field micro-XRF.The homogeneous lateral distribution of analyte and IS may be probed by micro-XRF, to obtain information on alikeness of analyte and IS. To study the alikeness of the in depth distribution (film-like or particle-like) angle scans can deliver valuable data. Here we present first results on angle scans using a prototype GIXRF set up and a commercial TXRF instrument. T2 - Denver X-Ray Conference CY - Online meeting DA - 03.08.2020 KW - TXRF KW - Coded Aperture PY - 2020 AN - OPUS4-51913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In this talk I’ll describe the use of artificial neural networks (ANN) for quantifying X-ray fluorescence (XRF) measurements. The main idea of this talk is to give an overview of the process needed to generate a model that can then be applied to a specific problem. In XRF, a sample is excited with X-rays and the resulting characteristic radiation is detected to determine elements quantitatively and qualitatively. This is traditionally done in several time-consuming steps. I’ll show the possibilities and problems of using a neural network to realise a "one-click" quantification. This includes generating training data using Monte Carlo simulation and augmenting the existing data set with an ANN to generate more data. The search for the optimal hyperparameters, manually and automatically, is also described. For the case presented, we were able to train a network with a mean absolute error of 0.1% by weight for the synthetic data and 0.7% by weight for a set of experimental data obtained with certified reference materials. T2 - Seminar series: Artificial Intelligence applied to X-ray / synchrotron techniques CY - Online meeting DA - 24.06.2021 KW - Artificial intelligence KW - Machine learning KW - Synchrotron KW - XRF PY - 2021 AN - OPUS4-54140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Hampel, S. A1 - Beuermann, S. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Investigation on Vanadium Species Distribution in Nafion™ 117 after Cyclization in a Vanadium Redox Flow Battery N2 - The vanadium redox flow battery (VRFB) is currently a potential candidate for stationary energy storage. A major challenge is the unintended vanadium transport through the separator, which results in a fade of capacity. To overcome this issue, it is necessary to understand the transport processes in the membrane on a more fundamental level. In this work, the vanadium species distribution in Nafion™ 117 after cyclization was investigated. Two membranes, one from a charged VRFB and another from a discharged VRFB, were analyzed using ultraviolet–visible spectroscopy (UV/VIS) and X-ray absorption near edge structure spectroscopy (XANES). Little difference between the two membranes was recognizable according to the UV/VIS results. In comparison, the XANES results showed that the membrane from the charged VRFB contains more V3+ than VO2+, whereas for the discharged case, more VO2+ is present in the membrane. KW - Synchrotron KW - BAMline KW - XANES KW - Vanadium redox flow battery PY - 2021 VL - 64 SP - 1 EP - 8 AN - OPUS4-54144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -