TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst ED - Gabrijel, Ivan ED - Grosse, Christian ED - Skazlić, Marijan T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 SN - 978-2-35158-227-5 SP - 1 EP - 11 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic rail inspection with array probes N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 VL - 2019 SP - 1 EP - 3 AN - OPUS4-49680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic Rail inspection with array Probes N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 AN - OPUS4-49681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang A1 - Riedel, Jens A1 - Gornushkin, Igor B. A1 - Zheng, Ronger A1 - You, Yi T1 - Ultrasound-Assisted Underwater Laser-induced Breakdown Spectroscopy with HighRepetition-Rate μJ-DPSS laser N2 - The elemental analysis of seawater is often critical to the understanding of marinechemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdownspectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a greatpotential for in-situ elemental analysis of seawater. In practice, it is crucial to create acompact, low cost and power saving instrument for the long-term deep-sea observation. Arecently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidateas it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHzcan provide a considerable throughput for LIBS analysis. However, the DPSS lasers operateat moderate pulse energies, usually less than one mJ, which cannot sustain stablebreakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such aμJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. Thephase interface and mass flow generated by the near-field ultrasound can greatly reduce thebreakdown threshold and enhance element-specific emissions. Meanwhile, the highrepetition-rate pulses can also improve the breakdown probability and generate uniqueemission lines originated from the water molecule. We further demonstrate that the highrepetition-rate DPSS laser combined with the Echelle spectrometer can provide effectivequantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Underwater LIBS PY - 2019 AN - OPUS4-49769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Procop, Mathias T1 - Uncertainties in Secondary Fluorescence Correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA, as discussed once more in two recent papers. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons and enables the determination of specimen composition. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. This can be performed in a straightforward way. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - EPMA KW - Secondary fluorescence KW - Uncertainties KW - X-ray spectrometry KW - Fluorescence correction PY - 2019 AN - OPUS4-48673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, S. A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface techno-logy: step height, layer thickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface technology: stepheigt, layerthickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation Testing (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Uncertainty of Elastoplastic Material Parameters Calculated from the Spherical Indentation in the Macro Range N2 - The applicability of three methods developed by finite element analysis (FEM) and proposed in the literature are studied on steel S355. Instrumented indentation tests using spherical indenters of radius 200 and 500 μ m are performed in the macro range at depths of more than 6 μ m. The results of the selected methods are compared with the tensile test. To evaluate the partially strongly varying results, the uncertainties of the calculated strain hardening exponent, n, and yield stress, Y, are estimated. Recommendations for an appropriated procedure of the indentation test are given. The machine compliance and the determination of the zero point of Depth play an essential role. If the certain conditions are considered, the instrumented indentation Tests can be used, in particular for investigations of specimens with inhomogeneous elastoplasticity. KW - Indentation KW - Elastoplastic material parameters KW - Uncertainty PY - 2021 DO - https://doi.org/10.1520/JTE20200683 SN - 0090-3973 VL - 49 IS - 6 SP - 4576 EP - 4592 PB - ASTM International AN - OPUS4-52416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Benner, Philipp T1 - Uncertainty quantification for a sparse machine learning (ML) data set in non-destructive testing in civil engineering (NDT-CE) N2 - ML has been successfully applied to solve many NDT-CE tasks. This is usually demonstrated with performance metrics that evaluate the model as a whole based on a given set of data. However, since in most cases the creation of reference data is extremely expensive, the data used is generally much sparser than in other areas, such as e-commerce. As a result, performance indicators often do not reflect the practical applicability of the ML model. Estimates that quantify transferability from one case to another are necessary to meet this challenge and pave the way for real world applications. In this contribution we invetigate the uncertainty of ML in new NDT-CE scenarios. For this purpose, we have extended an existing training data set for the classification of corrosion damage by a new case study. Our data set includes half-cell potential mapping and ground-penetrating radar measurements. The measurements were performed on large-area concrete samples with built-in chloride-induced corrosion of reinforcement. The experiment simulated the entire life cycle of chloride induced exposed concrete components in the laboratory. The unique ability to monitor deterioration and initiate targeted corrosion initiation allowed the data to be labelled - which is crucial to ML. To investigate transferability, we extend our data by including new design features of the test specimen and environmental conditions. This allows to express the change of these features in new scenarios as uncertainties using statistical methods. We compare different sampling and statistical distribution-based approaches and show how these methods can be used to close knowledge gaps of ML models in NDT. T2 - EGU General Assembly 2021 CY - Online meeting DA - 19.04.2021 KW - Data fusion KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.5194/egusphere-egu21-8798 AN - OPUS4-54125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yablokov, A. A1 - Lugovtsova, Yevgeniya A1 - Serdyukov, A. T1 - Uncertainty quantification of multimodal surface wave inversion using artificial neural networks N2 - An inversion of surface waves dispersion curves is a non-unique and ill-conditioned problem. The inversion result has a probabilistic nature, which becomes apparent when simultaneously restoring the shear wave (S-wave) velocity and layer thickness. Therefore, the problem of uncertainty quantification is relevant. Existing methods through deterministic or global optimization approaches of uncertainty quantification via posterior probability density (PPD) of the model parameters are not computationally efficient since they demand multiple solutions of the inverse problem. We present an alternative method based on a multi-layer fully connected artificial neural network (ANN). We improve the current uni-modal approach, which is known from publications, to multi-modal inversion. The learned ANN maps the phase velocity dispersion curves to values of the S-wave velocity and layers thickness. To estimate the uncertainties, we adapt the Monte-Carlo simulation strategy and project onto the resulting velocity model both frequency-dependent data noise and inverse operator errors, which are evaluated by the prediction of the training data set. The proposed combination of surface waves data processing methods, configured with each other, provides a novel surface waves multi-modal dispersion data inversion and uncertainty quantification approach. We first test our approach on synthetic experiments for various velocity models: a positive velocity gradient, a low-velocity layer and a high-velocity layer. This is done considering uni-modal inversion at first and then compared to the multi-modal inversion. Afterwards, we apply our approach to field data and compare resulting models with the body S-wave processing by the generalized reciprocal method (GRM). The experiments show high-potential results – using ANN yields the possibility to accurately estimate PPD of restored model parameters without a significant computational effort. The PPD-based comparison demonstrates advantages of a multi-modal inversion over uni-modal inversion. The trained ANN provides reasonable model parameters predictions and related uncertainties in real-time. KW - Multi-layers KW - Multichannel analysis of surface waves (MASW) KW - Characterisation of soil sites KW - Monte Carlo simulation KW - Field data PY - 2023 DO - https://doi.org/10.1190/geo2022-0261.1 SN - 0016-8033 VL - 88 IS - 2 SP - 1 EP - 43 PB - Society of Exploration Geophysicists CY - Tulsa, Okla. AN - OPUS4-56624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Under Investigation: Novel Approach towards the Synthesis of Deuterium-labelled Alternariol- and Alternariol monomethylether-Standards for the HPLC-MS/MS-Analysis in Food & Feed N2 - Alternariol (AOH) and Alternariol monomethylether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labelled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation4 as the key step. T2 - 13th International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds CY - Prague, Czech Republic DA - 03.06.2018 KW - Mycotoxins KW - Mass Spectrometry PY - 2018 AN - OPUS4-45268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Kruschwitz, Sabine T1 - Understanding distributed data – a semantic web approach for data based analysis of NDT data in civil engineering N2 - In the field of non-destructive testing (NDT) in civil engineering, a large number of measurement data are collected. Although they serve as a basis for scientific analyses, there is still no uniform representation of the data. An analysis of various distributed data sets across different test objects is therefore only possible with high manual effort. We present a system architecture for an integrated data management of distributed data sets based on Semantic Web technologies. The approach is essentially based on a mathematical model - the so-called ontology - which represents the knowledge of our domain NDT. The ontology developed by us is linked to data sources and thus describes the semantic meaning of the data. Furthermore, the ontology acts as a central concept for database access. Non-domain data sources can be easily integrated by linking them to the NDT construction ontology and are directly available for generic use in the sense of digitization. Based on an extensive literature research, we outline the possibilities that this offers for NDT in civil engineering, such as computer-aided sorting, analysis, recognition and explanation of relationships (explainable AI) for several million measurement data. The expected benefits of this approach of knowledge representation and data access for the NDT community are an expansion of knowledge through data exchange in research (interoperability), the scientific exploitation of large existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis, material characterization) and finally a simplified exchange of NDT data with engineering models and thus with the construction industry. Ontologies are already the core of numerous intelligent systems such as building information modeling or research databases. This contribution gives an overview of the range of tools we are currently creating to communicate with them. T2 - EGU General Assembly 2020 CY - Online meeting DA - 04.05.2020 KW - Ontology KW - NDT KW - Concrete KW - Onotology KW - Semantic Data Management KW - Reproducible Science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518076 DO - https://doi.org/10.5194/egusphere-egu2020-19332 AN - OPUS4-51807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Steger, Simon A1 - Bonnerot, Olivier A1 - Hahn, Oliver A1 - Buzi, P. A1 - Rabin, Ira T1 - Understanding the technological evolution of writing materials. Scientific systematic study of inks from Coptic manuscripts N2 - While studying the socio-geographic history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques: XRF, FTIR, and Raman. In most cases, we can obtain satisfactory results using a non-invasive protocol. However, mixed inks that contain no metals evade such a protocol. These inks constitute a heterogeneous group of media used especially in the Middle East and the Islamicate world since at least the 10th century; they are characterized by blending carbon ink and tannins, with or without the addition of vitriol. Our own research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo). During many years of study, we concluded that the continuous production of Coptic manuscripts from late Antiquity to the Middle Ages offers a unique opportunity for historical study of the ink in a large geographic area. Thanks to the collaboration with the ERC project “PAThs” (www.paths.uniroma1.it), based at the University of Rome La Sapienza, and within the activities of a PhD research dedicated to this topic, we therefore created a new branch of our project focused entirely on the analysis of Coptic inks, pigments, and dyes. This pioneering systematic study of writing materials coming from a specific area and time frame (5th-10th century) aims not only at a better understanding of the complex Coptic multicultural and plurilingual society, but also and mainly at clarifying the links among the Coptic and other societies between the ancient and medieval eras. Finally, it will cast light on the history of the technological development of inks in the eastern world, from Antiquity to the middle ages. T2 - Konferenz: Scientific Methods in Cultural Heritage Research, Gordon Research Conference CY - Castelldefels, Spain DA - 22.07.2018 KW - Coptic KW - Ink KW - Manuscript PY - 2018 AN - OPUS4-46024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565276 DO - https://doi.org/10.1021/acs.cgd.2c01227 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baek, W. A1 - Gromilov, S. A1 - Kuklin, A. A1 - Kovaleva, E. A1 - Fedorov, A. A1 - Sukhikh, Alex A1 - Hanfland, M. A1 - Pomogaev, V. A1 - Melchakova, Y. A1 - Avramov, P. A1 - Yusenko, Kirill T1 - Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Exp and Theor consideration of popigai impact diamonds N2 - For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3−100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite. KW - Compressibility KW - Lonsdaleite KW - Impact diamonds PY - 2019 DO - https://doi.org/10.1021/acs.nanolett.8b04421 VL - 19 IS - 9 SP - 1570 EP - 1576 PB - ACS AN - OPUS4-47403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Lee, C. A1 - Weidner, Steffen A1 - El-Baba, T. A1 - Lutomski, C. A1 - Inutan, E. A1 - Foley, C. A1 - Ni, C.-K. A1 - McEwen, C. T1 - Unprecedented Ionization Processes in Mass SpectrometryProvide Missing Link between ESI and MALDI N2 - In the field of mass spectrometry,producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from bio-medical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser Ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around athird of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorp-tion/ionization. KW - MALDI KW - Electrospray KW - Mass spectrometry KW - Ionization PY - 2018 DO - https://doi.org/10.1002/cphc.201701246 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 5 SP - 581 EP - 589 PB - Wiley-VCH AN - OPUS4-44404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Szymoniak, Paulina T1 - Unraveling the dynamics of thin films of a miscible PVME/PS blend N2 - Dielectric spectroscopy (BDS) was employed to investigate the dynamics of thin films (7 – 200 nm) of a Poly (vinyl methyl ether) (PVME) / Polystyrene (PS) blend (50:50 wt%). For the BDS measurements Nano-Structured Capacitors (NSC) were employed, where films have a free surface. This method was applied for film thicknesses up to 36 nm. Thicker films were prepared between Crossed Electrodes Capacitors (CEC). The spectra of the films showed multiple processes. The first process was assigned to the -relaxation of a bulk-like layer. For films measured by NSC, its rates were higher compared to that of the bulk blend. This behavior was related to a PVME-rich free-surface layer. A second process was observed for films measured by CEC (process X) and the 36 nm film measured by NSC (process X2). This process was assigned to fluctuations of PVME constraint by PS. Its activation energy was found to be thickness dependent, due to the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature-dependence was observed for all films measured by NSC (process X1). It resembled the molecular fluctuations in an adsorbed layer found for films of pure PVME. T2 - Anual Meeting of the American Physical Society CY - Los Angeles, CA, USA DA - 05.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Saatz, Jessica A1 - Ascher, Lena A1 - Boyraz, B. A1 - Hahndorf, J. A1 - Schnorr, J. A1 - Schellenberger, E. A1 - Tauber, R. T1 - Unraveling the interaction of MRI contrast agents with tissue using LA ICP MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is increasingly used to study the distribution of metal-containing drugs, imaging probes and nanomaterials in connection with disease related changes and therapy progress. Additionally, biomolecules can be detected indirectly by using metal-tagged antibodies. The extracellular matrix (ECM) is, besides the cells, an important component of all body tissues. The macromolecular network of the ECM consists of structural proteins (e.g., collagen, elastin) and proteoglycans composed of highly negatively charged carbohydrates, the glycosaminoglycans (GAGs), which are covalently linked to a protein core. Many diseases, including inflammatory processes and tumors, are associated with characteristic ECM changes at an early stage. Recent studies have shown that contrast agents for magnetic resonance imaging (MRI), which are based on gadolinium containing chelate complexes or iron oxide nanoparticles, can bind themselves to ECM components. To elucidate the role of GAGs like keratan sulfate (KS) and its modification state in disease, highly specific tools are necessary. As a complement to conventional immunohistochemistry LA-ICP-MS was applied to investigate the distribution of KS in tissue thin sections using a well characterized anti-KS antibody labelled with metal ions. Furthermore, LA-ICP-MS was used for the detection of MRI contrast agents and the identification of their target cells and molecules in tissue samples from animal models, e.g. for cardiovascular diseases. The results show the possibilities of LA-ICP-MS for the elucidation of pathological tissue changes. T2 - European Workshop on Laser Ablation (EWLA 2022) CY - Berne, Switzerland DA - 12.07.2022 KW - Laser ablation KW - Imaging KW - ICP-MS KW - Antibody PY - 2022 AN - OPUS4-55315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherb, T. A1 - Fantin, Andrea A1 - Checcia, S. A1 - Stephan-Scherb, Christiane A1 - Escolástico, S. A1 - Franz, A. A1 - Seeger, J. A1 - Meulenberg, W. A. A1 - d'Acapito, F. A1 - Serra, J. M. T1 - Unravelling the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d mixed ionic electronic conductors N2 - Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the Oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-yWO12-d, the ionic/electronic transport mechanism in Nd6-yWO12-d is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-d and molybdenum-substituted Nd5.7W0.75Mo0.25O12-d prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replacesWat bothWyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-yWO12-d. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W(W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-yWO12-d is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies. KW - Powder diffraction KW - Mixed conductors KW - X-ray absorption spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514607 DO - https://doi.org/10.1107/S1600576720012698 VL - 53 SP - 1471 EP - 1483 AN - OPUS4-51460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan T1 - Unravelling the depths of complex alloys with grazing exit XANES N2 - High entropy alloys (HEAs) are considered as a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. There has been a growing interest in HEAs in the material research field in recent years. Due to their adjustable composition, which enables the modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, HEAs have been the focus of various studies. Especially the corrosion behavior of HEAs has been a wide research interest. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how HEAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale. Position-sensitive area detectors provide information regarding the signal emitted from the sample as a function of emission angle and thus allow depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which lays within a specific energy range provides XANES data to determine oxidation states. Moreover, since GEXRF profiles can also be simulated through physical models (Urbach 1999), they enable us to determine the layer thickness of a given sample in a non-destructive way. In this contribution, we present the preliminary results of a conceptual study regarding layer properties of CrCoNi medium entropy alloy. The successful implementation of such methodological concept will pave the way for the investigation of more complex alloys with multiple layers, which is planned for the later phases of the project. T2 - Denver X-Ray Conference DXC 2021 CY - Online meeting DA - 02.08.2021 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - XAS PY - 2021 AN - OPUS4-54027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan T1 - Unrevealing the depths of compositionally complex alloys with grazing exit XANES N2 - High entropy alloys (HEAs) are considered as a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. There has been a growing interest in HEAs in the material research field in recent years. Due to their adjustable composition, which enables the modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, HEAs have been the focus of various studies. Especially the corrosion behavior of HEAs has been a wide research interest. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how HEAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale. Position-sensitive area detectors provide information regarding the signal emitted from the sample as a function of emission angle and thus allow depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which lays within a specific energy range provides XANES data to determine oxidation states. Moreover, since GEXRF profiles can also be simulated through physical models (Urbach 1999), they enable us to determine the layer thickness of a given sample in a non-destructive way. In this contribution, we present the preliminary results of a conceptual study regarding layer properties of CrCoNi medium entropy alloy. The successful implementation of such methodological concept will pave the way for the investigation of more complex alloys with multiple layers, which is planned for the later phases of the project. T2 - XAFS 2021, The 18th International XAFS Conference CY - Online meeting DA - 02.08.2021 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - XAS PY - 2021 AN - OPUS4-54028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Song, L. A1 - Young, M.D. A1 - van der Wielen, M. A1 - Evans-Nguyen, T. A1 - Riedel, Jens A1 - Shelley, J.T. T1 - Unsupervised Reconstruction of Analyte-Specific Mass Spectra Based on Time-Domain Morphology with a Modified Cross-Correlation Approach N2 - Concomitant species that appear at the same or very similar times in a mass-spectral analysis can clutter a spectrum because of the coexistence of many analyte-related ions (e.g., molecular ions, adducts, fragments). One method to extract ions stemming from the same origin is to exploit the chemical information encoded in the time domain, where the individual temporal appearances inside the complex structures of chronograms or chromatograms differ with respect to analytes. By grouping ions with very similar or identical time-domain structures, single-component mass spectra can be reconstructed, which are much easier to interpret and are library-searchable. While many other approaches address similar objectives through the Pearson’s correlation coefficient, we explore an alternative method based on a modified cross-correlation algorithm to compute a metric that describes the degree of similarity between features inside any two ion chronograms. Furthermore, an automatic workflow was devised to be capable of categorizing thousands of mass-spectral peaks into different groups within a few seconds. This approach was tested with direct mass-spectrometric analyses as well as with a simple, fast, and poorly resolved LC–MS analysis. Single-component mass spectra were extracted in both cases and were identified based on accurate mass and a mass-spectral library search. KW - Mass-Spectral Reconstruction KW - Mass Spectrometry KW - Correlation PY - 2021 DO - https://doi.org/10.1021/acs.analchem.0c04396 VL - 93 IS - 12 SP - 5009 EP - 5014 PB - ACS AN - OPUS4-52467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kossatz, Philipp A1 - Mezhov, Alexander A1 - Andresen, Elina A1 - Schmidt, Wolfram A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Upconversion Nanoparticles as Luminescent Probes for Cement N2 - Safety is a key parameter for the design and construction of buildings. The most widely used construction material to date is concrete that consists of about 15-20 wt.-% cement, which is responsible for the main concrete properties, i.e., strength and durability. Despite many standards regulating the quality of cement, at present, there exists no viable method to track the cement life cycle “from cradle to grave”. This led to an increasing interest in simple and robust methods for studying the processes and changes occurring during the life cycle of cement. In this context, we explored the applicability of fluorescence measurements which can be performed with relatively inexpensive and miniaturized instrumentation yet require robust optical probes which survive the harsh cement environment. Therefore, we developed a platform of lanthanide-based upconversion nanoparticles (UCNPs), consisting of a NaYF4 matrix doped with Yb3+ and Er3+ with sizes between 20 nm and 55 nm, which show characteristic multi-color emission patterns, composed of narrow bands of varying intensity in the ultraviolet, visible, near-infrared, and short-wave spectral region and examined their potential for cement probing and the non-invasive monitoring of the hydration processes occurring during cement formation. UCNPs of different size and chemical composition were synthesized via a thermal decomposition approach under inert conditions. The tailor-made design of different emission patterns was achieved by tuning particle size and morphology, material composition, and particle surface chemistry in upscaleable syntheses. For cement probing, different types of UCNPs were added to cement and the evolution of the UCNP emission pattern was used to probe in-situ changes of physico-chemical parameters in the cementitious environment during hydration, utilizing a simple and portable custom-designed optical setup. The observed changes in the UCNP emission patterns are characteristic for a given particle size, surface chemistry, and cement composition. In addition to fluorescence measurements, conventional isothermal heat flow calorimetry was used to study the influence of UCNP addition on cement hydration kinetics. Subsequently, both sets of measurements were correlated. Our results underline the potential of our optical approach ad UCNPs for the non-invasive probing of cementitious systems and cement hydration. This can be also exploited for cutting-edge applications of construction materials such as 3D concrete printing. T2 - Summer School Exciting Nanostructures CY - Bad Honnef, Germany DA - 31.07.2023 KW - Cement Hydration KW - Upconversion KW - Fluorescence Spectroscopy PY - 2023 AN - OPUS4-58203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kossatz, Philipp A1 - Andresen, Elina A1 - Würth, Christian A1 - Frenzel, Florian A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Upconversion Nanoparticles for Luminescent Barcodes and as Reporters for Optical Sensors N2 - Counterfeiting of goods has serious economic implications worldwide and can be a threat to human health and safety. Upconversion nanoparticles (UCNPs)are ideal candidates for optical encoding of various materials. Particles with tailor-made emission patterns can be used as anti-counterfeiting markers and luminophores in security inks and to track material flows. Microenvironment-specific changes in the emission properties of the UCNP tags can be used to study, signal, and sense changes of physico-chemical parameters in different environments, e.g., building materials. T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Nanomaterials KW - Anti-Counterfeiting KW - Fluorescence Spectroscopy PY - 2023 AN - OPUS4-59035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Stegemann, Robert T1 - Update on Revision of ISO 24497 - NDT - MMM - Technique N2 - Presentation of the final compromise reached in 2018 for revision of ISO 24497, final draft for voting at ISO can be prepared now. T2 - IIW Annual Assembly 2018 CY - Bali, Indonesia DA - 15.07.2018 KW - NDT - Metal Magnetic Memory KW - Revision of ISO 24497 KW - New ISO draft PY - 2018 AN - OPUS4-47356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Britzke, Ralf A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - Upgraded imaging capabilities at the BAMline (BESSY II) N2 - The BAMline at the BESSY II synchrotron X-ray source has enabled research for more than 20 years in widely spread research fields such as materials science, biology, cultural heritage and medicine. As a nondestructive characterization method, synchrotron X-ray imaging, especially tomography, plays a particularly important role in structural characterization. A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (based on an sCMOS camera) also allows exploiting the higher flux with reduced readout times. Furthermore, an installed slip ring allows the sample stage to continuously rotate. The latter feature enables tomographic observation of processes occurring in the time scale of a few seconds. KW - Synchrotron radiation KW - Computed tomography KW - Double-multilayer monochromators KW - Pink beams KW - X-ray optics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556907 DO - https://doi.org/10.1107/S1600577522007342 SN - 1600-5775 VL - 29 IS - Pt 5 SP - 1292 EP - 1298 PB - International Union of Crystallography CY - Chester AN - OPUS4-55690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Russo, Francesco Friedrich A1 - Lisec, Jan T1 - Upscaling of spectral libraries for HR- EI-MS based non target analytics N2 - Non-target (NT) mass spectrometry techniques play a crucial role in metabolomics applications, particularly in areas such as environmental safety. Soft ionization methods, such as electrospray ionization (ESI), are commonly employed due to their ability to generate spectra containing molecular ions, aiding in the identification of unknown peaks. However, ESI may fail to ionize certain compounds effectively, resulting in their absence in NT approaches. In contrast, hard ionization methods like electron impact (EI) can ionize a wide range of compounds but often lack information about the molecular ion. Although extensive databases of EI spectra exist, their nominal mass resolution (NR) limits their utility for modern high-resolution (HR) EI mass spectrometers. Here, the often-applied conversion of HR spectra to nominal mass leads to the loss of unique characteristics, i.e. by grouping distinct masses into more ambiguous nominal masses. Our study aims to (i) quantify the negative impact of such a binning approach and (ii) develop a machine learning (ML) tool capable of enhancing existing nominal mass spectral libraries. In the initial phase, we employed the RECETOX Exposome HR-[EI+]-MS library to assess the influence of HR spectra on identification. We compared the dot product of each spectrum against all others, utilizing bin sizes of 0.001 and 1 Da. The difference in dot product between the second-best candidate and the query spectrum (the best candidate, with a score of 1) was calculated for both HR and nominal mass spectra. Subsequently, we explored the application of ML techniques to predict HR spectra from nominal mass spectra using the before mentioned dataset. Preliminary findings demonstrate the potential of high-resolution spectral libraries. As anticipated, HR spectra consistently exhibited lower similarity scores for the second candidate. This observation likely stems from the high redundancy and resulting ambiguity associated with nominal masses. Even after eliminating spectra containing multiple HR masses mapped to the same nominal mass, the aforementioned trend persisted. Furthermore, initial investigations into ML have revealed its ability to predict up to 40% of HR masses within a 10 mDa precision window. T2 - Tag der Chemie 2023 CY - Berlin, Deutschland DA - 05.07.2023 KW - HR-EI-MS KW - ML PY - 2023 AN - OPUS4-58172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Russo, Francesco Friedrich A1 - Lisec, Jan T1 - Upscaling of spectral libraries for HREI- MS based non target analytics N2 - Gas Chromatography coupled with Electron Ionisation Mass Spectrometry (GC-EI-MS) is a well-established technique which, in combination with spectral libraries, has the potential to identify compounds in a sample. Nevertheless, most libraries are dominated by spectra with nominal mass resolution which does not allow to make full use of the data generated by modern high-resolution instruments. The production of high-resolution spectral library is time consuming and expensive, while in silico fragmentation tools that are capable of generating HR mass spectra are still too computationally intensive. We explored the alternative of using ML models to upscale existing spectral libraries. The models were trained with spectra from the RECETOX metabolome (DOI: 10.5281/zenodo.5483564), RECETOX Exposome (DOI: 10.5281/zenodo.4471216), and MassBank (10.5281/zenodo.7436394) HR-GC-MS libraries. The model was used to generate a synthetic library which was compared with a synthetic library simulated with CFM-ID (DOI: 10.1021/acs.analchem.6b01622). T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - ML KW - GC-MS KW - EI-MS PY - 2023 AN - OPUS4-57358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Ronneteg, U. T1 - Usability of the written procedures: an eye tracking study N2 - Usability of the written procedures: an eye tracking study Non-destructive evaluation (NDE) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDE to detect critical defects in safety-relevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. NDE inspection procedure is one of the most important tools in the everyday life of an NDE inspector. Experience and research studies have shown that NDE procedures are not always used as foreseen and may need to be optimized. Both the content and format play an important role in producing reliable procedures. Whereas the content aids in the understanding of the task and in its subsequent correct execution, the format determines the efficiency and frequency of the procedure’s use. For the purposes of this study, an inspection procedure - designed to be used in the inspection of components used in the final disposal of spent nuclear fuel - was further developed by adopting a user-centered design. This was achieved by following the eye movements during a data evaluation task whilst using the procedure, by interviews and group discussions, accompanied by a review from a human factors’ perspective, the suggestions from relevant literature and by reiterating the entire process once again. This process resulted in identifying shortcomings and in suggesting alterations to the existing procedure. The newly created procedure was empirically tested for its usability using eye tracking. By comparing the old instruction format to the newly developed one, the results showed that appropriately highlighting warnings, exceptions, or reminders, and placing them at a logical position assures that they will be read and identified with ease rather than overlooked. The presentation of the information in a stepwise manner, with one action per step, allows the user to follow more easily the steps that must be carried out to save time and effort. This study - the first of its kind in the field of non-destructive evaluation - showed that the procedure can be improved by applying human factors principles to the design and by involving the users into the process of procedure development and quality assurance. Introduction of the speaker – Marija Bertovic Marija Bertovic has a degree in psychology and a PhD in human factors. Since 2006 she has been working on topics related to human factors in non-destructive testing at the BAM Federal Institute for Materials Research and Testing, German Society for Non-Destructive Testing and as an independent consultant. The focus of her research has been on identifying and studying human factors’ related risks during NDT inspections and suggesting ways of optimizing the inspections and inspection procedures. She is currently a research staff member at BAM responsible for probabilistic safety and reliability analyses AND human factors analyses. She is the chairwoman of the German Society for Non-Destructive Testing’s (DGZfP) subcommittee on human machine interaction and the winner of the DGZfP Science Award in 2018. T2 - AHFE International, 10th International Conference on Applied Human Factors and Ergonomics CY - Washington Hilton, Washington D.C., USA DA - 24.07.2019 KW - Human Factors KW - ZfP KW - NDE PY - 2019 AN - OPUS4-48851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Using a spectral entropy criterion for improved onset picking in ultrasonic testing N2 - In ultrasonic testing, the time of flight (ToF) of a signal can be used to infer material and structural properties of a test item. In dispersive media, extracting the bulk wave velocity from a received signal is challenging as the waveform changes along its path of propagation. When using signal features such as the first peak or the envelope maximum, the calculated velocity changes with the propagation distance. This does not occur when picking the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically obtain onset times. In addition to being dependent on arbitrarily set parameters, the AIC picker assumes no prior knowledge of the spectral properties of the signal. This is unnecessary in ultrasonic through-transmission testing, where the signal spectrum is known to differ significantly from noise. In this contribution, a novel parameter-free onset picker is proposed, that is based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers, showing an improved accuracy for densely sampled data. T2 - 183rd Meeting of the Acoustical Society of America CY - Nashville, TN, USA DA - 05.12.2022 KW - ToF KW - Arrival time KW - Nondestructive testing KW - Through-transmission KW - AIC picker PY - 2022 AN - OPUS4-56616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Thiel, Erik A1 - Pech May, Nelson Wilbur T1 - Using spatial and temporal shaping of laser-induced diffuse thermal wave fields in thermography N2 - The diffuse nature of thermal waves is a fun-damental limitation in thermographic nonde-structive testing. In our studies we investigated different approaches by shaping the thermal wave fields which result from heating. We have used high-power laser sources to heat metallic samples. Using these spatial and temporal shaping techniques leads to a higher detection sensitivity in our measurements with the infra-red camera. In this contribution we show our implementation of shaping laser-induced diffuse thermal wave fields and the effect on the defect reconstruction quality. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Thermal wave KW - Diffusion KW - High-power laser KW - Thermography KW - Spatiotemporal shaping PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C5.1 SP - 179 EP - 180 AN - OPUS4-50897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konthur, Zoltán A1 - Riedel, Soraya A1 - Bayram, Rabia A1 - Döring, Sarah A1 - Schneider, Rudolf T1 - Utilizing Aspergillus niger Fumonisin Amine Oxidase for the Electrochemical Detection of Fumonisin N2 - Fumonisins are a class of toxic secondary metabolites produced by various Fusarium species. The two most important producers of fumonisins are F. verticillioides and F. proliferatum but also Aspergillus niger is known to produce fumonisins. Most frequently they occur on maize, but also other grains can be contaminated with this group of mycotoxins. Exposure to fumonisins by dietary intake can have serious health effects on farm animals and also within humans. Thus, the European Commission sets legal limits for fumonisins in feed and foodstuffs. The detection of fumonisins is frequently performed in laboratories by chromatographic methods, which are costly and require trained personnel. Simplifying the analysis is therefore a major goal using portable detection systems. Electrochemical enzymatic biosensors offer great promise to meet this demand. Here we report for the first time an enzymatic fumonisin sensing approach with amperometric detection. For this purpose, an Aspergillus niger fumonisin amine oxidase (AnFAO) catalyzing the oxidative deamination of fumonisins, producing hydrogen peroxide, was recombinantly produced in E. coli. It was found that the specific activity of AnFAO using 20 μM Fumonisin B1 as substrate is higher than for 20 μM Fumonisin B2 with 0.122 U mg-1 and 0.058 U mg-1, respectively. It was possible to show a dependence of enzyme activity with enzyme – and substrate-concentration. For fumonisin B1 detection, the enzyme was coupled covalently to magnetic particles and the enzymatically produced H2O2 was detected amperometrically in a flow injection system using Prussian blue carbon electrodes. The developed method allows to quantify fumonisin B1 concentrations down to 1.5 µM and demonstrates that the recombinantly produced AnFAO was able to deaminate different concentrations of fumonisin even in immobilized form. Thus, this enzyme is well suited to develop an enzyme based electrochemical biosensor for fumonisin contaminated food and feed. T2 - Affinity 2023 - the 25th meeting of the International Society for Molecular Recognition CY - Lisbon, Portugal DA - 05.06.2023 KW - Mycotoxin KW - Amperometry KW - Biosensor KW - Food analysis PY - 2023 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-57717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A. A1 - Crasselt, C. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537176 DO - https://doi.org/10.1088/2050-6120/ac2da0 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Vacuum hot extraction: Detection of volatiles N2 - Der Vortrag gibt einen Überblick über die Möglichkete und Grenzen der Methode der Vakuum-Heiß-Extraktion an der BAM T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Heißgasextraktion KW - Glas PY - 2019 AN - OPUS4-50434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS system using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - European Mass Spectrometry Conference CY - Saarbrücken, Germany DA - 10.03.2018 KW - Tandem MS KW - Vacuum Ultraviolet PY - 2018 AN - OPUS4-44484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS System using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - EMSC 2018 CY - Saarbruecken, Germany DA - 4.3.2018 KW - Tandem MS PY - 2018 AN - OPUS4-45671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin M. A1 - Heck, Christian A1 - Meiling, T. A1 - Milosavljevic, A. A1 - Giuliani, A. A1 - Bald, Ilko T1 - Vacuum-UV and low-energy electron induced DNA strand breaks - Influence of the DNA sequence and substrate N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7 - 2.3 x 10-16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies < 3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - Vacuum-UV KW - Low-Energy KW - DNA KW - DNA-Sequence PY - 2019 DO - https://doi.org/10.1002/cphc.201801152 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -