TY - CONF A1 - Vogel, Christian T1 - PFAS analytics and their relation to PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 10,000 anionic, cationic, zwitterionic or neutral organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. While liquid chromatography tandem mass spectrometry (LC-MS/MS) is commonly used technique to characterize targeted PFAS in environmental samples, there are more than 10,000 different PFAS known, which have various headgroups and properties. Therefore, several analytical techniques are available to analyse various groups or pools of PFAS or “all” PFAS as a sum parameter. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - International workshop of CAR-PFAS (Consortium for analysis and remediation of per- and polyfluoroalkyl substances) Japan CY - Tokyo, Japan DA - 17.10.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Soil PY - 2023 AN - OPUS4-58609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586688 DO - https://doi.org/10.3389/fenvc.2023.1281558 SN - 2673-4486 VL - 4 SP - 1 EP - 12 PB - Frontiers Media CY - Lausanne AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Chemical characterization of aging processes in high energy-density lithium-ion batteries N2 - Introduction Lithium-ion batteries (LIBs) are one key technology to overcome the climate crisis and energy transition challenges. Demands of electric vehicles on higher capacity and power drives research on innovative cathode and anode materials. These high energy-density LIBs are operated at higher voltages, leading to increased electrolyte decay and the current collectors' degradation. Even though this fundamental corrosion process significantly affects battery performance, insufficient research is being done on the aluminum current collector. Fast and convenient analytical methods are needed for monitoring the aging processes in LIBs. Methods In this work glow-discharge optical emission spectrometry (GD-OES) was used for depth profile analysis of aged cathode material. The measurements were performed in pulsed radio frequency mode. Under soft and controlled plasma conditions, high-resolution local determination (in depth) of the elemental composition is possible. Scanning electron microscopy (SEM) combined with a focused ion beam (FIB) cutting and energy dispersive X-ray spectroscopy (EDX) was used to confirm GD-OES results and obtain additional information on elemental distribution. Results The aging of coin cells manufactured with different cathode materials (LCO, LMO, NMC111, NMC424, NMC532, NMC622, and NMC811) was studied. GD-OES depth profiling of new and aged cathode materials was performed. Quantitative analysis was possible through calibration with synthetic standards and correction by sputter rate. Different amounts of aluminum deposit on the cathode surface were found for different materials. The deposit has its origin in the corrosion of the aluminum current collector. The results are compatible with results from FIB-EDX. However, GD-OES is a faster and less laborious analytical method. Therefore, it will accelerate research on corrosion processes in high energy-density batteries. Innovative aspects - Quantitative depth profiling of cathode material -Monitoring of corrosion processes in high energy-density lithium-ion batteries - Systematic investigation of the influence of different cathode materials T2 - ANAKON 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Lithium Ion Batteries KW - GD-OES KW - Depth-profiling PY - 2023 AN - OPUS4-58586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Study of lithium-ion battery aging using laser-induced XUV spectroscopy (LIXS) N2 - Laser-induced XUV spectroscopy (LIXS) is an emerging technique for elemental mapping. In comparison to conventional laser-induced breakdown spectroscopy in UV-vis (LIBS), it has a higher precision and wider dynamic range, and it is well suited for the quantification light elements like lithium and fluorine. Further it can spot oxidation states. The XUV spectra are produced at a very early stage of the plasma formation. Therefore, effects from plasma evolution on the reproducibility can be neglected. It has been shown, that high-precision elemental quantification in precursor materials for lithium-ion batteries (LIBs) can be performed using LIXS. Based on these results, LIXS mapping was used to investigate aging processes in LIBs. Different cathode materials with varying compositions of fluorine containing polymer binders were compared at different stages of aging. Due to effects comparable to X-ray photoelectron spectroscopy but in reverse, monitoring of changes in the oxidation state is envisioned, which makes information about the chemical environment of the observed elements accessible. The combination of elemental distribution and structural information leads to a better understanding of aging processes in LIBs, and the development of more sustainable and safe batteries. T2 - Conference on Applied Surface and Solid Material Analysis - AOFKA 2023 CY - Zurich, Switzerland DA - 11.09.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Multivariate data analysis for laser-induced XUV spectroscopy (LIXS) N2 - The application of multivariate data analysis is essential in extracting the full potential of laser-induced XUV spectroscopy (LIXS) for high-precision elemental mapping. LIXS offers significant advantages over traditional laser-induced breakdown spectroscopy in UV-vis (LIBS), including higher precision and a wider dynamic range,[1,2] while making it possible to determine light elements like lithium and fluorine. However, it is challenged by the presence of unresolved transition arrays (UTAs) for heavier elements. These UTAs add considerable complexity to the spectral data, often concealing crucial information. In this study, we employ well-established multivariate data analysis techniques and intensive data preprocessing to unravel this contained information. The refined analysis reveals a high level of detail, enabling the precise identification of inhomogeneities within material samples. Our approach has particular relevance for studying aging processes in lithium-ion batteries (LIBs), specifically in relation to varying cathode materials and fluorine-containing polymer binder content. By combining elemental distribution with structural information, this improved method can offer a more comprehensive understanding of sample inhomogeneities and aging processes in LIBs, contributing to the development of more reliable and sustainable battery technologies. T2 - Berliner Chemie in Praxis Symposium - BCPS 2023 CY - Berlin, Germany DA - 06.10.2023 KW - Lithium Ion Batteries KW - Laser-induced XUV spectroscopy KW - Multivariate data analysis PY - 2023 AN - OPUS4-58588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved Data Processing for Accurate Plasma Diagnostics with Implications for Calibration-Free LIBS N2 - Many LIBS papers report the determination of plasma temperature using the Boltzmann plot method or the determination of electron density using the Stark line broadening relation. This requires measuring the integrated intensities of the spectral lines and the linewidth under the assumption of optical thinness. It is taken for granted that this can be easily done either by working with the raw spectra or by fitting the appropriate function to the observed spectral lines. However, extracting the necessary information from raw spectral data is not as easy as it might seem. The quality of such extraction will depend to a decisive extent on the type of spectral instrument used. The spectrum emitted by the plasma is distorted by the device; an example is shown in Fig. 1. The elimination of this distortion belongs to the class of inverse problems, the successful solution of which fundamentally depends on the quality of the available information. When it comes to spectroscopy, the quality of information primarily means high spectral resolution and low noise. Not all spectrometers used in LIBS can provide the quality needed to solve the inverse problem; this casts doubt on many published plasma measurements. This communication will be devoted to the general shortcomings of spectral data processing and the inaccuracies in determining the plasma parameters resulting from these shortcomings. The analysis is based on the use of synthetic spectra generated by plasma with known temperature, particle density and electron density. The estimation of errors caused by inadequate processing of spectral data is made by comparing the initial and measured plasma parameters from the spectra. Recommendations will be made for which analytic function best approximates the observed spectral lines, and how data processing errors affect the accuracy of calibration-free LIBS will be discussed. These issues were only partially covered in previously published works, for example [1, 2]. T2 - Colloquium Spectroscopicum Internationale XLIII, The 5th Asian Symposium on Laser Induced Breakdown Spectroscopy June 26-30, 2023 CY - Tokushima, Japan DA - 26.06.2023 KW - Laser induced breakdown spectroscopy KW - Calibration-free LIBS KW - Data processing PY - 2023 AN - OPUS4-58589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Importance of Spectral Resolution for Accurate Plasma Diagnostics with Implications for Calibration-Free LIBS N2 - In the LIBS literature, almost every second article reports the determination of the plasma temperature using the Boltzmann plot method or the determination of the electron density using the Stark line broadening relation. The first requires the measurement of the integrated intensities of the spectral lines, and the second requires the measurement of the linewidth, under the same assumption of optical thinness. It is taken for granted that this can be easily done either by working with the raw spectra or by fitting an appropriate function to the observed spectral lines. As a rule, reported data are not verified either by an alternative method (e.g., Thomson scattering) or by computer simulations using synthetic spectra. However, the question of how to extract the necessary information from the raw spectral data is not as simple as it might seem. The quality of such an extraction will depend critically on the type of spectral instrument used, its resolution, and the noise superimposed on the data. The problem is that we do not see the spectrum emitted by the plasma, but the spectrum distorted by the measurement; an exaggerated example of such a distortion is shown in Fig. 1. The elimination of this distortion belongs to the class of inverse problems, the so-called ill-posed problems, whose successful solution crucially depends on the quality of the information available. When it comes to spectroscopy, quality of information primarily means high spectral resolution and low noise. Not all spectrometers used in LIBS can provide the quality needed to solve the inverse problem; this casts doubt on many published plasma measurements. The current presentation will be devoted to general shortcomings in the processing of spectral data and inaccuracies in the determination of plasma parameters resulting from these shortcomings. The analysis is based on the use of synthetic spectra produced by plasma with known characteristics, i.e., temperature, species densities, and electron density. The estimation of errors caused by inadequate processing of spectral data is made by comparing the initial and reconstructed plasma parameters. Recipes will be given for which the analytic function best approximates the observed spectral lines, and how data processing errors affect accuracy of calibration-free LIBS will be discussed. These issues were only partially covered in previously published works, for example [1, 2, 3]. T2 - EMS LIBS 2023 CY - Porto, Portugal DA - 04.09.2023 KW - Laser induced breakdown spectroscopy KW - Calibration-free analysis KW - Data processing PY - 2023 AN - OPUS4-58590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved Data Processing for Accurate Plasma Diagnostics and Calibration-Free LIBS N2 - Many applications of LIBS require the measurement of plasma temperature and electron density, which in turn requires knowledge of the integrated line intensity and the shape of the spectral lines. While the integral intensity is preserved as light passes through the spectrometer, the shape emitted by an individual atom or ion is greatly distorted. This is due, firstly, to the transfer of light through the plasma (self-absorption), secondly, to the influence of the instrumental function of the spectrometer, and, thirdly, to the aberrations of the optical system. In addition, processing of spectral information, such as background removal, noise reduction, deconvolution, and line fitting, introduces additional errors in the reconstructed linewidth and line integral, which leads to erroneous temperature and electron density values. This communication will be devoted to the general shortcomings of spectral data processing and the resulting inaccuracies in determining the plasma parameters. The analysis is based on the use of synthetic spectra generated by plasma with known temperature and particle density. The estimation of errors caused by inadequate processing of the spectral data is made by comparing the initial and determined plasma parameters. As a result, an improved data processing method will be proposed that takes into account the spectrum distortion by the instrumental function and integration on the pixel detector. The former is accounted for by convolution (instead of deconvolution) of the estimated line profile using a predetermined slit function, and the latter is achieved by piecewise integration of the line profile by the pixel detector, taking into account the pixel size and uniform or non-uniform pixel separation. Recommendations will be made for which analytic function best approximates the observed spectral lines and examples will be given for the application of this routine to calibration-free LIBS using both synthetic and experimental data. T2 - SciX 2023 CY - Sparks, USA DA - 08.10.2023 KW - Laser induced plasma KW - Calibration-free analysis KW - Plasma modeling KW - Emission spectroscopy PY - 2023 AN - OPUS4-58591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Mendez, Cristina A1 - Bordel, Nerea T1 - Investigation of LIBS-RF Plasma for Analytical Spectroscopy N2 - Laser breakdown spectroscopy (LIBS) is a common tool for applications in various fields of science and technology. Originally an atomic analysis technique, LIBS was later extended to molecular analysis due to the transient nature of the laser-induced plasma, which develops from a hot dissociation stage on a nanosecond to several microsecond scale to a relatively cold recombination stage on a scale of 10 to 100 microseconds after breakdown. Molecules formed during the recombination stage or incompletely dissociated after ablation can be efficiently detected, allowing the analysis of "difficult" elements or even molecular isotopes. However, with a small amount of ablated material and a short lifetime of the luminous plasma, analytical signals, especially molecular ones, can be very weak. Several methods have been proposed for reheating the plasma and increasing its lifetime, for example, a two-pulse LIBS or a LIBS combined with microwave radiation or with an electric spark discharge. Here we propose another one, LIBS combined with a capacitively coupled RF discharge at 13.6 MHz. The advantages of this combination are an increase in the lifetime of atomic and molecular emission and operation in a low-pressure atmosphere, which significantly reduces pressure line broadening and allows high-resolution spectroscopy. Another major advantage is operating in a chemically controlled atmosphere that can predictably drive desired chemical reactions. In this presentation, we will show the first results obtained with RF-LIBS combination. These will include separate and joint characterization of LIBS and RF plasmas and evaluation of its potential for elemental and molecular analysis and for plasma enhanced chemical vapor deposition. T2 - SciX 2023 CY - Sparks, USA DA - 08.10.2023 KW - Laser induced breakdown spectroscopy KW - Capacitively coupled discharge KW - RF-LIBS combination KW - Plasma reheating PY - 2023 AN - OPUS4-58592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling laser-induced plasma in vacuum and low-pressure co2 atmosphere N2 - The aim of the project is to develop an adequate model of laser induced plasma for conditions expected in space missions, i.e., vacuum, or low-pressure CO2 atmosphere. Numerical modeling will help to find optimal experimental parameters for the laser ablation under artificial lunar or Martian environments and obtain both qualitative, in terms of a composition, and quantitative, in terms of an elemental abundance, information about interrogated samples based on spectral data generated by the model. The best operational conditions will be found at a low cost without conducting tedious and time-consuming optimization experiments. The modeling approaches will be supported by machine learning to accelerate the optimization. T2 - Workshop on DFG project CY - Brno, Czech Republic DA - 10.08.2023 KW - Laser induced plasma KW - CFD computational fluid dynamic KW - Plasma modeling PY - 2023 AN - OPUS4-58595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A holistic experiment chain for scattering-powered materials science investigations N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators over the last five years. Combined with universal, automat-ed data correction pipelines, as well as our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. While this approach greatly improved the consistency of the results, the consistency of the samples and sample series provided by the users was less reliable nor necessarily reproducible. To address this issue, we built an EPICS-controlled, modular synthesis platform to add to our laboratory. To date, this has prepared over 1200 additional (Metal-Organic Framework) samples for us to meas-ure, analyse and catalogue. By virtue of the automation, the synthesis of these samples is automat-ically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases alongside the morphological results obtained from the automated X-ray scat-tering analysis. Having developed these proof-of-concepts, we find that the consistency of results are greatly im-proved by virtue of their reproducibility, hopefully adding to the reliability of the scientific findings as well. Additionally, the nature of the experiments has changed greatly, with much more emphasis on preparation and careful planning. This talk will discuss the advantages and disadvantages of this highly integrated approach and will touch upon upcoming developments. T2 - canSAS-XIII CY - Grenoble, France DA - 16.10.2023 KW - Methodology KW - Lab automation KW - X-ray scattering KW - Automated synthesis KW - Data stewardship KW - Holistic experimental procedures KW - Scicat PY - 2023 AN - OPUS4-58643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - OITB Quality Assurance concept and minimum requirements for testing services offered on the Metabuilding platform N2 - A brief description of the Quality Assurance concept of the Metabuilding Labs Open Ivvovation Test Bed (OITB) and presentation of the minimum requirements for testing services offered on the Metabuilding platform, wehich were elaborated in 2 workshops in summer 2023. T2 - 4th General Meeting of the Metabuilding Labs project (Horizon 2020) CY - Valladolid, Spain DA - 10.10.2023 KW - Open Innovation Test Bed KW - Metabuilding Labs PY - 2023 AN - OPUS4-58566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - O3BET Quality Protocols N2 - Presentation of the process-oriented approach for the development of the quality protocolls (standard operation procedures and work instructions) for the O3BETs. O3BETs are innovative testing facilities for building envelopes which are developed in the course of the Metabuilding Labs EU Horizon 2020 project. T2 - 4th General Meeting of the Metabuilding Labs project (Horizon 2020) CY - Valladolid, Spain DA - 10.10.2023 KW - Open Innovation Test Bed KW - Metabuilding Labs KW - O3BET PY - 2023 AN - OPUS4-58567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Combining DGT and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The amount of plant-available phosphorus (P) in soil strongly influences the yield of plants in agriculture. Therefore, various simple chemical extraction methods have been developed to estimate the plant-available P pools in soil. More recently, several experiments with the DGT technique have shown that it has a much better correlation to plant-available P in soils than standard chemical extraction methods (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. However, the DGT technique cannot give information on the plant-available P species in the soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Soil KW - Phosphorus KW - Plant-availability PY - 2023 AN - OPUS4-58574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brierley, N. A1 - Casperson, Ralf A1 - Engert, D. A1 - Heilmann, S. A1 - Herold, F. A1 - Hofmann, D. A1 - Küchler, H. A1 - Leinenbach, F. A1 - Lorenz, S. A1 - Martin, J. A1 - Rehbein, J. A1 - Sprau, B. A1 - Suppes, A. A1 - Vrana, J. A1 - Wild, E. T1 - DICONDE in industrial inspection N2 - DICONDE (Digital Imaging and Communication in Non-Destructive Testing) is an open international standard for storing and exchanging industrial test data and process-related information. The DICONDE standard defines both the semantics for structured storage of data and the network-based communication between two endpoints. This allows many test processes to be mapped digitally and securely, while at the same time meeting normative requirements such as traceability to the tester and test object and reproducibility of test results. KW - DICONDE KW - NDT KW - Interoperability KW - Data storage KW - Communication PY - 2023 SP - 1 EP - 13 PB - DGZfP CY - Berlin AN - OPUS4-58576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönsee, Eric T1 - Calculating rheological properties of fresh mortar for additive manufacturing based on experimental, multi sensor data N2 - Additive manufacturing of concrete structures is a novel and emerging technology. Free contouring in civil engineering, which allows for entirely new designs, is a significant advantage. In the future, lower construction costs are expected with increased construction speeds and decreasing required materials and workers. However, architects and civil engineers rely on a certain quality of execution to fulfil construction standards. Although several techniques and approaches demonstrate the advantages, quality control during printing is highly challenging and rarely applied. Due to the continuous mixing process commonly used in 3D concrete printing, it is impossible to exclude variations in the dry mixture or water content, and a test sample cannot be taken as a representative sample for the whole structure. Although mortar properties vary only locally, a defect in one layer during printing could affect the entire integrity of the whole structure . Therefore, real-time process monitoring is required to record and document the printing process. At the Bundesanstalt für Materialforschung und -prüfung (BAM) a new test rig for the additive manufacturing of concrete is built. The primary purpose is measuring and monitoring the properties of a mortar during the printing process. The following study investigates an approach for calculating yield stress and plastic viscosity based on experimentally recorded pressure data. The calculations assume that fresh mortar behaves as a Bingham fluid and that the Buckingham-Reiner-equation is applicable. A test setup consisting of rigid pipes with integrated pressure sensors at different positions is utilized. Monitoring the printing process with different sensors is crucial for the quality control of an ongoing process. T2 - Non-Tradijtional Cement and Concrete CY - Brno, Czech Republic DA - 25.06.2023 KW - 3DCP KW - Monitoring KW - Additive Manufacturing KW - Rheology KW - Bingham Fluid PY - 2023 AN - OPUS4-58144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian T1 - An optimized HR-CS-GFMAS method for PFAS analysis N2 - HR-CS-GFMAS turned out to be a sensitive, fast and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) at a temperature of 1550°C. GaF can be detected at 211.248 nm providing limits of quantificationin the low μg/L range. However, several species specific effects where observed when analyzing PFASs. T2 - 1st Summer School of the CRC 1349 Fluorine-Specific Interactions Fundamentals and Functions CY - Berlin, Germany DA - 28.08.2023 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2023 AN - OPUS4-58145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klein, Luise A1 - Wilke, Olaf T1 - Chamber comparison for the determination of initial VOC emissions from consumer products N2 - Volatile organic compound (VOC) emissions from consumer products contribute to human inhalation exposure and may cause adverse health effects. Existing methods to determine long-term VOC emissions from e.g. building products need to be verified for their suitability to reliably detect initial VOC emissions from consumer products within the first hours and days of use, which would facilitate realistic inhalation exposure assessments. To investigate this issue, VOCs emitted from a test sample were determined in a large-scale emission test chamber and in two micro-chambers of different volumes, and the results were compared. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Micro-chamber KW - Emission test chamber KW - Volatile organic compounds KW - Inhalation exposure KW - Consumer products PY - 2023 SP - 6 EP - 8 AN - OPUS4-58055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Extension of the Boltzmann plot method for multiplet emission lines N2 - The Boltzmann plot method is widely used to determine the temperature of laser induced plasma. It involves the use of individual lines that are not easy to find in complex spectra and/or in the spectral range available. If the number of such lines is not enough to build a reliable Boltzmann plot, overlapping lines are often used, which are separated by software. However, line separation is a rather imprecise procedure, which, in addition, requires significant computational costs. This study proposes an extension of the Boltzmann plot method that allows a specific group of unresolved lines to be included in a Boltzmann plot without the need to separate them. This group of lines are multiplets, lines of the same element with similar upper and lower transition states. The multiplet lines along with the individual lines are included in the algorithm, which also includes a correction for self-absorption and is used to determine the plasma temperature. The algorithm is tested on synthetic spectra which are consistent with the model of a homogeneous isothermal plasma in local thermodynamic equilibrium and is shown to be superior to the standard Boltzmann plot method both in more accurate determination of the plasma temperature and in a significant reduction in the computational time. The advantages and disadvantages of the method are discussed in the context of its applications in laser induced breakdown spectroscopy. KW - LIBS KW - Spectroscopy KW - Boltzmann plot KW - Multiplet KW - Spectral overlap PY - 2023 DO - https://doi.org/10.1016/j.jqsrt.2023.108741 SN - 1879-1352 VL - 310 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-58058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian T1 - HR-CS-GFMAS a new screening tool for per- and polyfluoroalkyl substances (PFAS) in the environment N2 - Per- and polyfluorinated alkyl substances (PFASs) are a large group of anthropogenic contaminates. Concerning are especially their persistent, bioaccumulative and toxic properties. Mostly, target-based approaches (e.g., LC-MS/MS) are utilized for the analysis of PFASs in the environment. But these approaches are limited to the availability of analytical grade standards and therefore drastically underestimate the total PFAS burden. Analytical approaches based on total fluorine for PFAS sum parameter analysis become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. Besides combustion ion chromatography (CIC), high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification in the low µg F L-1 range. Here, we present a comparison of total fluorine analysis methods – AOF vs. EOF and HR-CS-GFMAS vs. CIC. Therefore, surface water samples from the Spree River in Berlin, Germany were analyzed at 10 locations for total fluorine (TF), AOF and EOF. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF while AOF concentrations were systematically higher. For the instrumental comparison, HR-CS-GFMAS was the more sensitive and precise method for fluorine analysis compared to CIC. T2 - ICOBTE / ICHMET 2023 CY - Wuppertal, Germany DA - 06.09.2023 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - WWTP KW - SPE PY - 2023 AN - OPUS4-58245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Opitz, R. A1 - Ghoreishi, N. A1 - Plate, K. A1 - Barnes, J.-P. A1 - Bellew, A. A1 - Bellu, A. A1 - Ceccone, G. A1 - de Vito, E. A1 - Delcorte, A. A1 - Franquet, A. A1 - Fumageli, F. A1 - Gilliland, D. A1 - Jungnickel, H. A1 - Lee, T.G. A1 - Poleunis, C. A1 - Rading, D. A1 - Shon, H.K. A1 - Spampinato, V. A1 - Son, J.G. A1 - Wang, F. A1 - Wang, Y.-C. A. A1 - Zhao, Y. A1 - Roloff, A. A1 - Tentschert, J. A1 - Radnik, Jörg T1 - VAMAS TWA2 interlaboratory comparison: Surface analysis of TiO2 nanoparticles using ToF-SIMS N2 - Due to the extremely high specific surface area of nanoparticles and corresponding potential for adsorption, the results of surface analysis can be highly dependent on the history of the particles, particularly regarding sample preparation and storage. The sample preparation method has, therefore, the potential to have a significant influence on the results. This report describes an interlaboratory comparison (ILC) with the aim of assessing which sample preparation methods for ToF-SIMS analysis of nanoparticles provided the most intra- and interlaboratory consistency and the least amount of sample contamination. The BAM reference material BAM-P110 (TiO2 nanoparticles with a mean Feret diameter of 19 nm) was used as a sample representing typical nanoparticles. A total of 11 participants returned ToF-SIMS data,in positive and (optionally) negative polarity, using sample preparation methods of “stick-and-go” as well as optionally “drop-dry” and “spin-coat.” The results showed that the largest sources of variation within the entire data set were caused by adventitious hydrocarbon contamination or insufficient sample coverage, with the spin-coating protocol applied in this ILC showing a tendency toward insufficient sample coverage; the sample preparation method or the participant had a lesser influence on results. KW - Secondary Ion Mass Spectrometry KW - VMAAS KW - Titania KW - Interlaboratory comparison KW - Reproducibility PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582290 DO - https://doi.org/10.1116/6.0002814 SN - 0734-2101 VL - 41 IS - 5 SP - 053210-1 EP - 053210-13 PB - AIP (American Institute of Physics) AN - OPUS4-58229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Solovyev, N. A1 - El-Kathib, Ahmed A1 - Vogl, Jochen A1 - Costas-Rodriguez, M. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT . The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - International Conference of Trace Elements and Minerals CY - Aachen, Germany DA - 05.06.2022 KW - Isotope delta value KW - Copper KW - Zinc KW - Iron KW - Dementia PY - 2022 AN - OPUS4-58230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Digital Everything: X-ray Scattering and Synthesis Laboratories N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, and 2) introducing our open, modular robotic platform for systematic sample preparation. T2 - Seminar at KIT CY - Karlsruhe, Germany DA - 17.08.2023 KW - Lab automation KW - Data stewardship KW - Scattering KW - X-ray scattering KW - Automated synthesis KW - Data pipelines PY - 2023 AN - OPUS4-58234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 1: Introduction, Sample Requirements and Measurement "Space" N2 - This talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will introduce scattering from various angles, focusing in particular on: - Information content of X-ray scattering experiments, three entry points… - An introduction to Fourier Transforms - Sample criteria, compatibility, and selection - Key indicators of a measurement – where is the information? - Key indicators of measurement quality - Experiment planning, the basics T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - Data stewardship KW - Measurement science KW - MOUSE KW - Holistic experiment approaches PY - 2023 AN - OPUS4-58235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS Part 2: Data Processing, Workflow and Pitfalls N2 - The second talk for the Swiss Society for Crystallography (SSCr) workshop on SAXS will highlight the data processing challenges, holistic experimental workflow developments, and the pitfalls. In particular, the following items will be addressed: - The importance of data processing and estimating uncertainty - A universal correction pipeline – away with the headaches, at least for this step! - Experiment planning part 2, some tips and advice to improve your corrected data. - Sample preparation, background selection, some tips and advice to improve your corrected data. - Automate for your mental well-being; electronic logbooks, measurement catalogs and workflow management software - Life on the edge: several pitfalls to avoid… T2 - Topical workshop of the Swiss Society for Crystallography CY - Zurich, Switzerland DA - 08.09.2023 KW - X-ray scattering KW - MOUSE KW - Data processing KW - Uncertainties KW - Pitfalls PY - 2023 AN - OPUS4-58236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the Future ✨: Advancing X-ray Scattering in an Automated Materials Research Laboratory N2 - In our (dramatically understaffed) X-ray scattering laboratory, developing a systematic, holistic methodology1 let us provide scattering and diffraction information for more than 2100 samples for 200+ projects led by 120+ collaborators. Combined with automated data correction pipelines, and our analysis and simulation software, this led to more than 40 papers2 in the last 5 years with just over 2 full-time staff members. This year, our new, modular synthesis platform has made more than 1000 additional samples for us to analyse and catalogue. By virtue of the automation, the synthesis of these samples is automatically documented in excruciating detail, preparing them for upload and exploitation in large-scale materials databases. Having developed these proof-of-concepts, we find that materials research itself is changed dramatically by automating dull tasks in a laboratory. This talk is intended to spark ideas and invite collaborations by providing an overview of: 1) the current improvements in our wide-range X-ray scattering laboratory methodology, 2) Introduce some of our open-source analysis and simulation software, touching on scattering, diffraction and PDF, and 3) introducing our open, modular robotic platform for systematic sample preparation. Finally, the remaining bottlenecks and points of attention across all three are highlighted. T2 - Swiss Society for Crystallography (SSCr) annual meeting CY - Zurich, Switzerland DA - 08.09.2023 KW - Lab automation KW - Fourier transforms KW - X-ray scattering KW - Robotic synthesis KW - Data stewardship KW - Holistic experimental procedures KW - MOUSE KW - Metal-organic frameworks KW - High-throughput measurements PY - 2023 AN - OPUS4-58237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hantschke, Luisa Lamberta T1 - Comparison of three different TOP-Assay approaches for the determination of PFAS concentration in soil N2 - Per- and polyfluoroalkyl substances (PFAS) are a large, ever-growing and widely used class of chemicals. Due to the strength of the C-F bond, they do not decompose but accumulate in the environment posing a risk for nature and humans alike. While the use of some PFAS, like perfluorooctanoic acid (PFOA) is already regulated in the EU, new ‘precursor’ substances are used to replace them. However, these precursors may be equally harmful to the environment. In recent years, many ‘hot spot’ sites with high PFAS contaminations in soil have been distinguished, but no German-wide background values have been determined yet. Knowing these background values is crucial to understand the degree of PFAS contamination, underpinning future regulatory decisions. Due to the complexity and variety of different PFAS compounds, one needs to apply a broad spectrum of different techniques to capture most of the PFAS content in one sample. In the framework of this project, 600 soil samples are taken at different sites all over Germany. The concentration of 30 PFAS - 13 carboxylic acids (C4-C18), 5 sulfonic acids (C4-C10) and 12 precursor substances) - is determined in these soil samples using three different sample preparation approaches: 1) ultrasonic extraction of the soil samples with Methanol; 2) preparation of eluates to test the leaching behaviour of the PFAS and 3) TOP assays following the method published by Houtz & Sedlak. Targeted LC-MS/MS is used to determine PFAS concentration after all three preparation steps. For the TOP-assay, the concentration of all 30 PFAS is compared prior to and after the oxidation reaction. Besides the ‘classic’ TOP-Assay, two other TOP-Assay approaches, the dTOP Assay and the photoTOP-Assay, are tested and the results of all three approaches are compared. First, all three TOP-Assay approaches will be tested on a reference soil spiked with a solution including all 30 PFAS measured in the project. Later, soil samples taken in the frame of the priorly described project will be tested. This poster will focus on the results of the experiments comparing the three different TOP Assay approaches in spiked reference soil. Additionally, some of the results of the other sample preparation methods, extraction and eluate preparation will be presented. T2 - FLUOROS 2023 CY - Idstein, Germany DA - 31.08.2023 KW - PFAS TOP Assay soil contamination PY - 2023 AN - OPUS4-58267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan T1 - Reliability reassessment of bridges with geometrical NDT results N2 - This presentation summarizes recent developments within the scope of the national pre-standardization project “ZfPStatik”, which aims to prepare a guideline about NDT-supported structural analyses. The focus is on the purposeful and explicit utilization of geometrical tendon and reinforcement bar positions measured on-site in reliability analysis — shown by means of a prestressed concrete bridge as case study. T2 - 13th German Japanese Bridge Symposium CY - Osaka, Japan DA - 28.08.2023 KW - Existing structures KW - Probabilistic methods KW - Data-supported assessment PY - 2023 AN - OPUS4-58268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Kainz, C. A1 - Braml, T. T1 - Reliability assessment of existing concrete bridges with geometrical NDT results - Case studies N2 - The results of and the validity in reliability assessment of existing bridges essentially depend on the information available about the considered system. Information about the actual condition as well as structural and material characteristics can be observed on-site to refine the computation models used in assessment. Non-destructive testing (NDT) methods for concrete structures are capable of reconstructing missing, questioned, or inconsistent as-built plans. This contribution summarizes recent developments within the scope of the national pre-standardization project “ZfPStatik”, which aims to prepare a guideline about NDT-supported structural analyses. The focus is on the purposeful and explicit utilization of geometrical tendon and reinforcement bar positions (measured on-site using the ultrasound echo and ground penetrating radar (GPR) techniques) in probabilistic reliability analyses — shown by means of real case studies. The well-established first order reliability method is applied to different concrete bridges, which are typical for the German road bridge stock, to demonstrate the utility of incorporating quality-evaluated NDT-results in terms of changes in structural reliability. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 28.08.2023 KW - Non-destructive testing KW - Prestressed concrete KW - Data-informed reliability analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582727 SP - 29 EP - 40 PB - Osaka Metropolitan University CY - Osaka AN - OPUS4-58272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kianinejad, kaveh A1 - Fedelich, Bernard A1 - Darvishi Kamachali, Reza A1 - Schriever, Sina A1 - Manzoni, Anna Maria A1 - Agudo Jácome, Leonardo A1 - Megahed, Sandra A1 - Kamrani, Sepideh A1 - Saliwan-Neumann, Romeo T1 - Experimentally informed multiscale creep modelling of additive manufactured Ni-based superalloys N2 - Excellent creep resistance at elevated temperatures, i.e. T / T_m> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, a remarkable amount of research has been devoted to understanding the underlying deformation mechanism in a wide spectrum of temperature and loading conditions. Additive manufactured (AM) nickel-based superalloys while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, strong crystallographic texture (typically <001> fiber texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the deep insights achieved recently on the correlation between process parameters and the resulting microstructure, the anisotropic creep behavior and corresponding deformation mechanism of these materials are insufficiently understood so far. One reason for this is the lack of capable material models that can link the microstructure to the mechanical behavior. To overcome this challenge, a multiscale microstructure-based approach has been applied by coupling crystal plasticity (CP) and polycrystal model which enables the inclusion of different deformation mechanisms and microstructural characteristics such as crystallographic texture and grain morphology. The method has been applied to experimental data for AM-manufactured INCONEL-738LC (IN738). The effect of different slip systems, texture, and morphology on creep anisotropy at 850°C has been investigated. Results suggest a strong correlation between superlattice extrinsic stacking fault (SESF) and microtwinning and observed creep anisotropy. T2 - EUROMAT 23 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - IN738LC KW - Creep anisotropy KW - Crystal plasticity PY - 2023 AN - OPUS4-58263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D X-ray Imaging and residual stress analysis of materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of different kind of materials in FB8.5 Micro-NDT BAM. For instance, the manufacturing defects and high RS are inherent of additively manufacturing techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - Seminar at Applied Materials Group at PSI CY - Villigen, Switzerland DA - 13.09.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Retzmann, Anika A1 - Faßbender, Sebastian A1 - Rosner, M. A1 - von der Au, Marcus A1 - Vogl, Jochen T1 - Performance of second generation ICP-TOFMS for (multi-)isotope ratio analysis: a case study on B, Sr and Pb and their isotope fractionation behavior during the measurements N2 - The performance of second generation ICP-TOFMS, equipped with a micro-channel plate (MCP) enabling multi-isotope detection, in terms of isotope ratio precision and instrumental isotopic fractionation (IIF) for (multi-)isotope ratio analysis was thoroughly assessed for B, Sr and Pb. Experimental isotope ratio precision of 0.14 % for 11B/10B intensity ratio, 0.15 % for 87Sr/86Sr intensity ratio and 0.07% for 208Pb/206Pb intensity ratio were obtained at high signal levels ($500 mg L−1) which is comparable to first generation ICP-TOFMS. The long-term stability of isotope ratios, measured over several hours and expressed as repeatability, is between 0.05 % and 1.8 % for B, Sr and Pb. The observed IIF per mass unit is negative for B (i.e., −11 % for 11B/10B) which is in accordance with measurements using sector field (MC) ICP-MS. But the observed IIF per mass unit is positive for Sr (i.e., 2 % for 87Sr/86Sr) and Pb (i.e., 4.5 % for 208Pb/206Pb) which is not in accordance with measurements using sector field (MC) ICP-MS. Furthermore, different IIFs per mass unit were observed for different isotope pairs of the same isotopic system (i.e., Sr, Pb) and adjacent isotopic systems (i.e., Pb vs. Tl). This and the observations from three-isotope plots for Sr and Pb show that ion formation, ion extraction, ion transmission, ion separation and ion detection in second generation ICP-TOFMS is subject to IIF that does not follow the known mass dependent fractionation laws and is possibly caused by mass independent fractionation and/or multiple (contradictory) fractionation processes with varying contributions. The non-mass dependent IIF behavior observed for second generation ICP TOFMS has profound consequences for the IIF correction of isotope raw data, including application of multi-isotope dilution mass spectrometry (IDMS) using ICP-TOFMS. Hence, only IIF correction models that correct also for mass independent fractionation are applicable to calculate reliable isotope ratios using second generation ICP-TOFMS. In the present study, reliable d11B values, and absolute B, Sr and Pb isotope ratios could be determined using the SSB approach in single-element solutions as well as in a mixture of B, Sr and Pb, where the isotopes were measured simultaneously. KW - ICP-TOFMS KW - Isotope delta value KW - Isotope amount ratio KW - Conventional isotope ratio KW - Instrumental isotope fractionation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582239 DO - https://doi.org/10.1039/d3ja00084b SN - 0267-9477 VL - 38 IS - 10 SP - 2144 EP - 2158 PB - Royal Society of Chemistry AN - OPUS4-58223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 DO - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia T1 - Incorporation of near-infrared light emitting chromium (III) complexes into the core and shell of silica nanoparticles and optimisation of their optical properties N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters. This interest was triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature. Meanwhile, the influence of triplet oxygen, temperature, and pressure on the optical properties of different molecular rubies have been assessed. These features make these molecular rubies promising candidates for multi-analyte optical sensing applications and the generation of singlet oxygen for photocatalysis and photodynamic therapy. However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. Typical approaches to reduce the oxygen sensitivity of long-lived luminophores include the encapsulation into an oxygen-shielding matrix or less commonly employed, by tuning the bulkiness of the ligands for oxygen-sensitive coordination compounds. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. This can enable the use of such chromium(III) complexes as reporters for bioanalytical assays and bioimaging without the need to introduce reactive groups into the ligands and can pave the road to lifetime tuning. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. As an alternative synthesis strategy, selected complexes were incorporated into a silica shell formed around the core of self-made silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements of the Cr(ddpd)2(PF6)3 complex incorporated into 25nm large silica nanoparticles dispersed in aerated water in comparison to the decay kinetics obtained for this complex in acetonitrile in air showed an increase in lifetime from 46 µs to 1147 µs. This confirming our design concept of nanoscale NIR emissive Cr(III) reporters. T2 - Bad Honnef summer school CY - Bad Honnef, Germany DA - 30.07.2023 KW - Chromium (III) complexes KW - Silica Nanoparticles KW - Luminescence lifetime measurments PY - 2023 AN - OPUS4-58076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erler, A. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Leenen, M. A1 - Pätzold, S. A1 - Ostermann, Markus A1 - Wójcik, M. T1 - Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements KW - LIBS KW - Precision agriculture KW - Soil KW - Multivariate methods KW - Feature selection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580777 DO - https://doi.org/10.3390/s23167178 VL - 23 IS - 16 SP - 1 EP - 17 PB - MDPI AG CY - Basel, Schweiz AN - OPUS4-58077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arikan, Muzaffer A1 - Muth, Thilo T1 - Integrated multi-omics analyses of microbial communities: A review of the current state and future directions N2 - Integrated multi-omics analyses of microbiomes have become increasingly common in recent years as the emerging omics technologies provide an unprecedented opportunity to better understand the structural and functional properties of microbial communities. Consequently, there is a growing need for and interest in the concepts, approaches, considerations, and available tools for investigating diverse environmental and host-associated microbial communities in an integrative manner. In this review, we first provide a general overview of each omics analysis type, including a brief history, typical workflow, primary applications, strengths, and limitations. Then, we inform on both experimental design and bioinformatics analysis considerations in integrated multi-omics analyses, elaborate on the current approaches and commonly used tools, and highlight the current challenges. Finally, we discuss the expected key advances, emerging trends, potential implications on various fields from human health to biotechnology, and future directions. KW - Microbiome KW - Multi-omics KW - Data integration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580785 DO - https://doi.org/10.1039/d3mo00089c SP - 1 EP - 17 PB - Royal Society of Chemistry AN - OPUS4-58078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers - Analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion ion chromatography KW - Per- and polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d SN - 2754-7000 VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Detection, quantification, and treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater (DFEAT-PFAS) N2 - Over the past century, a range of synthetic compounds have been produced to improve humanity’s quality of life. These include pharmaceuticals, plastics, and other chemical compounds that possess properties making them potentially harmful when released to the environment (e.g., ecological and health impacts to humans and animals). Per- and polyfluoroalkyl substances (PFAS) are a large group of chemicals used in the formulations of thousands of consumer goods, including aqueous film-forming foams used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. Because of the recent regulations and restrictions on the use of long chain (≥C8) PFAS a significant shift in the industry towards short (C4-C7) and ultrashort (C1-C3) chain alternatives has been recognized the last years. Due to the high polarity and water solubility of ultrashort PFAS, the potential for bioaccumulation is low. However, the high persistence of ultrashort-chain PFAS will result in environmental accumulation, especially in aquatic environments, leading to potential risks for aquatic organisms and increased human external exposure through drinking water. Ultrashort PFAS like trifluoroacetic acid (TFA) are low to moderately toxic to a range of organisms. In addition, ultrashort PFAS can penetrate natural and anthropogenic barriers and eventually reach drinking water sources. Because common drinking water treatment techniques do not sufficiently remove them, they may reach human consumption. In the project we are focusing on detecting and removing PFAS, especially ultrashort-chain PFAS from contaminated groundwater. We are designing passive sampling devices, which can collect and monitor the temporal profile of PFAS species in groundwater. This will allow us to analyze PFAS contaminations in German and Israeli groundwater using state-of-the-art and novel analytical techniques and understand the extent of contamination. In addition to quantification, PFAS contaminated groundwater will be treated via a two-stage process to produce PFAS-free drinking water. As ultrashort-chain PFAS are difficult to analyze with the current target (LC-MS/MS) and sum parameter (AOF, EOF) analysis methods, we additionally using gas chromatography – mass spectrometry (GC-MS). Therefore, an analytical method based on GC-MS is in development to analyze the volatile ultrashort-chain PFAS (TFA, PFPrA, TFMS, PFEtS, PFPrS, trifluoroethanol, pentafluoropropanol and hexafluoro isopropanol) directly in contaminated groundwater samples with the headspace technique and in eluates of organic solvents from the developed passive sampler after direct injection. Moreover, a two-stages process is designed to increase the low concentrations found in groundwater using novel membranes processes such as closed-circuit reverse osmosis (CCRO) and mixed matrix composite nanofiltration membranes (MMCM). Next, the rejected streams containing higher concentrations of PFAS will be treated by coagulation, and the remaining PFAS adsorbed onto carbonaceous nanomaterials (CNMs). The DEFEAT-PFAS project will result in the development of novel tools to detect, quantify, and remove PFAS, especially ultrashort-chain PFAS from contaminated groundwater, and will acquire a new understanding of the extent of these contaminations. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2023 AN - OPUS4-58346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Nattuveettil, Keerthana T1 - Digital Calibration Certificates: Transforming Efficiency and Safety in Hydrogen Refuelling Station N2 - Digital Certificates have emerged as a pivotal element in automation and digitalisation. This presentation highlights the added value of a digitalised metrology, its impact on the workflows on the calibration service providing and receiving side as well as their significance in enhancing the quality infrastructure. An overview of digital calibration certificates (DCC) for temperature sensors, including their structure and role in establishing trust in hydrogen refuelling stations (HRS), will be discussed. Additionally, it explores the impact of DCC on optimising efficiency in the hydrogen refuelling process. Exploring the paradigm shift brought about by Industry 4.0, where machines possess the ability to autonomously interpret digital certificate data, leads to streamlined safety checks and reduced human intervention. We will discuss how automated verification of machine-readable certificates contributes to maintaining and elevating safety standards over human-readable certificates. Furthermore, we will take a deep dive into the application of DCCs in HRS, showcasing how they enhance operational efficiency, accuracy, and maintenance by enabling real-time monitoring and adjustment of process data. By exploring the interdependent relationship between digital certificates, machine-readable environments, and HRS optimisation, this presentation will provide valuable insights into harnessing cutting-edge technologies to create a safer, more efficient, and technologically empowered hydrogen refuelling process. T2 - H2Safety@BAM : Hydrogen Colloquium CY - Online meeting DA - 06.09.2023 KW - Digital Calibration Certificate KW - Digitalization KW - Digital Traceability KW - QI-Digital KW - Hydrogen Infrastructure PY - 2023 UR - https://www.bam.de/Content/DE/Standardartikel/Themen/Energie/Wasserstoff/wasserstoff.html AN - OPUS4-58353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Scheuschner, Nils A1 - Chand, Keerthana A1 - Altenburg, Simon A1 - Gerlach, G. T1 - Potentials and challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring in laser powder bed fusion N2 - Laser powder bed fusion is one of the most promising additive manufacturing techniques for printing complex-shaped metal components. However, the formation of subsurface porosity poses a significant risk to the service lifetime of the printed parts. In-situ monitoring offers the possibility to detect porosity already during manufacturing. Thereby, process feedback control or a manual process interruption to cut financial losses is enabled. Short-wave infrared thermography can monitor the thermal history of manufactured parts which is closely connected to the probability of porosity formation. Artificial intelligence methods are increasingly used for porosity prediction from the obtained large amounts of complex monitoring data. In this study, we aim to identify the potential and the challenges of deep-learning-assisted porosity prediction based on thermographic in-situ monitoring. Therefore, the porosity prediction task is studied in detail using an exemplary dataset from the manufacturing of two Haynes282 cuboid components. Our trained 1D convolutional neural network model shows high performance (R² score of 0.90) for the prediction of local porosity in discrete sub-volumes with dimensions of (700 x 700 x 40) μm³. It could be demonstrated that the regressor correctly predicts layer-wise porosity changes but presumably has limited capability to predict differences in local porosity. Furthermore, there is a need to study the significance of the used thermogram feature inputs to streamline the model and to adjust the monitoring hardware. Moreover, we identified multiple sources of data uncertainty resulting from the in-situ monitoring setup, the registration with the ground truth X-ray-computed tomography data and the used pre-processing workflow that might influence the model’s performance detrimentally. T2 - XXXVII. Messtechnisches Symposium 2023 CY - Freiburg, Germany DA - 27.09.2023 KW - Porosity prediction KW - Defect detection KW - Laser powder bed fusion (PBF-LB/M, L-PBF) KW - Selective laser melting KW - Thermography KW - Machine learning PY - 2023 DO - https://doi.org/10.1515/teme-2023-0062 SN - 0171-8096 SN - 2196-7113 VL - 90 SP - 85 EP - 96 PB - De Gruyter CY - Berlin AN - OPUS4-58366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 SP - 1 EP - 8 AN - OPUS4-58327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -