TY - JOUR A1 - Dietrich, Paul M. A1 - Lange, Nele A1 - Lippitz, Andreas A1 - Holzweber, Markus A1 - Kulak, N. A1 - Unger, Wolfgang T1 - Click chemistry on silicon nitride for biosensor fabrication N2 - Biosensors are of essential importance in medical and biological diagnostics. Often, they are produced using silane chemistry on glass or silicon oxide surfaces. However, controlling that silane chemistry is challenging. Here, we present an alternative strategy to form functional organic layers and biosensors on silicon Nitride (Si3N4). H-terminated Si3N4 films are used to generate reactive azide groups by various azidation methods. Biomolecular probes can then be immobilized using click chemistry reactions with the azide groups and due to its high sensitivity in XPS a fluorine-substituted test alkyne was utilized to optimize click chemistry conditions. After that a biotinylated alkyne was clicked to Si3N4 surfaces followed by immobilization of streptavidin as analyte in a model assay. The functionalized surfaces were thoroughly characterized by surface chemical analysis using X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS)spectroscopy. KW - Biosensors KW - H-terminated Si3N4 films KW - Click chemistry KW - X-ray photoelectron spectroscopy KW - Near edge X-ray absorption fine structure KW - Streptavidin binding PY - 2019 DO - https://doi.org/10.1016/j.apsusc.2019.03.002 SN - 0169-4332 VL - 481 SP - 10 EP - 15 PB - Elsevier B.V. AN - OPUS4-48634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Soyka, J. A1 - Brülls, S. A1 - Er, J. A1 - Hoffmann, Katrin A1 - Beerhues, J. A1 - Sakar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif N2 - A new fluorescent pentaphene derivative is presented that differs from hexabenzocoronene (HBC) by one carbon atom in the basal plane skeleton. A 500% increased fluorescence quantum yield is measured compared to the HBC derivative. The pentaphene compound, obtained by a modified Scholl oxidation, is also emissive in the solid-state, due to the packing motif in the crystal. KW - Hexabenzocoronenes KW - Pentaphenes KW - Solid-state fluorescence PY - 2019 DO - https://doi.org/10.1039/c9cc05451k SN - 1364-548X N1 - Corrigendum: Chemical Communications 55 (2019) 12879 VL - 55 IS - 71 SP - 10515 EP - 10518 PB - The Royal Society of Chemistry AN - OPUS4-48908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Kaiser, Martin ED - Würth, Christian ED - Kraft, Marco ED - Soukka, T. T1 - Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations N2 - We assessed the influence of Yb3+ and Er3+ dopant concentration on the relative spectral distribution, quantum yield (  UC), and decay kinetics of the upconversion luminescence (UCL) and particle brightness (BUC) for similarly sized (33 nm) oleate-capped -NaYF4:Yb3+,Er3+ upconversion (UC) nanoparticles (UCNPs) in toluene at broadly varied excitation power densities (P). This included an Yb3+ series where the Yb3+ concentration was varied between 11%–21% for a constant Er3+ concentration of 3%, and an Er3+ series, where the Er3+ concentration was varied between 1%–4% for a constant Yb3+ concentration of 14%. The results were fitted with a coupled rate equation model utilizing the UCL data and decay kinetics of the green and red Er3+ emission and the Yb3+ luminescence at 980 nm. An increasing Yb3+ concentration favors a pronounced triphotonic population of 4F9/2 at high P by an enhanced back energy transfer (BET) from the 4G11/2 level. Simultaneously, the Yb3+-controlled UCNPs absorption cross section overcompensates for the reduction in  UC with increasing Yb3+ concentration at high P, resulting in an increase in BUC. Additionally, our results show that an increase in Yb3+ and a decrease in Er3+ concentration enhance the color tuning range by P. These findings will pave the road to a deeper understanding of the energy transfer processes and their contribution to efficient UCL, as well as still debated trends in green-to-red intensity ratios of UCNPs at different P. KW - Nanoparticle KW - Lanthanide KW - Upconversion nanoparticle KW - Fluorescence KW - Integration sphere spectroscopy KW - Mechanism KW - Lifetime, synthesis KW - Surface chemistry KW - Yb(III) KW - Er(III) KW - Energy transfer KW - Absolute measurement KW - Quantum yield PY - 2019 DO - https://doi.org/10.1007/s12274-019-2450-4 SN - 1998-0124 SN - 1998-0000 VL - 12 IS - 8 SP - 1871 EP - 1879 PB - Springer AN - OPUS4-48880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jarvis, B. A1 - Wilrich, Cordula A1 - Wilrich, P.-Th. T1 - Estimation of the POD function and the LOD of a binary microbiological measurement method from an interlaboratory experiment N2 - Background: We deal with interlaboratory experiments (collaborative studies) in which k participating laboratories, selected randomly from a population of laboratories, use samples from one and the same material or matrix. They perform binary microbiological measurements for which the measurement results are either “0” (target microorganisms not detected) or “1” (target microorganisms detected). The performance of such a measurement method is described by its probability of detection (POD) function, i.e., the POD as a function of the contamination of the sample (CFU per gram or CFU per milliliter), or by the level of detection (LODp), i.e., the contamination level of the sample that is detected (measurement result “1”) with a specified probability p. Objective: We derive an approximate statistical analysis that is simple enough to be implemented in a spreadsheet application. Methods: Under the assumption of a Poisson distribution of the number of CFU in the samples, we estimate the mean POD function of the laboratories and the SD of the laboratory effect based on a complementary log-log model, a special case of the Generalized Linear Model in the special situation in which the contamination level is known by means other than the POD. The estimates are obtained by maximization of the Laplace approximation of the likelihood function. By simulation, a bias correction factor for the estimate of the SD is obtained. With the estimated POD function, LODs can be estimated. The model can also be used to evaluate the relative LOD of an alternative method with repect to a reference method. Results: The EXCEL program PODLOD-interlab_ver1.xls for this method of statistical analysis can be downloaded from http://www.wiwiss.fu-berlin.de/fachbereich/vwl/iso/ehemalige/wilrich. Highlights: A simple approximate statistical method for the estimation of the POD and LOD is derived. The method also allows the estimation of the RLOD of an alternative Microbiological Methods Received December 11, 2018. Accepted by AH April 5, 2019. Estimation of the POD Function and the LOD of a Binary Microbiological Measurement Method from an Interlaboratory Experiment Basil Jarvis, Ross Biosciences Ltd, Upton Bishop, Ross-on-Wye HR9 7UR, United Kingdom; Cordula Wilrich, Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin, Germany; Peter-Theodor Wilrich, Freie Universität Berlin, Institut für Statistik und Ökonometrie, Garystrasse 21, D-14195 Berlin, Germany. DOI: https://doi.org/10.5740/jaoacint.18-0412 method with respect to reference method. The method is implemented in an EXCEL program that can be downloaded from http://www.wiwiss.fu-berlin.de/fachbereich/vwl/iso/ehemalige/wilrich. KW - Probability of detection KW - POD KW - Level of detection KW - Limit of detection KW - LOD KW - Interlaboratory experiment KW - Collaborative studies KW - Qualitative measurements KW - Binary measurement KW - Microbiological measurement PY - 2019 UR - https://aoac.publisher.ingentaconnect.com/contentone/aoac/jaoac/2019/00000102/00000005/art00042 DO - https://doi.org/10.5740/jaoacint.18-0412 SN - 1060-3271 SN - 1944-7922 VL - 102 IS - 5 SP - 1617 EP - 1623 PB - AOAC International CY - Gaithersburg, USA, MD, 20877-2504 AN - OPUS4-48883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Hodoroaba, Vasile-Dan T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials N2 - Most industrial nanoparticles have non-spherical shapes and also possess polydisperse size distributions, and due to their agglomeration/ aggregation state are difficult (or even impossible) to be addressed individually. Further, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). KW - Nanoparticles KW - Imaging KW - Non-spherical KW - Reference material KW - Particle size distribution PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/towards-accurate-analysis-of-particle-size-distribution-for-nonspherically-shaped-nanoparticles-as-quality-control-materials/CD48E9298865410124E22837D8CF73A0 DO - https://doi.org/10.1017/S1431927619012376 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2328 EP - 2329 PB - Cambridge University Press AN - OPUS4-48856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Y. A1 - Gollwitzer, Christian A1 - Weidner, Steffen T1 - Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography N2 - Mechanochemically synthesized metal–organic Framework material HKUST-1 in combination with acrylonitrile butadiene styrene polymer was used to form a polymer metal–organic framework composite material by a simple extruder. This composite filament was used for 3D printing. Xray diffraction measurements were used to prove the homogeneous distribution of the metal–organic framework in the polymer on a centimeter scale, whereas X-ray Absorption Edge Tomography using a synchrotron radiation source was able to evaluate the 3D distribution of the metal–organic framework material both in the filament and the resultant printed sample with a resolution of a few lm. Our very first data indicate that, apart from a few clusters having significantly higher Cu concentration, HKUST-1 is distributed homogeneously down to the 100 lm length scale in both polymer bulk materials in the form of clusters with a size of a few lm. Absorption Edge Tomography in combination with data fusion also allows for the calculation of the metal–organic framework amount located on the external polymer surface. KW - MOF KW - Polymer KW - AET PY - 2019 DO - https://doi.org/10.3139/146.111817 SN - 1862-5282 SP - 1 EP - 10 PB - Carl Hanser Verlag AN - OPUS4-49483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirsch, A. A1 - Lohmann, S.-H. A1 - Strelow, C. A1 - Kipp, T. A1 - Würth, Christian A1 - Geißler, Daniel A1 - Komoski, A. A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute A1 - Mews, A. T1 - Fluorescence Quantum Yield and Single-Particle Emission of CdSe N2 - The fluorescence quantum yield (QY) of CdSe dot/CdS rod (DR) nanoparticle ensembles is dependent on the Shell growth and excitation wavelength. We analyze the origin of this dependency by comparing the optical properties of DR ensembles to the results obtained in single-particle experiments. On the Ensemble level, we find that the QY of DRs with shell lengths shorter than 40 nm exhibits no dependence on the excitation wavelength, whereas for DRs with shell lengths longer than 50 nm, the QY significantly decreases for excitation above the CdS band gap. Upon excitation in the CdSe core, the ensemble QY, the fluorescence wavelength, and the fluorescence blinking behavior of individual particles are only dependent on the radial CdS shell thickness and not on the CDs shell length. If the photogenerated excitons can reach the CdSe core region, the fluorescence properties will be dependent only on the surface passivation in close vicinity to the CdSe core. The change in QY upon excitation above the band gap of CdS for longer DRs cannot be explained by nonradiative particles because the ratio of emitting DRs is found to be independent of the DR length. We propose a model after which the decrease in QY for longer CdS shells is due to an increasing fraction of nonradiative exciton recombination within the elongated shell. This is supported by an effective-mass-approximation-based calculation, which suggests an optimum length of DRs of about 40 nm, to combine the benefit of high CdS absorption cross section with a high fluorescence QY. KW - Fluorescence KW - Quantum dot KW - Photophysics KW - Single particle spectroscopy KW - Mechanism KW - Theory KW - Ensemble measurements KW - Quantum yield KW - CdSe KW - CdS shell PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b07957 VL - 123 IS - 39 SP - 24338 EP - 24346 PB - ACS Publications AN - OPUS4-49556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Villajos Collado, José Antonio A1 - Myxa, Anett A1 - Beyer, Sebastian A1 - Falkenhagen, Jana A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Covalently Fluorophore-Functionalized ZIF‑8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers N2 - We present the optical sensing of phthalate Esters (PAEs), a group of endocrine-disrupting chemicals. The sensing takes place as changes in the fluorescence emission intensity of aminopyrene covalently bound to the organic ligands of the metal−organic framework compound ZIF-8. In the presence of PAEs, a quenching of the fluorescence emission is observed. We evaluated strategies to engineer colloidal size distribution of the sensing particles to optimize the sensory response to PAEs. A thorough characterization of the modified ZIF-8 nanoparticles included powder X-ray diffractometry, transmission electron microscopy, high-performance liquid chromatography, and photophysical characterization. The presented capability of the fluorophore-functionalized ZIF-8 to sense PAEs complements established methods such as chromatography-based procedures, which cannot be used on-site and paves the way for future developments such as hand-held quick sensing devices. KW - Sensing KW - MOF PY - 2019 DO - https://doi.org/10.1021/acsomega.9b01051 VL - 4 IS - 17 SP - 17090 EP - 17097 PB - ACS AN - OPUS4-49562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schürmann, Robin A1 - Ebel, Kenny A1 - Nicolas, C. A1 - Milosavljevic, A. R. A1 - Bald, Ilko T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. KW - Photocatalytic reduction KW - Raman-spectroscopy KW - Hot-electrons KW - Work function KW - Surface KW - Nanaoparticles KW - Scattering KW - Molecule KW - Carriers KW - Layers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486464 DO - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 IS - 11 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-48646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Birk, C. T1 - A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment N2 - This paper presents an approach to the automatic enrichment of finite elements in the vicinity of a stress singularity. The enrichment consists of semi-analytical singular modes constructed using the Scaled Boundary Finite Element Method (SBFEM). In contrast to analytical methods, the SBFEM provides modes for inhomogeneous and anisotropic materials without additional effort. The finite element basis can be of arbitrary order and remains unaltered by the enrichment. The approach requires enrichment in only one layer of elements around a node. Due to the compatibility of SBFEM with FEM, there is no Need for transitional elements, and there are no parasitic terms. The approach is tested for several benchmark problems. The stress intensity factors are computed based on techniques inspired by the SBFEM. The proposed procedure is compared to a Standard finite element implementation and shows a significant improvement in the error of the displacement field for problems involving singular stresses. KW - Enriched finite element method KW - Scaled boundary finite element method KW - Stress intensity factors KW - Singular stress PY - 2019 DO - https://doi.org/10.1016/j.cma.2019.06.025 VL - 355 SP - 135 EP - 156 PB - Elsevier B.V. AN - OPUS4-48979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Özelci, Ersan A1 - Rühle, Bastian A1 - Weigert, Florian A1 - Lubotzky, B. A1 - Kewes, G. A1 - Resch-Genger, Ute A1 - Benson, O. T1 - Quantitative measurements of the pH-sensitive quantum yield of fluorophores in mesoporous silica thin films using a drexhage-type experiment N2 - The photoluminescence quantum yield characterizes the performance of emitters for applications in optical devices, as reporters or probes in material and analytical sciences, and for sensing applications. Quantum yield measurements are challenging for luminescent molecules and nanocrystals immobilized in thin films for many sensor applications, particularly if spatially resolved quantitative luminescence information is desired. We show here that a Drexhage-type experiment, where a silver-coated millimeter-sized sphere is used to modify the local density of states, can provide an elegant approach to counter this challenge. As a representative example of the potential of this method, we measure the pH-dependent photoluminescence quantum yield of fluorescein isothiocyanate bound to a thin mesoporous silica film. The results were compared with those of the studies on the pH dependence of the same dye in solution. We found that our approach can link single fluorophore studies to ensemble measurements and pave the way for the spatially resolved fluorescence measurements of ultralow concentrations of emitters utilized as optically active elements and reporters in thin sensor films or incorporated into membranes. KW - Fluorescence KW - Quantum yield KW - Method KW - pH KW - Dye KW - Sensor KW - Fluorescein KW - Film KW - Silica KW - Single molecule KW - Lifetime KW - Absolute quantum yield PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b03917 SN - 1932-7447 SN - 1932-7455 VL - 123 IS - 33 SP - 20468 EP - 20475 PB - ACS Publications AN - OPUS4-48984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Borovinskaya, O. A1 - Tourniaire, G. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Arraying of single cells for quantitative high throughput laser ablation ICP-TOF-MS N2 - Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer. KW - Laser ablation KW - Cell KW - Array KW - ICP-MS PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00198 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11520 EP - 11528 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - Döring, A.-K. A1 - Meermann, Björn T1 - Development of complementary CE-MS methods for speciation analysis of pyrithione-based antifouling agents N2 - In the recent decade, metal pyrithione complexes have become important biocides for antifouling purposes in shipping. The analysis of metal pyrithione complexes and their degradation products/species in environmental samples is challenging because they exhibit fast UV degradation, transmetalation, and ligand substitution and are known to be prone to spontaneous species transformation within a chromatographic system. The environmental properties of the pyrithione species, e.g., toxicity to target and non-target organisms, are differing strongly, and it is therefore inevitable to identify as well as quantify all species separately. To cope with the separation of metal pyrithione species with minimum species transformation during analysis, a capillary electrophoresis (CE)–based method was developed. The hyphenation of CE with selective electrospray ionization- and inductively coupled plasma–mass spectrometry (ESI-, ICP-MS) provided complementary molecular and elemental information for the identification and quantification of pyrithione species. To study speciation of pyrithiones, a leaching experiment of several commercial antifouling paints containing zinc pyrithione in ultrapure and river water was conducted. Only the two species pyrithione (HPT) and dipyrithione ((PT)2) were found in the leaching media, in concentrations between 0.086 and 2.4 μM (HPT) and between 0.062 and 0.59 μM ((PT)2), depending on the paint and leaching medium. The limits of detection were 20 nM (HPT) and 10 nM ((PT)2). The results show that complementary CE-MS is a suitable tool for mechanistical studies concerning species transformation (e.g., degradation) and the identification of target species of metal pyrithione complexes in real surface water matrices, laying the ground for future environmental studies. KW - Complementary MS KW - Environmental speciation KW - Capillary electrophoresis-mass spectrometry KW - Antifouling biocides PY - 2019 DO - https://doi.org/10.1007/s00216-019-02094-5 SN - 1618-2642 VL - 411 IS - 27 SP - 7261 EP - 7272 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-48962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mutruc, D. A1 - Goulet-Hanssens, A. A1 - Fairmann, S. A1 - Wahl, S. A1 - Zimathies, Annett A1 - Knie, C. A1 - Hecht, S. T1 - Modulating Guest Uptake in Core-Shell MOFs with Visible Light N2 - A two-component core-shell UiO-68 type metal-organic framework (MOF) with a nonfunctionalized interior for efficient guest uptake and storage and a thin light-responsive outer shell was prepared by initial solvothermal MOF synthesis followed by solvent-assisted linker exchange. The bulky shell linker features two tetra-ortho-fluorinated azobenzene moieties to exploit their advantageous photoisomerization properties. The obtained perfect octahedral MOF single crystals can be switched repeatedly and with an unprecedented efficiency between E- and Z-rich states using visible light only. Due to the high photoswitch density per pore of the shell layer, its steric demand and thus molecular uptake (and release) can be conveniently modulated upon green and blue light irradiation. Therefore, the "smart" shell acts as a light-controlled kinetic barrier or "gate" for the diffusion of cargo molecules in and out of the MOF crystals. KW - Visible light KW - Azobenzene KW - Guest uptake/release KW - Metal– organic frameworks KW - Photochromism PY - 2019 DO - https://doi.org/10.1002/anie.201906606 VL - 58 SP - 12862 EP - 12867 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lopez-Serrano Oliver, Ana A1 - Haase, A. A1 - Peddinghaus, A. A1 - Wittke, D. A1 - Jakubowski, Norbert A1 - Luch, A. A1 - Grützkau, A. A1 - Baumgart, S. T1 - Mass cytometry enabling absolute and fast quantification of silver nanoparticle uptake at the single cell level N2 - In the last decades, significant efforts have been made to investigate possible cytotoxic effects of metallic nanoparticles (NPs). Methodologies enabling precise information regarding uptake and intracellular distribution of NPs at the single cell level remain to be established. Mass cytometry (MC) has been developed for high-dimensional single cell analyses and is a promising tool to quantify NP−cell interactions. Here, we aim to establish a new MC-based quantification procedure to receive absolute numbers of NPs per single cell by using a calibration that considers the specific transmission efficiency (TE) of suspended NPs. The current MC-quantification strategy accept TE values of complementary metal solutions. In this study, we demonstrate the different transmission behavior of 50 nm silver NPs (AgNP) and silver nitrate solution. We have used identical AgNPs for calibration as for in vitro-differentiated macrophages (THP-1 cell line) in a time- and dose-dependent manner. Our quantification relies on silver intensities measuring AgNPs in the same detection mode as the cells. Results were comparable with the TE quantification strategy using AgNPs but differed when using ionic silver. Furthermore, intact and digested cell aliquots were measured to investigate the impact of MC sample processing on the amount of AgNPs/cell. Taken together, we have provided a MC-specific calibration procedure to precisely calculate absolute numbers of NPs per single cell. Combined with its unique feature of multiplexing up to 50 parameters, MC provides much more information on the single cell level than single cell-inductively coupled plasma mass spectrometry (SC-ICP-MS) and, therefore, offers new opportunities in nanotoxicology. KW - ICP-MS KW - Nanoparticle KW - Cell KW - SC-ICP-MS KW - Mass cytometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01870 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11514 EP - 11519 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry N2 - We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (fg) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 μm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 μm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell KW - Spheroid PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b02239 DO - https://doi.org/10.1021/acs.analchem.9b02239 SN - 0003-2700 VL - 91 IS - 15 SP - 10197 EP - 10203 PB - American Chemical Society, ACS Publications CY - Washington D.C. AN - OPUS4-48719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beck, Joana T1 - Review: Fitz's Atlas™of coating surveys N2 - Fitz's Atlas of coating surveys is designed as loose‐leave binder with a resistant cover that not only provides the possibility of updating the Atlas easily but also makes it practicable for on‐site use. This binder is well structured by sheet dividers with tabs for each of the 16 chapters. All in all, this atlas supports the surveyor by giving practicable hints and advice, lists and pictures to prepare and conduct investigations and write surveys. KW - Coating KW - Survey KW - Protection PY - 2019 DO - https://doi.org/10.1002/maco.201970084 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 8 SP - 1508 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kreft, S. A1 - Radnik, Jörg A1 - Agostini, G. A1 - Pohl, M.-M. A1 - Gericke, E. A1 - Hoell, Armin A1 - Beller, M. A1 - Junge, H. A1 - Wohlrab, S. T1 - Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation N2 - Heterogeneous Cu catalysts are widely used in photocatalytic hydrogen generation. The typical working mode includes the transfer of photo-induced charges from a semiconductor to CuO which itself is reduced to Cu2O to initiate the catalytic cycle. In this contribution a photosensitizer (dye), excited by visible light absorption, was used to transfer an electron to the CuO which after reduction catalyzes the water reduction to hydrogen. Several copper(II)-catalysts on high surface silica were prepared by impregnation or precipitation and applied in photocatalytic water reduction. The best catalyst CuO(Cl0.1)/SiO2, synthesized via incipient wetness impregnation of CuCl2 in MCM-41 and a following precipitation with NaOH, achieved a 6 times higher activity (1702 mmol h-1 g-1) compared to a previously investigated copper system (280 mmol h-1 g-1 for CuI) under the same reaction conditions. All materials were fully characterized by XRD, TEM and N2 sorption and further by magnetic resonance and X-ray methods EPR, ASAXS and XAS. In situ measurements evidenced a reduction of the initial Cu(II)-species, which confirms the (proposed) photocatalytic mechanism. KW - Hydrogen generation KW - CuO nanoparticles KW - Molecular sieves PY - 2019 DO - https://doi.org/10.1016/j.ijhydene.2019.04.006 VL - 44 IS - 53 SP - 28409 EP - 28420 PB - Elsevier Ltd. AN - OPUS4-49350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De Samber, B. A1 - Scharf, Oliver A1 - Buzanich, Günter A1 - Garrevoet, J. A1 - Tack, P. A1 - Radtke, Martin A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Evens, R. A1 - De Schamphelaere, K. A1 - Falkenberg, G. A1 - Janssen, C. A1 - Vincze, L. T1 - Three-dimensional X-ray fluorescence imaging modes for biological specimens using a full-field energy dispersive CCD camera N2 - Besides conventional scanning X-ray fluorescence imaging at synchrotron sources, full-field X-ray fluorescence (FF-XRF) imaging techniques that do not implicitly require spatial scanning of the sample have become available. FF-XRF has become achievable thanks to the development of a new type of energy dispersive CCD-based 2D detector, also referred to as a 'color X-ray camera (CXC)' or 'SLcam'. We report on different imaging schemes for biological samples using FF-XRF imaging: (a) 2D 'zoom' imaging with pinhole optics using the 'camera obscura' principle; (b) 2D 'fixed magnification' imaging using magnifying polycapillary optics; and (c) 3D-FF-XRF imaging using an X-ray sheet beam or computed tomography (CT). The different FF-XRF imaging modes are illustrated using the crustacean Daphnia magna, a model organism for investigating the effects of metals on organism/ecosystem health, and foraminifera, a class of amoeboid protist. Detailed analytical characterization of the set-up is performed through analyzing various reference materials in order to determine limits of detection (LODs) and sensitivities. Experiments were performed using the BAMline at the BESSY synchrotron (Berlin, Germany) and using the P06 Hard X-ray Microprobe at the PETRAIII synchrotron (Hamburg, Germany). KW - CXC KW - BAMline KW - Maia detector KW - Synchrotron PY - 2019 DO - https://doi.org/10.1039/c9ja00198k VL - 34 IS - 10 SP - 2083 EP - 2093 PB - Royal Society of Chemistry CY - Cambridge, United Kingdom AN - OPUS4-49359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Boller, Christian A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in a Multi-Layered Structure in View of Structural Health Monitoring N2 - Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid Composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for Engineering structures consisting of multiple layers. KW - Lamb waves KW - Composite KW - Ultrasonic Testing KW - Numerical Modelling KW - Pressure Vessels PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494385 DO - https://doi.org/10.3390/app9214600 VL - 9 IS - 21 SP - 4600 PB - MDPI CY - 4052 Basel, Switzerland AN - OPUS4-49438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Fandino, J. A1 - Nordlien, J. H A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Quarles, C. D. A1 - Gonzalez, J. A1 - Jakubowski, Norbert A1 - Bordel, N. T1 - Improving the analytical performance of pulsed-GD-SFMS for multi-elemental depth profile analysis of heat-treated Zn coatings on extruded aluminium N2 - The formation of diffusion layers on Zn layers deposited on Al substrates is mainly used to prevent corrosion effects. Evaluation of the influence exerted by different coating methodologies and heat treatments on the formation of these diffusion layers is of great interest for the aluminium industry. Particularly, multi-elemental in-depth distributions of major, minor and trace elements in Zn-coatings is highly demanded before and after heat treatments. A fast characterization of these materials require a direct solid analytical technique able to provide high sensitivity and high depth resolution. For this purpose, an improved analytical method based on the use of pulsed glow discharge sector field mass spectrometry (pulsed-GD-SFMS) is investigated. Glow discharge operating parameters (e.g. pulse duration, pulse frequency), glow discharge source design (e.g. flow tube lengths), and SFMS mass spectra acquisition conditions (e.g. integration time) are evaluated to achieve low sputtering rates, high mass spectra acquisition rates and improved depth resolution. At the optimize conditions Zn coatings deposited by arc-spray and electrodeposition are analysed before and after heat treatments to evaluate the diffusion of different key elements. Moreover, results are validated using femtosecond laser ablation (fs-LA)-ICP-MS, which provides additional information about the heterogeneous distribution of some elements in the Zn coatings. KW - GDMS KW - Pulsed-GD-SFMS KW - Depht profiling KW - Zn KW - Aluminium PY - 2019 DO - https://doi.org/10.1039/c9ja00189a VL - 34 IS - 11 SP - 2252 EP - 2260 PB - Royal Society of Chemistry CY - London AN - OPUS4-49451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tillo, Adam A1 - Bartelmeß, Jürgen A1 - Chauhan, Vraj P. A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Microfluidic Device for the Determination of Water Chlorination Levels Combining a Fluorescent meso-Enamine Boron Dipyrromethene Probe and a Microhydrocyclone for Gas Bubble Separation N2 - Chlorination procedures are commonly applied in swimming pool water and wastewater treatment, yet also in food, pharmaceutical, and paper production. The amount of chlorine in water needs to be strictly controlled to ensure efficient killing of pathogens but avoid the induction of negative health effects. Miniaturized microfluidic fluorescence sensors are an appealing approach here when aiming at online or at-site measurements. Two meso-enamine-substituted boron dipyrromethene (BODIPY) dyes were found to exhibit favorable indication properties, their reaction with hypochlorite leading to strong fluorescence enhancement. Real-time assays became possible after integration of these fluorescent probes with designed two-dimensional (2D) and three-dimensional (3D) microfluidic chips, incorporating a passive sinusoidal mixer and a microhydrocyclone, respectively. A comparison of the two microfluidic systems, including their abilities to prevent accumulation or circulation of microbubbles produced by the chemical indication reaction, showed excellent fluidic behavior for the microhydrocyclone-based device. After coupling to a miniaturized optical reader for fluorescence detection, the 2D microfluidic system showed a promising detection range of 0.04−0.5 mg L−1 while still being prone to bubble-induced fluctuations and suffering from considerably low signal gain. The microhydrocyclone-based system was distinctly more robust against gas bubbles, showed a higher signal gain, and allowed us to halve the limit of detection to 0.02 mg L−1. The use of the 3D system to quantify the chlorine content of swimming pool water samples for sensitive and quantitative chlorine monitoring was demonstrated. KW - Chlorine KW - BODIPY KW - Fluorescence KW - Micro-Hydrocyclone KW - Microfluidic Chip PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b03039 SN - 0003-2700 VL - 91 IS - 20 SP - 12980 EP - 12987 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdecke, Nils A1 - Weidner, Steffen A1 - Schlaad, Helmut T1 - Poly(2‐oxazoline) s Based on Phenolic Acids N2 - A series of phenolic-acid-based 2-oxazoline monomers with methoxysubstituted phenyl and cinnamyl side chains is synthesized and polymerized in a microwave reactor at 140 °C using methyl tosylate as the initiator. The obtained poly(2-oxazoline)s are characterized by NMR spectroscopy, MALDITOF mass spectrometry, and size-exclusion chromatography (SEC). Kinetic studies reveal that the microwave-assisted polymerization is fast and completed within less than ≈10 min for low monomer-to-initiator ratios of ≤25. Polymers with number-average molar masses of up to 6500 g mol−1 and low dispersity (1.2–1.3) are produced. The aryl methyl ethers are successfully cleaved with aluminum triiodide/N,N′ diisopropylcarbodiimide to give a poly(2-oxazoline) with pendent catechol groups. KW - 2-oxazoline KW - Catechol KW - Cationic ring opening polymerization KW - Microwave KW - Phenolic acid PY - 2019 DO - https://doi.org/10.1002/marc.201900404 SP - 1900404 PB - Wiley VCH-Verlag AN - OPUS4-49396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Photothermal radiometry with an infrared camera allows the contactless temperature measurement of multiple surface pixels simultaneously. A short light pulse heats the sample. The heat propagates through the sample by diffusion and the corresponding temperature evolution is measured at the sample’s surface by an infrared camera. The main drawback in radiometric imaging is the loss of the spatial resolution with increasing depth due to heat diffusion, which results in blurred images for deeper lying structures. We circumvent this information loss due to the diffusion process by using blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The structured illumination is realized by parallel laser lines from a vertical-cavity surface-emitting laser (VCSEL) array controlled by a random binary pattern generator. By using 150 different patterns of structured illumination and our iterative joint sparsity algorithm, it was possible to resolve 1 mm thick lines at a distance down to 0.5 mm, which results in a resolution enhancement of approximately a factor of four compared to the resolution of 5.9 mm for homogenous illuminated thermographic reconstruction. KW - Super-resolution imaging KW - Thermography KW - Blind structured illumination KW - VCSEL array PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1655247 SN - 1768-6733 VL - 17 IS - 4 SP - 268 EP - 278 PB - Taylor & Francis Group CY - Milton, UK AN - OPUS4-49122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Modena, Mario M. A1 - Rühle, Bastian A1 - Burg, Thomas P. A1 - Wuttke, Steffan T1 - Nanoparticle characterization: What to measure? N2 - What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure–function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real‐world applications. KW - Nanoparticle characterization KW - Nanoparticles KW - Porosity KW - Shape KW - Size PY - 2019 DO - https://doi.org/10.1002/adma.201901556 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 32 SP - 1901556, 1 EP - 26 PB - Wiley AN - OPUS4-49129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaal, Mate A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Vössing, Konrad A1 - Kupnik, M. T1 - Air-coupled ultrasonic ferroelectret receiver with additional bias voltage N2 - High sensitivity is an important requirement for air-coupled ultrasonic sensors applied to materials testing. With a lower acoustic impedance than any piezoelectric material, charged cellular polypropylene (PP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric properties of charged cellular PP originate from their polarization, creating permanent internal voltage. The sensitivity of the sensor can be increased by applying additional dc bias voltage, as it has been done already for transmitters. This work presents the first ultrasonic sensor based on charged cellular PP including a high-voltage module providing dc bias voltage up to 2 kV. This bias voltage led to an increase in the signal-to-noise ratio of up to 15 ± 1 dB. The measurement of the received signal depending on the applied bias voltage is proposed as a new method of determining the internal voltage of ferroelectrets. The sensor combined with a cellular PP transmitter was applied to nondestructive testing of a rotor blade segment and glued-laminated timber, enabling imaging of the internal structure of these specimens with a thickness around 4 cm. KW - Acoustic sensors KW - Ferroelectret KW - Nondestructive testing KW - Ultrasonic imaging KW - Ultrasonic transducers PY - 2019 DO - https://doi.org/10.1109/TUFFC.2019.2925666 SN - 0885-3010 SN - 1525-8955 VL - 66 IS - 10 SP - 1600 EP - 1605 PB - IEEE AN - OPUS4-49131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 DO - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. A1 - Riedel, Jens T1 - VUV Photodissociation Induced by a Deuterium Lamp in an Ion Trap N2 - Tandem mass spectrometry represents an important analytical tool to unravel molecular structures and to study the gas-phase behavior of organic molecules. Besides commonly used methods like collision-induced dissociation and electron capture or transfer dissociation, new ultraviolet light–based techniques have the potential to synergistically add to the activation methods. Here, we present a new simple, yet robust, experimental design for polychromatic activation of trapped ions using the 115–160 nm output of a commercially available deuterium lamp. The resulting continuous dissociative excitation with photons of a wide energy range from 7.7 to 10.8 eV is studied for a comprehensive set of analyte classes in both positive and negative ion modes. While being simple, affordable, compact, and of low maintenance, the new setup initiates fragmentation of most precursor ions via their known dissociation pathways. Additionally, some new fragmentation patterns were discovered. Especially, electron loss and electron capture reactions with subsequent fragmentations were observed. For oligonucleotides, peptides, carbohydrates, and organic dyes, in comparison to collision-induced dissociation, a significantly wider fragment distribution was obtained, resulting in an information increase. Since the individual photons carry enough energy to post-ionize the nascent fragments, a permanent vacuum ultraviolet light exposure inside the ion trap potentially goes along with a general increase in detection capability. KW - Fragmentation activation KW - Vacuum ultraviolet (VUV) light KW - Mass spectrometry KW - Tandem MS PY - 2019 DO - https://doi.org/10.1007/s13361-019-02282-8 SN - 1044-0305 VL - 30 IS - 10 SP - 2114 EP - 2122 PB - Springer Nature CY - Heidelberg AN - OPUS4-48756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Dariz, P. T1 - Raman band widths of anhydrite II reveal the burning history of high‐fired medieval gypsum mortars N2 - When used as a mineral binder, gypsum is thermally dehydrated and mixed with water, resulting in a paste hardening in the backreaction to calcium sulphate dihydrate (CaSO4 · 2 H2O). Although nowadays mainly hemihydratebased (CaSO4 · ½ H2O) binders are employed, higher firing temperatures in medieval kilns yielded anhydrite II (CaSO4). Except for the discrimination of the metastable phases anhydrite III and I due to different crystal structures, variations within the production temperature range of anhydrite II (approximately 300 to 1180°C) were not analytically accessible until recently. This study describes the development of an analytical technique, which is based on steady changes of band widths in room‐temperature Raman spectra of anhydrite II as a function of burning temperature. Raman microspectroscopic mapping experiments enable to pinpoint individual unreacted grains of thermal anhydrite in mortars and to discriminate them from natural anhydrites originating from the raw gypsum. The determination of band full widths at half maximum of down to 3 cm−1 and differences between them of a few tenths of wavenumbers is not a trivial task. Thus, a focus of this work is on peak fitting and strategies for correction of instrument‐dependent band broadening, which is often neglected also beyond the field of mortar analysis. Including other potential influences on band widths, burning temperatures of 400 to 900°C can be retraced in high‐fired medieval gypsum mortars with an uncertainty of approximately ± 50 K, as demonstrated with sample material of a stucco sculpture dated around 1400. KW - Analytical methods KW - Gypsum dehydration KW - High-fired gypsum mortar KW - Raman band width determination KW - Thermal anhydrite PY - 2019 DO - https://doi.org/10.1002/jrs.5632 SN - 1097-4555 VL - 50 IS - 8 SP - 1154 EP - 1168 PB - Wiley AN - OPUS4-48757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faes, W. A1 - Lecompte, S. A1 - van Bael, J. A1 - Salenbien, R. A1 - Bäßler, Ralph A1 - Bellemans, I. A1 - Cools, P. A1 - de Geyter, N. A1 - Morent, R. A1 - Verbeken, K. A1 - de Paepe, M. T1 - Corrosion behaviour of different steel types in artificial geothermal fluids N2 - Geothermal energy is an interesting alternative to polluting fossil energy sources. Therefore, in Belgium, two wells have been drilled for a deep geothermal power plant. However, the environment to which the installations are exposed is challenging. The geothermal brine has 165 g/l total dissolved solids (of which 90% are sodium and chlorine) and the production temperature can be up to 130 °C. To assess their suitability to be used in a geothermal power plant, the corrosivity of the artificial brine to three common construction materials was investigated with exposure and electrochemical tests. The metals under consideration are a low-alloyed carbon steel (S235JR), an austenitic stainless steel (UNS S31603) and a duplex stainless steel (UNS S31803). The carbon steel, that was found to corrode uniformly, could be considered as a constructional material if a sufficient wall thickness is chosen. The austenitic stainless steel and the duplex stainless steel demonstrate very low uniform corrosion rates. They are however susceptible to pitting and crevice corrosion. To guarantee safe operation of the geothermal power plant, the susceptibility of the alloys to stress corrosion cracking should be tested and in situ experiments should be performed. KW - Geothermal energy KW - Corrosion KW - Carbon dioxide KW - Carbon steel KW - Stainless steel PY - 2019 DO - https://doi.org/10.1016/j.geothermics.2019.05.018 SN - 0375-6505 VL - 82 IS - 11 SP - 182 EP - 189 PB - Elsevier Ltd. AN - OPUS4-48759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Thiede, Tobias A1 - Kraume, M. A1 - Maiwald, Michael T1 - Design and validation of an additively manufactured flowCell–static mixer combination for inline NMR spectroscopy N2 - There have been an increasing number of publications on flow chemistry applications of compact NMR. Despite this, there is so far no comprehensive workflow for the technical design of flow cells. Here, we present an approach that is suitable for the design of an NMR flow cell with an integrated static mixing unit. This design moves the mixing of reactants to the active NMR detection region within the NMR instrument, presenting a feature that analyses chemical reactions faster (5–120 s region) than other common setups. During the design phase, the targeted mixing homogeneity of the components was evaluated for different types of mixing units based on CFD simulation. Subsequently, the flow cell was additively manufactured from ceramic material and metal tubing. Within the targeted working mass flow range, excellent mixing properties as well as narrow line widths were confirmed in validation experiments, comparable to common glass tubes. KW - Inline NMR Spectroscopy KW - Integrated Processes KW - Reaction Monitoring KW - Process Analytical Technology KW - Flow Chemistry KW - Static Mixing KW - Modular Production PY - 2019 UR - https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b03746 DO - https://doi.org/10.1021/acs.iecr.9b03746 SN - 0888-5885 SN - 1520-5045 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 58 IS - 42 SP - 19562 EP - 19570 PB - American Chemical Society CY - Washington AN - OPUS4-49041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - Early stage in situ detection of polynuclear aluminum phases in aqueous solution N2 - Polynuclear cationic aluminum hydroxide phases are known intermediates in the formation of aluminum oxides or (oxide) ydroxides upon hydrolysis of aluminum salt solutions. In the presence of sulfate anions, these aluminum polyoxocations (Al13) can form crystalline Al13 sulfates with varying chemical composition. The formation of these Al13 sulfates in aqueous solution has been poorly understood. Here, we investigate the early stage crystallization of Al13 clusters in a sulfate-containing solution, in situ and in real time. Dynamics associated with Al13 sulfate formation have been obtained for the first time, using Synchrotron X-ray diffraction (XRD) of solutions suspended by acoustic levitation. Time-resolved in situ data show that the cubic phase, Na [(AlO4)Al12(OH)24(H2O)12](SO4)4*10H2O, forms after only minutes. The Formation mechanism of Al13 sulfates was found to depend on the sulfate:aluminum (SO4:Al) ratio. Ex situ XRD of the product Al13 sulfates in solution shows that for SO4:Al ratio ≤ 1.5 two other crystalline phases form, and convert to the cubic phase upon washing and drying. In situ XRD for the same ratio shows transient formation of an intermediate during the crystallization process. KW - Polyoxocation KW - In situ KW - Crystallization KW - Acoustic levitation KW - Synchroton x-ray diffraction PY - 2019 DO - https://doi.org/10.1016/j.poly.2019.05.049 VL - 170 SP - 639 EP - 648 PB - Elsevier Ltd. AN - OPUS4-48552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Schwinn, M. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis N2 - The most challenging part in performing a single cell ICP-MS (sc-ICP-MS) approach is the sample preparation, in particular the reduction of the ionic background. This step is, in many cases, time-consuming and required for each sample separately. Furthermore, sc-ICP-MS measurements are mostly carried out "manually", given the fact that present systems are not allowing for an automated change of samples. Thus, within this work, we developed an approach based on a HPLC system coupled on-line with sc-ICP-MS via a set of switching valves as well as an in-line filter for automated cell washing. This set-up enables the ionic background removal as well as analysis of single cells completely automated without any manual sample pretreatment. Our approach was applied for the analysis of the single celled diatom species Cyclotella meneghiniana, a marine diatom species, on the basis of Mg24 and facilitates testing in 11 min per sample, requiring only around 10,000 cells in a volume of 10 µL and approx. 10 mL of a 5% MeOH/95% deionized water (v/v) mixture. Even at extremely saline culturing media concentrations (up to 1000 mg L-1 magnesium) our on-line approach worked sufficiently allowing for distinction of ionic and particulate fractions. Furthermore, a set of diatom samples was analyzed completely automated without the need for changing samples manually. So, utilizing this approach enables analyzing a high quantity of samples in a short time and therefore in future the investigation of ecotoxicological effects is simplified for example in terms of metal accumulation by taking biovariability into account. KW - Single cell-ICP-MS KW - Diatoms KW - Ecotoxicology testing KW - Automated system PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.045 SN - 1873-4324 VL - 1077 SP - 87 EP - 94 PB - Elsevier AN - OPUS4-48567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Cuellar-Camach, J.L. A1 - Guday, G. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Osterrieder, K. A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions N2 - As resistance to traditional drugs emerges for treatment of Virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex Virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3–C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic Inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications. KW - Functionalized nanographene KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS KW - Antiviral activity PY - 2019 DO - https://doi.org/10.1039/c9nr05273a SN - 2040-3364 VL - 11 IS - 34 SP - 15804 EP - 15809 PB - The Royal Society of Chemistry AN - OPUS4-48807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 DO - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 DO - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -