TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Stockmann, Jörg M. A1 - Weise, Matthias T1 - Ellipsometric imaging of low-contrast surface modifications and depolarization contrast imaging (DCI) of particulate accumulations N2 - Imaging of surfaces regarding topographical, morphological, micro-structural, and chemical features is a key requirement for quality control for the identification of contaminated, degraded, damaged or deliberately modified surface areas vs. clean, virgin, undamaged or unmodified regions. As optical functions may represent any of these changes on the micro- and nano-scale, imaging ellipsometry (IE) is the technique of choice using either intensity, phase, or/and amplitude contrast for visualization of low-contrast surface modifications [1, 2]. Defects or surface and film features whether native or artificial, intended or unintended, avoidable or unavoidable as well as surface pattern are of interest for quality control. In contrast to microscopic techniques operated at normal incidence, ellipsometry as oblique-incidence technique provides improved contrast for vertically nano-scaled add-on or sub-off features such as ultra-thin transparent films, metallic island films, carbon-based thin films, laser modification or laser induced damage, dried stain, cleaning agent or polymeric residue. Two-sample reference techniques, i.e. referenced spectroscopic ellipsometry (RSE) may further increase sensitivity and decrease measurement time. In case of particulate accumulations depolarization contrast imaging (DCI) may improve the lateral resolution beyond the Abbe limit. This has been proven for silica spheres as reference in terms of single particles, particulate accumulations or particulate monolayers and layer stacks. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used for reference measurements of particle diameter, particle height, or particulate layer/accumulation thickness. It has been shown that single silica particles of 250 nm in diameter, i.e. at least a factor of 4 better than the lateral resolution limit as of now, can be visualized on even substrates. However, the ellipsometric measurement of particle diameters of this size needs further efforts interpretation. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germaný DA - 19.03.2018 KW - Low-contrast surface modifications KW - Particulate distributions KW - Imaging ellipsometry(IE) KW - Depolarization contrast imaging (DCI) PY - 2018 AN - OPUS4-44548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Quantitative biocide profile measurements by calibrated NAP-XPS N2 - Progress update for the EMPIR-project MetVBadBugs- Quantitative measurement and imaging of drug-uptake by bacteria with antimicrobial resistance. T2 - MetVBadBugs 26 M project meeting CY - South Mimms, UK DA - 05.07.2018 KW - Biofilms KW - Alginate KW - Antibiotics KW - E. coli KW - XPS PY - 2018 AN - OPUS4-45402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda T1 - Liquid Crystals Forming a Columnar Mesophase: Structure, Dynamics and Electric Conductivity N2 - The molecular dynamics and ionic conductivity of ionic liquid crystals (ILCs) forming a columnar mesophase, two linear-shaped tetramethylated guanidinium triflates ILCs having different lengths of alkyl chains, were investigated by a combination of Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS). Three processes were detected by BDS; at low temperature γ-process, at higher temperatures α-process and at even higher temperatures conductivity. The γ-process indicates localized fluctuations, and the α-process designates cooperative fluctuations. Slightly different restrictions were found for conductivity processes of LC536 and LC537 due to the slightly different lengths of alky chains. The conductivity mechanisms in the plastic crystalline and the columnar mesophase have been revealed by BDS and different charge carriers were assigned for the different phases. Furthermore, the cooperative dynamics were also probed by SHS. The cooperative dynamics probed by the different techniques (BDS and SHS) compared, and assigned to the different restrictions on the cooperativity due to the difference in the sensitivity of the techniques. T2 - Seminar Vortrag Technische Universität Berlin CY - Berlin, Germany DA - 28.06.2018 KW - Columnar Liquid Crystals KW - Ionic Liquid Crystals PY - 2018 AN - OPUS4-45383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Active thermography with flash and halogen light excitation is used as a method for non-destructive testing of 3D-printed polymer components. Test specimens with artificial defects have been generated, using laser sintering and fused layer modeling. These test specimens have been investigated in different measurement configurations with both excitation methods. Afterwards, the different measurement conditions were compared regarding their capability to detect the defects. Furthermore, advanced analysis methods are used, to fully exploit the capabilities of these techniques. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 AN - OPUS4-45387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nutsch, A. A1 - Dill, S. A1 - Kamleitner, I. A1 - Sehorz, A. A1 - Schwarzenberger, M. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Merz, H. A1 - Recknagel, Sebastian T1 - A Methodology to Obtain Traceability and Validation of Calibration Samples for Thin Metal Alloy Layers for X-Ray Fluorescence Tools N2 - Statistic process control as well as process capability demand for calibrated determination of layer thicknesses in various industries, e.g. automotive, aerospace, microelectronics manufacturing. Calibration requires well know and well characterized samples. A calibration laboratory accredited according to DIN EN ISO 17025 has the objective to distribute standards traceable to SI units to industrial laboratories for quality control of manufacturing of various products. Especially, the thickness determination of thin metallic coatings e.g. from galvanic processes or layer deposition using X-Ray Fluorescence can be significantly improved by customized calibration samples. This is essential as the measurement uncertainty directly correlates to the capability performing reliable control of processes with high yield. For calibration laboratories, the validation of results using round robins and the direct comparison to national metrology institutes is a prerequisite to demonstrate the competence to perform calibration services. In this paper a strategy to obtain traceability and validation for thin alloy layers as well as first results are presented. The combined use of the accredited method for determination of mass per area from measurement of mass and area combined with standard free X-Ray Fluorescence as well as chemical analysis of dissolved samples with thin layers is deployed for material systems as NixZn1-x as well as NixP1-x. The obtained results are compared to reference free X-Ray Fluorescence at the BESSY II laboratories of Physikalisch-Technische Bundesanstalt. An excellent agreement of the obtained measured values as mass per unit area and alloy concentrations from the different applied methods within the measurement uncertainty was observed for NixP1-x showing the successful performed traceability of the calibration samples to SI units in combination with a validation of results by national metrology institutes and the round robin approach. T2 - European Conference on X-Ray Spectrometry CY - Ljubljana, Slowenia DA - 24.06.2018 KW - Traceability KW - Thin metal alloy layers KW - X-ray fluorescence PY - 2018 AN - OPUS4-45317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel T1 - New technologies for air-coupled ultrasonic transducers N2 - Air-coupled ultrasonic testing (ACUT) has experienced rapid growth within the last years. It is especially well suited to inspection of lightweight structures consisting of composite materials and adhesive joints. Uniform coupling and easy maintenance are its advantages compared to contact technique. However, the impedance mismatch between the transducer and air poses a major challenge to the development of ACUT transducers. Commercially available air-coupled transducers consist of a piezocomposite material and matching layers. Their fabrication is difficult in handling and their signal-to-noise ratio sometimes not sufficient for various testing requirements. However, there are several innovative approaches using other materials and other physical principles to transmit and receive an ultrasonic pulse. We present a review of the latest advances in research on air-coupled transducers for non-destructive testing, including previously unpublished results. We recognize two major directions as most promising: ferroelectrets and thermoacoustic transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties. Their small acoustic impedance is matched to air better than matching layers applied in conventional air-coupled transducers. Applying bias voltage to a ferroelectret receiver is the latest development in this field, which increased the received signal by 12 to 15 dB. Thermoacoustic transducers use heat to initiate an ultrasonic wave, acting as transmitters. The working principle is known from nature as thunder and lightning: thermal energy of an electrically heated material, which can also be air, is converted into acoustic energy. Some thermoacoustic transmitters consist of a conductive layer with a thickness in the nanometer range deposited on a solid substrate. Another possibility is to use an electric spark. For the first time, measurements of the sound field of an electric spark up to 500 kHz were performed. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Transducer KW - Air-coupled ultrasonic testing KW - Atmospheric pressure plasma KW - Cellular polypropylene KW - Ferroelectret PY - 2018 AN - OPUS4-45304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture testing and mapping N2 - Non-destructive testing of moisture in building materials T2 - NDT&E Advanced Training Workshop CY - Berlin, Germany DA - 27.06.2018 KW - Building materials KW - Concrete KW - Moisture measurement PY - 2018 AN - OPUS4-45348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Buildings: Seismology and Strctural Health Monitoring N2 - Overview of seismological concepts unsed in nondestructive testing in civil engineering T2 - Fourth TIDES Advanced Training School CY - Prague, Czech Repubilc DA - 01.07.2018 KW - Geophysics KW - Seismology KW - Interferometry KW - Structural health monitoring KW - Nondestructive testing PY - 2018 AN - OPUS4-45361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project Z02 at the CSMC: Material-science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the CSMC. In collaboration with Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the center. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out: - Support of project C08 on East Frankish manuscripts containing collections of formulae - Identifying color materials applied in Muhammad Juki's Shahnamah with non-invasive combined methods - Checking for the presence of metals in the Herculaneum papyri T2 - 3rd International Conference on Natural Sciences and Technology in Manuscript Analysis CY - Hamburg, Germany DA - 13.06.2018 KW - CSMC KW - Manuscript KW - Ink KW - Pigment PY - 2018 AN - OPUS4-45504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin T1 - Surface characterisation of biological samples by near-ambient pressure XPS N2 - A presentation held for the seminar "Ausgewählte analytische Methoden der Physik" hosted by Prof. Birgit Kanngießer at TU Berlin. The first part focus on depth-dependent XPS-measurements (XPS, synchrotron HAXPES) to obtain a concentration profile of iodine in an artificial biofilm. In the second part, NAP-XPS measurements of various bacterial samples are presented. T2 - Forschungsseminar "Ausgewählte analytische Methoden der Physik", TU Berlin CY - Berlin, Germany DA - 17.07.2018 KW - Biofilms KW - Alginate KW - Agarose KW - HAXPES KW - NAP-XPS PY - 2018 AN - OPUS4-45505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wuerth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Radunz, Sebastian A1 - Muhr, V. A1 - Hirsch, Th. A1 - Soukka, T. A1 - Homann, C. A1 - Haase, M. T1 - Luminescence efficiency of upconversion – Quantification of size, particle architecture and dopant concentration effects for different excitation power densities N2 - Lanthanide-based upconversion nanoparticles (UCNPs)like hexagonal beta-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing and imaging. The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, concentration and spatial arrangement of dopant ions, surface chemistry, microenvironment, and excitation power density (P). We present here comprehensive studies of the influence of UCNP size and particle architecture for Yb3+ and Er3+ co-doped NaYF4 nanoparticles and energy transfer processes in these materials, which underline the importance of quantitative luminescence measurements for mechanistic insights and the determination of application-relevant matrix- and P-dependent optimum dopand concentrations. T2 - 2nd Conference and Spring School CY - Valencia, Spain DA - 04.04.2018 KW - Upconverting nanoparticles KW - Size KW - Energy transfer KW - Fluorescence KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics KW - Power density dependence PY - 2018 AN - OPUS4-44960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Baier, Jennifa A1 - Hidde, Gundula A1 - Sahre, Marion A1 - Weise, Matthias T1 - Particles in PVD-coatings: Imperfection or functional add-on feature? N2 - The application of PVD-coatings ranges from mechanical engineering, i.e. thicker tribological coatings, to precision optics, i.e. thinner optical coatings. For physical vapor deposition (PVD) technologies such as evaporation, sputtering, ion beam assisted/driven deposition, vacuum is a prerequisite for two reasons: at first process-related ones (evaporation source, plasma discharge, and mean free path) and at second coating-related ones (pure, perfect, and dense films). Usually, the goal is a homogenous coating of defined stoichiometry and micro-structure without any imperfection. However, the implementation of micro- or nano-particles may occur accidentally or delibe-rately. Independent of the particle origin, there are two fundamental rules regarding coating functionality: at first, the larger the particle diameter to coating thickness ratio the more affected the functionality of the coating, and at second, the larger the material contrast in terms of the functional feature of interest the more affected the coating performance. Hence, embedded particles have to be avoided for the majority of thin films by all means. The unintended implementation of particles usually results in a malfunction of the coating from the beginning or is at least considered as a weak point of the coating creating a time-dependent defect under service conditions. The intended implementation of particles on surfaces and in coatings may create add-on features, topographic ones and functional ones, however, the facts mentioned hold true. Examples of particle-initiated coating defects are demonstrated in dependence on the origin and the field of application. Strategies for deliberate attachment/embedding of particles on surfaces/in coatings are discussed regarding process compatibility and coating integrity. For industrial applications, both the validation of process compatibility of particle injection and the plasma resistance of particles under vacuum and plasma conditions have to be confirmed. Further points of interest are the homogeneity of particle distribution and the avoidance of particle agglomeration which is still a crucial point for dry dispersed particles. So far, technical applications are limited to PVD hybrid coatings, plasma dispersion coatings are still a challenge except for applications where homogeneity is not required as in case of product authentication. T2 - ICMCTF 2018, International Conference on Metallurgical Coatings and Thin Films CY - San Diego, CA, USA DA - 23.04.2018 KW - PVD-coatings KW - PVD-processes KW - Unintended particle generation KW - Particles as imperfections KW - Deliberate particle implementation KW - Particles as add-on features PY - 2018 AN - OPUS4-44973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Weise, Matthias A1 - Köppe, Enrico A1 - Bartholmai, Matthias A1 - Basedau, Frank A1 - Hofmann, Detlef A1 - Schukar, Vivien A1 - Kormunda2, M. T1 - Multi-functional coatings for optical sensor applications: Surface plasmon resonance & magneto-optical coupling N2 - Multi-functional coatings are a key requirement for surface engineering. General demands are adhesion and long-term stability under service conditions. The modification of surfaces by means of PVD-, ECD- or hybrid processes allows an add-on functionalization of surfaces by a huge diversity of materials with both lateral and vertical micro-/nano-designs. This fact is a prerequisite for micro- and sensor-systems in lab-on-chip and sensor-on-chip technology. Two layer-based sensor principles are presented, i.e. surface plasmon resonance enhanced spectroscopic ellipsometry (SPREE) for detection of hazardous gases and magneto-optical sensors on smart-coated fiber Bragg gratings (FBG) for structural health monitoring (SHM). The interdependence of substrate features, coating properties, and layer design is discussed firstly for gas sensitivity and selectivity of SPREE-sensors and secondly for sensitivity and selectivity of magneto-strictive coatings to mechanical strain or external magnetic fields resulting in an optical displacement of the Bragg wavelength of FBG-sensors. Moreover, generic features such long-term stability, crucial process-related fabrication conditions, and effects of operational and environmental parameters are discussed with respect to the sensor performance. It has been shown that appropriate layer design and adapted selection of layer materials (SnOx/Au, Fe/Ni:SnOx/Au; Ni/NiFe-Cu-Cr) result in improved sensor parameters and may enable new sensor applications. T2 - SVC TechCon 2018 CY - Orlando, FL, USA DA - 05.05.2018 KW - Multi-functional coatings for sensors KW - Surface plasmon resonance enhanced ellipsometry (SPREE) KW - Gas monitoring KW - Magneto-optical coupling (MOC) KW - Structural health monitoring (SHM) PY - 2018 AN - OPUS4-44976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißsler, Daniel A1 - Behnke, Thomas A1 - Schneider, Ralf T1 - Simple and versatile methods for quantifying functional groups, ligands, and biomolecules on nanomaterials N2 - Many applications of nanomaterials in the life sciences require the controlled functionalization of these materials with ligands like polyethylene glycol (PEG) and/or biomolecules such as peptides, proteins, and DNA. This enables to tune their hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunction-nalization efficiencies, and enhance blood circulation times and is the ultimate prerequisite for their use as reporters in assays or the design of targeted optial probes for bioimaging. At the core of these functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nano-materials, using different types of optical reporters and method validation with the aid of multimodal reporters and mass balances. T2 - RSC Symposium on Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - PEG ligands KW - Surface group analysis KW - Upconverting nanoparticles KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Feuchtemessverfahren N2 - Discussion and presentation of different methods for moisture measurements in civil Engineering. T2 - Vorlesung Diagnostik und Ertüchtigung von Bauwerken CY - TU Berlin, Germany DA - 16.05.2018 KW - Material moisture KW - Moisture measurements PY - 2018 AN - OPUS4-44944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - 2018 Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - BAM-Doktorandenseminar CY - Berlin, Germany DA - 07.02.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Szymoniak, Paulina T1 - Unraveling the dynamics of thin films of a miscible PVME/PS blend N2 - Dielectric spectroscopy (BDS) was employed to investigate the dynamics of thin films (7 – 200 nm) of a Poly (vinyl methyl ether) (PVME) / Polystyrene (PS) blend (50:50 wt%). For the BDS measurements Nano-Structured Capacitors (NSC) were employed, where films have a free surface. This method was applied for film thicknesses up to 36 nm. Thicker films were prepared between Crossed Electrodes Capacitors (CEC). The spectra of the films showed multiple processes. The first process was assigned to the -relaxation of a bulk-like layer. For films measured by NSC, its rates were higher compared to that of the bulk blend. This behavior was related to a PVME-rich free-surface layer. A second process was observed for films measured by CEC (process X) and the 36 nm film measured by NSC (process X2). This process was assigned to fluctuations of PVME constraint by PS. Its activation energy was found to be thickness dependent, due to the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature-dependence was observed for all films measured by NSC (process X1). It resembled the molecular fluctuations in an adsorbed layer found for films of pure PVME. T2 - Anual Meeting of the American Physical Society CY - Los Angeles, CA, USA DA - 05.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Hansen, L. A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustical analysis of DCSBD and MHC discharges N2 - Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are the surface or material modification and acting as an ion source for mass spectroscopy applications. Since atmosphere plasma generates a massive amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder), which is called thermoacoustic effect. This talk presents an overview of the experimental acoustic analysis of surface dielectric barrier and micro hollow cathode discharges. Regarding other methods of acoustic excitation, the thermoacoustic approach benefits of its massless working principle and the proper impedance matching. In addition to the characterisation, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented. T2 - DPG Frühjahrstagung (SAMOP) CY - Erlangen, Germany DA - 04.03.2018 KW - Gas discharges KW - Micro hollow cathode discharge KW - Surface dielectric barrier discharge KW - Atmospheric pressure plasma PY - 2018 AN - OPUS4-44443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown great potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partially due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing times and original film thickness. The thickness, topography and quality of the adsorbed layer is controlled with Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor is employed to measure the adsorbed layers with a free surface layer. The results are quantitatively compared and discussed with respect to recently published work. T2 - Meeting of the American Physical Society CY - Los Angeles, CA, USA DA - 05.03.2018 KW - Thin polymeric films KW - Adsorbed layer PY - 2018 AN - OPUS4-44488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid-structure interaction in the scaled Boundary finite element method for prismatic Structures N2 - The Scaled Boundary Finite Element Method (SBFEM) for prismatic structures is an efficient method for the simulation of acoustic behavior. Hence a further development of the method is of great interest. The wave propagation can be calculated for isotropic and anisotropic materials in solids. As for many applications the acoustic behavior in fluids and the behavior in case of fluid-structure interaction (FSI) is subject of research, the implementation of a fluid model in SBFEM for prismatic structures is needed. In case of FSI the coupling between fluid and solid domains can be performed without additional effort when describing both domains in the same variables. Hence a displacement-based fluid description is used. As the discretized formulation leads to spurious modes, a penalty method to suppress the unphysical behavior is chosen. To validate the derived model a comparison with analytical solutions of purely fluid domains is made. As to verify that in case of FSI the model shows the right behavior, dispersion curves of water-filled pipes are calculated and compared to results obtained with Comsol. T2 - 89th GAMM Annual Meeting CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Fluid-Structure Interaction KW - Penalty Parameter PY - 2018 AN - OPUS4-45260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan T1 - Bundesanstalt für Materialforschung und –prüfung (BAM) - Round table presentation N2 - Vorstellung der Tätigkeit der BAM und des FB 8.2 im Rahmen einer geplanten Greminentätigkeit im fib - Action Group 9. T2 - 2nd meeting fib Action Group 9 'Testing and SHM’ CY - München, Germany DA - 14.06.2018 KW - Zerstörungsfreie Prüfung KW - Bauwesen PY - 2018 AN - OPUS4-45215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar Welds KW - Nondestructive Testing KW - Ultrasonic Testing PY - 2018 AN - OPUS4-44151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epping, Ruben A1 - Falkenhagen, Jana T1 - Characterization of small heterogeneities in polymers by analysis of UPLC/ESI-MS reconstructed ion chromatograms N2 - From simple molar mass disperse homopolymers over copolymers to functionalized, 3-dimensional structures containing various distributions, the complexity of polymeric materials has become more and more sophisticated in recent years. With applications in medicine, pharmacy, smart materials or for the semiconductor industry the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, here a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. We used SEC for the separation because unlike other separation modes the separation in this mode solely should occur due to the hydrodynamic volume with no interference of other interactions. This simplifies the interpretation and the above mentioned heterogeneities should show a slight difference in hydrodynamic volume. ESI mass spectrometry can offer more than an access to mass dependent information like MMD, end group masses or CCD in polymer analysis. The online coupling to SEC allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible or accessible only by time consuming or expensive methods. Because these heterogeneities might vary with the molar mass, analysis of the whole MMD-Peak (here the total ion current (TIC)) would not lead to the desired information. The broadening of the chromatographic peaks in this case does not origin from the already well known band broadening factors in chromatography from diffusion. This band broadening is attributed to the nature and composition of the analyte itself. Surprisingly there is very little investigation into the peak width or peak shape due to analyte structure itself found in literature. It is also shown, that with proper calibration even quantitative information could be obtained. This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples we demonstrate the possibilities and limitations of this approach. T2 - HTC-15 CY - Cardiff, UK DA - 24.01.2018 KW - UPLC/ESI-MS KW - Reconstructed chromatograms KW - Polymer analysis KW - Microstructure PY - 2018 AN - OPUS4-44137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - STXM KW - SEM KW - PS KW - PTFE KW - Core-shell nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Madkour, Sherif A1 - Gawek, Marcel A1 - Schönhals, Andreas T1 - Determination of the glass transition region of thin PVME films by means of spectroscopic ellipsometry N2 - In this presentation, we report on the Determination of the glass transition temperature of thin layers of Polyvinylmethylether (PVME) depending on the thickness of the polymer layer. The glass Transition of thin polymer layers is currently under much investigation due to the nano-confinement effects proposed to appear in dependence on the layer thicknesses in the nm range. The properties of the polymer, the temperature range, as well as the thicknesses range of the polymer layers pose a serious challenge to the investigation by means of spectroscopic ellipsometry. By careful choice of experimental parameters, we were able to investigate the thickness change by temperature of PVME layers in the range between 2 and 300 nm and in the temperature range between 200 K and 340 K. By optimizing the analysis process, we were able to determine Tg values within this parameter range with sufficient accuracy to investigate the Tg change due to confinement effects. Alongside the change of position of the glass transition with thickness, we discuss the details of the ellipsometric analysis and its implications for the resulting thermal properties of the thin polymer layers as well as the accuracy of the Tg value with respect to the method used in the analysis process. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Polymers KW - PVME KW - Temperature dependent ellipsometry KW - Glass transition PY - 2018 AN - OPUS4-44672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - Exploring variations in the three-isotope space: A new approach and application to magnesium isotope fractionation in the mammal food web N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation is expressed by co-varying isotope ratios. In the three-isotope space ((δ’m2/δ’m1)/(( δ’m3/δ’m1)) these plot along a line with a slope (β), the so called ‘terrestrial fractionation line’. This partitioning of stable isotopes results from both kinetic and equilibrium reactions that are characterized by specific β-values. For the natural range of isotope ratios of ‘novel’ stable isotope systems such as Si, Mg, Fe, Zn, Cu this information cannot be accessed because samples fall close to the delta-zero standard where the current measurement precision is too low to resolve small differences in β. We present a new approach to resolve deviations from a reference slope β by standard-sample bracketing against material offset from the natural range. We use this approach to explore the isotope fractionation mechanism in the mammalian food web. We have analyzed Mg stable isotope ratios in bone bioapatite of herbivore, omnivore and carnivore mammals. Positive shifts in δ26/24Mg along the trophic chain (from herbivore to carnivore) together with β= 0.513 suggest the presence of two isotope fractionation mechanisms operating during biomineralization. While positive shifts in δ26/24Mg are in favor of equilibrium isotope fractionation process, the proximity of β to the theoretically calculated β(kinetic) of typically 0.511 suggests the presence of a second component that fractionates stable isotopes kinetically. The herein presented approach is applicable to any element with 3+ stable isotopes analyzed by multi-collector inductively coupled plasma mass spectrometry. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Magnesium delta values KW - Equilibrium isotope fractionation KW - Kinetic isotope fractionation KW - Measurement uncertainty KW - Mammals KW - Food web PY - 2018 AN - OPUS4-44643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - LA-ICP-MS to study nanoparticle-cell interaction N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning both spatial resolution (down to 1 µm) and signal-to-background ratio due to low-dispersion LA chambers make LA-ICP-MS particularly interesting for single cell analysis. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. The cells were incubated with different NPs under varying experimental conditions and afterwards fixed with para-formaldehyde and dried for LA analysis. High-spatial resolution LA-ICP-MS was achieved by careful optimisation of the laser ablation parameters. Our findings show, that LA-ICP-MS is applicable to localize NP aggregates within cellular compartments. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into nanoparticle-cell interaction dependent on experimental parameters. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC'2018 CY - Paris, France DA - 09.07.2018 KW - X-ray-refraction KW - Damage evolution KW - Additive manufacturing KW - Composites KW - Creep PY - 2018 AN - OPUS4-45572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Mölders, N. A1 - Sauerwald, T. A1 - Schultealbert, C. A1 - Mull, B. T1 - Two new promising approaches for quality assurance measures for materials emissions testing N2 - Two new approaches towards an emission reference material for use in quality assurance measures for materials emissions testing were developed and intensively tested. The overall goal was to obtain solid materials with homogenous and reproducible (S)VOC release. Since the application in inter-laboratory comparisons is aimed at, it should furthermore be long-term stable to ensure safe shipment to the customer without sustaining compound losses. In the first approach, thermoplastic polyurethane (TPU) was impregnated with the VOC texanol under high-pressure with liquid CO2 as solvent. In the second, styrene (VOC) and the SVOC 2,6-diisopropylnaphthalene (DIPN) were spiked into vacuum grease (VG) and a mixture of paraf-fin/squalane (P/S). For the prediction of the emission rates a finite element model (FEM) was developed for the VG and P/S type materials. All requirements for reference materials were fulfilled, whereas the TPU samples need to be aged for about 10 days until repeatable and reproducible emission rates were obtained. T2 - Indoor Air 2018 CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Emission reference material KW - Volatile organic compounds KW - CO2 assisted impregnation KW - FEM model PY - 2018 AN - OPUS4-45611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Muenster, C. A1 - Mente, Tobias A1 - Boellinghaus, Thomas A1 - Kannengießer, Thomas T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trapping in T24 steel weld joints – Microstructure influence vs. experimental design effect on activation energy for diffusion N2 - A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. T2 - Forschungsseminar Fügetechnik des IWF, Otto-von-Guericke-Universität CY - Magdeburg, Germany DA - 25.04.2018 KW - Creep-resisting materials KW - Diffusion KW - Weld metal KW - Hydrogen embrittlement PY - 2018 AN - OPUS4-44879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Switchable Rotaxanes operating in multilayers on solid supports N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimuli-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimuli-responsive surfaces may help integrating synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically and photochemically switchable rotaxanes on gold surfaces. Two substrates are investigated – silicon and gold. Of these materials, only gold showed to be suitable for the development of highly preferential oriented rotaxane layers. XPS indicates for both substrates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation and that the switching is reversible. However, these effects are only observed for the multilayers on gold surfaces. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - NEXAFS KW - Rotaxanes KW - Multilayers PY - 2018 AN - OPUS4-44794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters vs conventional labels for optical quantification of amino and carboxy groups on nanomaterials and microparticles N2 - Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers. We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS. The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary. We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Surface functionalization KW - Nanoparticles KW - Surface chemistry KW - Multimodal reporters PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Wanka, Antje T1 - Development of immuno-assays and metal-staining techniques for bioimaging of cells and tissues using LA-ICP-MS N2 - We are using LA-ICP-MS to quantify metals in biological cells and thin cuts of tissues from varies organs. Different applications will be presented to demonstrate the state of the art of bioimaging to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells) of metals, metal containing stains and metal-tagged antibodies. For this purpose, different strategies for metal tagging will be presented and will be compared in terms of analytical figures of merit. First applications for detection of biomarkers in animal and human tissue samples will be presented. In a first example, we have applied LA-ICP-MS to visualize the local distribution of proteins, which are used as bio-markers for neurodegenerative diseases. For this purpose, brain tissues from mice experiments have been stained by metal-tagged antibodies. House-keeping proteins have been investigated as internal cellular standards. Additionally, ink-jet printing of metal doped inks onto the surface of tissue samples has been applied for drift corrections and quantification. Validation of our results are achieved in comparison to immune-histochemical staining and optical microscopy. In a second example, we used specific metal-tagged antibodies for detection of biomarker specific for prostate cancer. For this purpose, micro tissue arrays are incubated with metal-tagged antibodies for bioimaging of samples from many patients using simultaneous detection of all relevant biomarkers and their tags. For improvement of sensitivity in the next example application nanoparticle tagged antibodies for detection of metallothionines in eye lens tissue samples will be discussed. Recently we have used our tagging and staining strategies to determine the cell cycle of single cells, which is of future interest for toxicological studies. Finally, future trends in elemental microscopy and mass cytometry imaging will be discussed. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Single cell analysis KW - LA-ICP-MS KW - Immuno-Assays PY - 2018 AN - OPUS4-45160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Glass transition of thin polymeric films as revealed by calorimetric and dielectric techniques N2 - The structure and dynamics of thin polymeric films is reviewed and discussed in the frame work of novel theoretical approaches T2 - Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 03.06.2018 KW - Thin polymeric films KW - Dielectric spectroscopy KW - Thermal süectroscopy PY - 2018 AN - OPUS4-45164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Winkler, J. T1 - Standardization of ellipsometry N2 - The talk addresses the STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: historical background of ellipsometry, history of International Conferences on Ellipsometry, Workshops Ellipsometry in Germany and Europe, information on German/European Working Group Ellipsometry, technical/industrial importance of ellipsometry, applications on non-ideal material systems and standardization activities on ellipsometry. T2 - DIN NA Dünne Schichten für die Optik, Mainz CY - Mainz, Germany DA - 06.06.2018 KW - Standardization KW - Ellipsometry KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-45167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -