TY - GEN A1 - Dittmann, Daniel T1 - Experimental raw data for "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" N2 - This is the repository of all experimental raw data used in the Scientific Reports publication "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" by Daniel Dittmann, Paul Eisentraut, Caroline Goedecke, Yosri Wiesner, Martin Jekel, Aki Sebastian Ruhl, and Ulrike Braun. It includes - overview_measurements.xlsx and overview_measurements.ods containing a list of all TGA experiments (TGA, TGA-FTIR, TED-GC-MS, and ramp-kinetics) - TED-GC-MS.zip containing gas chromatography-mass spectrometry experimtent files for the Chemstation and OpenChrom - TGA.zip containing thermogravimetric analyses raw data on evolved gas analyses experiments (TGA-FTIR and TED-GC-MS) - TGA_kinetics.zip containing thermogravimetric analyses raw data on decomposition kinetic experiments (ramp-kinetics) - TGA-FTIR.zip containing Fourier-transform infrared spectroscopy series files for OMNIC - XRF.zip containing x-ray flourescence data on elemental composition KW - Adsorption KW - Aktivkohle KW - TED-GC/MS KW - Thermoanalytik PY - 2020 DO - https://doi.org/10.5281/zenodo.3716316 PB - Zenodo CY - Geneva AN - OPUS4-51902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray Non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. T2 - Ruhr Universität Bochum - Seminar materials science and technology CY - Online meeting DA - 12.11.2020 KW - X-ray imaging KW - Non-destructuve testing KW - Functional materials PY - 2020 AN - OPUS4-51905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David T1 - From W. C. Röntgen to modern Tomography N2 - A not complete review of X-Ray related milestones from 1895 to the 21st century. T2 - ITN GW4SHM, First Training Event CY - Online Meeting DA - 23.11.2020 KW - X-Ray KW - Computed Tomography KW - Laminography KW - Digital Detector Arrays KW - Wilhelm Conrad Röntgen PY - 2020 AN - OPUS4-51881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super resolution KW - Photothermal KW - Imaging KW - Compressed sensing KW - Internal defects KW - Nondestructive testing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518866 DO - https://doi.org/10.48550/arXiv.2007.03341 SN - 2331-8422 SP - 1 EP - 9 PB - Cornell University CY - Ithaca, NY AN - OPUS4-51886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias T1 - Non-Destructive Testing - Electromagnetic Methods N2 - This presentation contains a short summary about the basics of eddy current testing and magnetic flux leakage testing. In addition, the main focus of the talk lies on the application of point-like sensors like GMR for NDT. T2 - 1st Training Event - ITN project GW4SHM CY - Online meeting DA - 23.11.2020 KW - GMR KW - Magnetic flux leakage testing KW - Eddy current testing PY - 2020 AN - OPUS4-51889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Léonard, Fabien T1 - Overview of XCT data processing workflow for ammonium nitrate prills quantitative analysis N2 - This video presents the data processing workflow that was developed to perform the quantitative structural and morphological analysis of ammonium nitrate prills by x-ray computed tomography. KW - ANFO KW - Data processing KW - Explosives KW - Porosity KW - Surface area KW - XCT PY - 2020 DO - https://doi.org/10.5281/zenodo.3611339 PB - Zenodo CY - Geneva AN - OPUS4-51897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grossegesse, M. A1 - Hartkopf, F. A1 - Nitsche, A. A1 - Schaade, L. A1 - Doellinger, J. A1 - Muth, Thilo T1 - Perspective on Proteomics for Virus Detection in Clinical Samples N2 - One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted. KW - COVID-19 KW - Mass spectrometry KW - Virus diagnostics KW - Virus detection KW - Targeted mass spectrometry KW - Proteomics PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00674 SN - 1535-3907 VL - 19 IS - 11 SP - 4380 EP - 4388 PB - ACS AN - OPUS4-51633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sajulga, R. A1 - Easterly, C. A1 - Riffle, M. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Mehta, S. A1 - Kumar, P. A1 - Johnson, J. A1 - Gruening, B. A1 - Schiebenhoefer, H. A1 - Kolmeder, C. A1 - Fuchs, S. A1 - Nunn, B. A1 - Rudney, J. A1 - Griffin, T. A1 - Jagtap, P. T1 - Survey of metaproteomics software tools for functional microbiome analysis N2 - To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform. KW - Bioinformatics KW - Metaproteomics KW - Mass spectrometry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516358 DO - https://doi.org/10.1371/journal.pone.0241503 SP - e0241503 AN - OPUS4-51635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichel, V. E. A1 - Matuszak, J. A1 - Bente, Klaas A1 - Heil, T. A1 - Kraupner, A. A1 - Dutz, S. A1 - Cicha, I. A1 - Faivre, D. T1 - Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool N2 - Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity. KW - Iron oxide KW - Nanoparticle KW - Theranostics KW - MRI KW - Hyperthermia PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515993 DO - https://doi.org/10.3390/nano10102014 VL - 10 IS - 10 SP - 2014 PB - MDPI AN - OPUS4-51599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg T1 - Novel Technique for On-Line Monitoring of the Curing Process of Fiber Reinforced Polymer Composites N2 - A specially designed experimental set up has been integrated into a commercially available FT IR Spectrometer for ATR experiments on Epoxy Systems. Representative data of far infrared spectra measured during the curing process at different temperatures of an epoxy system will be presented in dependency of the curing situation. The experiments and the selected set up are discussed to demonstrate its potential for future monitoring and ageing control applications during a manufacturing process of polymer composites. T2 - 45. International Confercene on infrared, milimeter and terahertz waves CY - Online meeting DA - 08.11.2020 KW - Far-infrared spectroscopy KW - Curing Monitoring PY - 2020 UR - https://live-irmmwthz.pantheonsite.io/technical-program AN - OPUS4-51649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine T1 - Evaluation of Advanced NDT-Methods for Measurement of Fibre Orientation in Concrete N2 - Integration of fibre reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel fibre reinforced concrete (FRC) is the deceleration of crack growth and hence it’s improved sustainability due to e.g. decrease of permeability of concrete by aggressive substances. Additional benefits are associated with the structural properties of FRC, where fibres can significantly increase the ductility and the tensile strength of concrete. In some applications, such as tunnel linings or industrial slabs, it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fibre reinforcement can, however, have critical disadvantages and even hinder the performance of concrete, since it can induce an anisotropic material behaviour of the mixture if the fibres are not appropriately oriented. For a safe use of FRC in the future, reliable non-destructive methods need to be identified to assess the fibres’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computer tomography have been investigated for this purpose using specially produced samples with biased or random fibre orientations. This paper demonstrates the capabilities of each of these NDT techniques for fibre orientation measurements and draws conclusions based on these results about the most promising areas for future research and development using these techniques. T2 - fib2020 Shanghai CY - Online meeting DA - 22.11.2020 KW - Ultrasonic testing KW - Steel fibre reinforced concrete (FRC) KW - Fibre orientation KW - X-ray computed tomography (CT) KW - Electrical impedance PY - 2020 AN - OPUS4-51651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schade, U. T1 - Etalon Effects in THz Film Measurements N2 - Etalon effects in THz transmittance spectra, either taken in time-domain or frequency-domain, often hamper or even hinder the interpretation of film properties. In this paper we discuss the transferability and applicability of spectroscopic methods usually employed in the near and mid infrared spectral range and exemplarily present the application field. T2 - 45. International Confercene on infrared, milimeter and terahertz waves CY - Online meeting DA - 08.11.2020 KW - Far-infrared spectroscopy KW - Etalon Effects PY - 2020 UR - https://live-irmmwthz.pantheonsite.io/technical-program AN - OPUS4-51652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kulow, Anicó T1 - Spatial Resolved Dispersive X-Ray Absorption Spectroscopy and Coded Aperture X-Ray Fluorescence Imaging N2 - One aim of this work was the development of a new setup for time- and laterally resolved XAFS measurements, based on the pronciple of dispersive XAFS. This setup is scanning free, stable, inexpensive, and straightforward to adjust for probing different elements. The second part of this work describes the impelemntation of a method for full-field X-ray fluorescence imaging with coded apertures. Expensive and complicated X-ray otpics, that are usually used for full-field imaging, are replaced with a coded aperture that consists of many pinholes drilled in an X-ray opaque material. Coded apertures are inexpensive to fabricate, energy independent and easy to use. The working principle is the same as with a pinhole camera, but the multiple holes allow a higher photon flux compared to a single pinhole or even a polycalippary optic, thus alowwing the reduction of measurement time. KW - X-ray fluorescence imaging KW - Coded Apertures KW - X-ray absorption spectroscopy KW - Synchrotron PY - 2021 SP - 1 EP - 175 CY - Berlin AN - OPUS4-52054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Reference Materials at BAM N2 - A introduction into reference materials, the certification process and brief over current reference projects at BAM is given. T2 - AK-Postdoc seminar CY - BAM Berlin, Germany DA - 02.02.2021 KW - Referenzmaterialien KW - Reference material KW - Homogeneity KW - Stability KW - Quality testing KW - Analytic KW - DNA KW - Dosimetry KW - Certification PY - 2021 AN - OPUS4-52060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Garwek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Do Interfacial Layers in Thin Films Act as an Independent Layer Within Thin Films? N2 - The thermodynamic behavior of thin PVME films including the irreversible adsorbed layer on the substrate is investigated. In a first step, the growth kinetics of the adsorbed layer was studied combining a leaching technique and atomic force microscopy. Further, it was shown that there is a critical initial film thickness for the formation of a surface-filling adsorbed layer. Additionally, spectroscopic ellipsometry measurements were carried out to investigate the influence of the adsorbed layer on the glass transition temperature of the thin films. For 30 nm films and below, the influence of the adsorbed layer percolates strongly to the bulk-like layer of the film. Finally, the molecular dynamics of the adsorbed layer was studied by broadband dielectric spectroscopy, employing nanostructured-electrode systems. One process was revealed, which was assigned either to molecular fluctuations taking place in a loosely-bounded the part of the adsorbed layer, or to the desorption/adsorption of segments at the substrate. KW - Thin polymer films PY - 2021 DO - https://doi.org/10.1021/acs.macromol.0c02149 VL - 54 IS - 1 SP - 509 EP - 519 PB - ACS Publications AN - OPUS4-52037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Karbach, H. A1 - Bell, A. M. A1 - Bauer, O. B. A1 - Karst, U. A1 - Meermann, Björn T1 - Determination of metal uptake in single organisms, Corophiumvolutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laserablation/inductively coupled plasma mass spectrometry N2 - Rationale: (Eco-)toxicological effects are mostly derived empirically and are notcorrelated with metal uptake. Furthermore, if the metal content is determined,mostly bulk analysis of the whole organism population is conducted; thus, biologicalvariability is completely disregarded, and this may lead to misleading results. Toovercome this issue, we compared two different solid sampling techniques for theanalysis of single organisms.Methods: In this study, complementary electrothermal vaporization/inductivelycoupled plasma mass spectrometry (ETV/ICP-MS) , laser ablation/inductivelycoupled plasma mass spectrometry (LA/ICP-MS)-based methods for the analysisof individual organisms were developed and the results obtained were comparedwith the concentrations obtained after digestion and measured using ICP-MS.For this purpose, a common (eco-)toxicological test organism, the mud shrimpCorophium volutator, was selected. As proof-of-concept application, these organismswere incubated with environmentally relevant metals from galvanic anodes, whichare often used for protection against metal corrosion in, for example, offshorewind farms.Results: The bulk analysis revealed that large quantities of the incubated elementswere detectable. Using the ETV/ICP-MS method, we could identify a highbiovariability within the population of organisms tested. Using the LA/ICP-MSmethod, it could be determined that the large quantities of the elements detectedwere due to adsorption of the metals and not due to uptake, which correlates wellwith the absence of (eco-)toxicological effects.Conclusions: The results obtained imply the efficiency of complementary methods toexplain the absence or presence of (eco-)toxicological effects. In particular, methodsthat allow for single-organism analysis or provide even a spatial resolution supportthe interpretation of ecotoxicological findings. KW - ICP-MS KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2021 DO - https://doi.org/10.1002/rcm.8953 VL - 35 IS - 2 SP - e8953 AN - OPUS4-52077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Kneipp, Janina T1 - Surface Molecular Patterning by Plasmon-Catalyzed Reactions N2 - Self-assembled monolayers (SAMs) on plasmonic substrates play a significant role applications of surface-enhanced Raman scattering (SERS). At the same time, localized surface plasmon resonances (LSPRs) can be employed for a broad range of plasmon-supported chemical modifications. Here, micropatterning using the derivatization of SAMs on gold nanosubstrates for rewritable SERS-based security labels or as the basis for sensing arrays functionalized with biomolecules is demonstrated using different plasmon-catalyzed reactions. The formation of 4,4′-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) as well as from p-nitrothiophenol (PNTP) and the reduction of PNTP to PATP are used to change the functionality of the substrate in specified positions. Employing LSPR, the reactions are started by illumination using visible laser light at a high intensity in a focal spot of a microscope objective and yield microscopic patterns of the reaction product. The obtained molecular patterns can be erased by other reactions, enabling different strategies for rewriting, encryption, or stepwise functionalization. KW - 4,4′-dimercaptoazobenzene KW - Surface molecular patterning KW - Plasmon-catalyzed reactions KW - p-aminothiophenol KW - p-nitrothiophenol PY - 2021 DO - https://doi.org/10.1021/acsami.1c12410 SN - 1944-8252 VL - 13 IS - 36 SP - 43708 EP - 43714 PB - ACS Publications AN - OPUS4-53341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Reverse deposition of TI-oxides under nanosecond laser ablation of TI N2 - Processes of laser induced oxidation of metals are typically studied in the framework of heterogeneous chemical reactions occurring on the irradiated surface, which lead to the formation of dense oxide films deposited on it. Such technology has many applications like color-laser marking technology and laser recording on thin metal films for creation of diffractive optical elements . Under the conditions of strong laser ablation, another oxidation mechanism becomes possible: evaporated atoms react with oxygen in a surrounding atmosphere and the products of such reaction are redeposited back onto the substrate. The chemical and phase composition of such deposited layer, its density, morphology and structure depend on the conditions of laser ablation. By varying these conditions, the main properties of such coating can be controlled that is important for some potential application (for example in biomedicine). In our report we present the study of the processes of redeposition of oxides structure under the conditions of multipulse nanosecond laser ablation of titanium (Grade 2) in air atmosphere at normal conditions. Our experiments show that titanium-implants with such deposited oxide layer have increased biocompatibility. Modelling of chemical reaction in laser-induced plasma coupled with experimental methods of plasma optical emission spectroscopy allows us to determine the types of main chemical reactions in laser plasma as well as it influences on the plume dynamics and vapor condensation kinetics. As a result, we propose the general physical picture of reverse deposition of oxides structure under the condition of strong nanosecond laser ablation. The formation of the titanium oxide precipitate is explained not only by collisions in the plasma, but also by the chemical interaction of titanium and oxygen, which leads to the formation of а low pressure area near the substrate and additionally stimulates the reverse deposition of oxides. We expect, similar processes are valid not only for titanium but also for other metals and, possibly, semiconductors. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.1117/12.2586078 SN - 0277-786X VL - 11743 SP - 1 EP - 11 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-53247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 AN - OPUS4-53249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena T1 - Development of a standard series for ellipsometry N2 - Ellipsometry is a powerful tool, which allows the investigation of material properties over a broad spectral range. Over the course of several years, the ellipsometry lab at BAM has become an accredited testing lab according to ISO/IEC 17025 laying bare the need of better methods for accuracy and traceability. Despite its wide range of application in both research and development as well as industry, there have been no generally accepted standards dealing with model validation and measurement uncertainties. Based on the first German standard DIN 50989 – 1: 2018 Ellipsometry - Part 1: Principles (currently international standard ISO 23131: 2021) and under consideration of GUM [1] a series of standards for ellipsometry was developed. The entire 6-part series covers several model-based application cases. This standards series avoids having narrow and material specific application cases but instead classifies applications of ellipsometry according to the sample complexity. The concept of ellipsometric transfer quantities (Ψ and Δ or alternatively the elements of transfer matrices) is implemented in the series. For each application case a model-based validation strategy was developed. Thus, the standards are applicable to all materials, instruments and measuring principles. The uniform structure concept of the series facilitates its practical applicability for users. The standards include the model-based GUM-compliant determination/estimation of the measurement uncertainties. In addition, the appendices of the documents contain numerous measurement and simulation examples as well as recommendations for measuring practice. In this contribution we present the application cases and basic structure of the standards developed in collaboration with Accurion GmbH and SENTECH Instruments GmbH in the project SNELLIUS. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Standardization of ellipsometry KW - DIN 50989 Parts 1 – 6 KW - ISO 23131: 2021 KW - Validation concepts of ellipsometric measurements KW - Uncertainty budgets KW - GUM-compliance PY - 2021 AN - OPUS4-53250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart T1 - Detection of PFAS pollution in environmental samples - A Fast & sensitive PFAS sum parameter method using HR CS GFMAS N2 - The substance class of per- and polyfluorinated alkyl substances (PFAS) comprises more than 5300 organic compounds. PFAS are completely fluorinated on at least one carbon atom. They are associated with negative impacts on human and animal health, are extremely persistent in the environment, and bioaccumulate along food chains. Therefore, PFAS are classified as emerging pollutants. At the same time, their physicochemical properties make them attractive for use in diverse technical applications. They are both hydrophobic and lipophobic and show high thermal as well as chemical resistance due to the strong C-F bond. First regulations of some PFAS in combination with the technically excellent properties generated an innovation pressure and led to an enormous increase in the number of fluorinated substitution compounds. Due to the increasing complexity of this substance class, target analysis is not able to cover such a variety and multitude of analytes. Therefore, a suitable PFAS sum parameter method is necessary for an accurate detection of PFAS pollution in the environment, the identification of PFAS hotspots and an evaluation of appropriate remediation measures. Here we provide insights into the current state of PFAS sum parameter development and present our latest results on method development for the quantitative analysis of PFAS as extractable organically bound fluorine (EOF) in environmental samples using high-resolution molecular absorption spectrometry (HR-CS-GFMAS). For this purpose, we optimized the extraction of PFAS from different solid matrices with simultaneous separation of inorganic fluoride. For quantification resulting extracts were measured using a fluorine specific HR-CS-GFMAS method. By adding gallium salt solutions as modifiers in HR-CS-GFMAS, fluorine can be indirectly quantified very selectively by the in situ formation of GaF with low limits of quantification (instrumental LOQ c(F) < 3 µg/L). Here we will show results from real soil samples from sites with and without known contamination. T2 - 6. Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS) CY - Online meeting DA - 20.09.2021 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soil KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2021 AN - OPUS4-53333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tscheuschner, Georg T1 - MALDI-TOF MS Fingerprinting of Antibodies in Less Than One Hour N2 - Antibodies are the most used biomolecules in analytical research. Nevertheless, the sequence and structure information of antibodies is often limited, since manufacturers keep them secret or suppliers sell them under different names. This can make it difficult to reproduce even basic experiments performed in publications as the antibodies used might not be identifiable. To overcome these problems, we developed a simple and cheap method for antibody identification by MALDI-TOF-MS fingerprinting. This technique was used to generate a library of antibody fingerprints, which enables the identification and comparison of antibodies in short time. T2 - SALSA Make and Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Hydrolysis KW - Acid KW - Trypsin KW - Digestion KW - Fragment KW - Peptides KW - Mass spectrometry KW - Database KW - Clones KW - Monoclonal antibodies PY - 2021 AN - OPUS4-53294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Accuracy, traceability, and standardization in spectroscopic ellipsometry N2 - Ellipsometry has been an extremely successful and fast expanding method in the past decades along with other related techniques using polarisation sensitive measurements. Opening new fields of application for a successful measurement technique brings some requirements and issues that have to be solved. From a metrological point of view, ellipsometry has the problem that uncertainties are difficult to determine for model-based analysis techniques in general. In this presentation, we will explore how the usefulness of polarimetric methods like ellipsometry can be increased. Ellipsometry as a method could profit from several current developments which will be discussed in this presentation: • Standardisation initiatives on national and international level developing standards for best practice when using ellipsometry. A series of at least six standards is currently developed on national German and international level covering different levels of sample complexity. • Projects on traceability of ellipsometry and structured surface spectrometry as well as new dielectric function database initiatives. • Metadata handling and data ontology providing a better framework for exchange and collaborative use of research data. We will also explore the quantification of measurement uncertainty using examples from projects in which BAM is involved. Examples will be presented of multilayer and non-ideal materials as well as the determination of layer properties for technical applications such as thin layer catalysts and complex polymers. The definition of reference materials will be discussed. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ellipsometry KW - Uncertainty KW - Surface analytics KW - Data science PY - 2021 AN - OPUS4-53295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian T1 - A fast and simple PFAS extraction method for soil samples utilizing HR-CS-GFMAS N2 - Here, we describe a fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) utilizing extractable organic fluorine (EOF) sum parameter analysis and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) in soil samples. After extraction and separation of inorganic and organic fluorinated compounds, organically bound fluorinated compounds were indirectly determined via the molecular absorption of gallium mono-fluoride at 211.248 nm. The implementation of the decisions of the “Stockholm Convention on persistent organic pollutants” as well as the “Protocol on Persistent Organic Pollutants of the Convention on Long-Range Transboundary Air Pollution” of the UNECE include the reduction respectively the elimination of PFASs in the environment. Currently, regulations aim to target single compounds (mostly C8-PFAS). But the PFAS group includes over 4700 substances, which are potentially persistent and toxic, thus target analytical approaches are not suitable for a holistic approach investigating the PFAS pollutant situation. Furthermore, forbidden PFASs are substituted by short-chain PFASs, thus the number of unknow substances is steadily increasing. For this reason, sum parameter approaches are more suitable to investigate and assess the pollution situation as well as derive exposure limits. Our developed analytical method was successfully applied to determine PFASs in soil samples from a polluted site. In view of steadily increasing numbers of PFAS substances, our method will make an important contribution in assessing the pollution situation as well as support policy makers in deriving exposure limits for PFAS in the future. T2 - SALSA Make and Measure ... and Machines CY - Online meeting DA - 16.09.2021 KW - PFAS KW - HR-CS-GFMAS KW - IC KW - EOF KW - Soil PY - 2021 AN - OPUS4-53302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark side of Science N2 - We all may have started out as bright-eyed students trying to do science to the best of our abilities, but over time, some of us have gradually drifted to the dark side. The dark side of science has an impressive publication rate in high-ranking journals, good success with funding agencies, and rocks the world with stellar findings. Unfortunately, these findings aren't real, either by accident or on purpose. As the presenter and his colleagues found, trying to correct or even dispute any of these findings in literature is a supremely complex and time-consuming effort. With no recent reduction in the frequency of such false findings, it is up to us to try to stem the flow. Besides looking at examples, we need to understand the underlying driving forces behind this dark scientific movement. By combining this understanding with a refresher of the core scientific principles, we can then develop the necessary argumentative tools and mechanisms that may prevent our own slide down the slippery slope. This talk will therefore start out with several entertaining examples of probably accidental, as well as definitely deliberate, false scientific findings in literature (and in particular in the field of materials research). We will then take a brief look at the possible causes for these developments, after which some tools will be presented that can help both the fresh as well as the well-seasoned scientist to rise up against the dark side. T2 - DGM special event (invited lecture) CY - Online meeting DA - 23.06.2021 KW - Scientific fraud KW - Reproducibility crisis KW - Bad science KW - Scientific method KW - Publication pressure PY - 2021 AN - OPUS4-53274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias T1 - Laser-based building material sorting for the processing of construction and demolition waste for the circular economy N2 - A joint project of partners from industry and research institutions for the research and construction of an analysis system for an automated, sensor-supported sorting of construction and demolition waste will be presented. This is intended to supplement or replace the previously practiced manual sorting, which harbors many risks and dangers for the staff and only enables obvious, visually detectable differences for separation. The method of laser-induced breakdown spectroscopy is to be used in combination with hyperspectral sensors. Due to the jointly processed information (data fusion), this should lead to a significant improvement in the separation of types. In addition to the sorting of different materials (concrete, main masonry building materials, organic components, glass, etc.), impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.) could also be detected and separated. The subsequent recycling and sales opportunities are examined, such as the use of recycled aggregates in concrete, the recycling of building materials containing sulphate as a gypsum substitute for the cement industry or the agglomeration of synthetic lightweight aggregates for lightweight concrete or as a substrate for green roofs. At the same time, it is investigated whether soluble components (sulfates, heavy metals, etc.) can be detected by LIBS without a wet chemical analysis and what impact the recycling materials have on the environment. The entire value chain is examined using the example of the Berlin location in order to minimize economic / technological barriers and obstacles on a cluster level and to sustainably increase the recovery and recycling rates. T2 - Materials Week 2021 CY - Online meeting DA - 07.09.2021 KW - Laser induced breakdown spectroscopy KW - Building waste KW - Circular economy KW - Material sorting PY - 2021 AN - OPUS4-53286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The poster presents the main achievements of the capacity building project ALCOREF “Forensic alcohol reference materials”. The project was part of the European Metrology Programme for Innovation and Research (EMPIR). Altogether 43 certified ethanol in water reference materials (CRMs) in the mass fraction range of 0.1 to 7 mg/g were developed by project partners. These CRMS are suitable for the calibration and verification of evidential breath alcohol analysers according to the requirements of the International Organisation of Legal Metrology (OIML). Furthermore, 10 new or improved Calibration and Measurement Capability (CMC) claims for purity assessment of ethanol and ethanol quantification were prepared. Newly established measurement capabilities and the new CRMs were successfully tested in three intercomparisons conducted as official intercomparisons of EURAMET Technical Committee for Metrology in Chemistry. T2 - 20th International Metrology Congress CIM CY - Lyon, France DA - 07.09.2021 KW - Certified reference material KW - EMPIR project KW - Evidential breath alcohol measurement PY - 2021 AN - OPUS4-53288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical detection of defects during laser metal deposition: Simulations and experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. KW - Additive manufacturing KW - Laser metal deposition (LMD) KW - Thermal model KW - Optical sensor KW - Process control PY - 2021 DO - https://doi.org/10.1016/j.apsusc.2021.151214 SN - 0169-4332 VL - 570 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lee, Hee-Jin A1 - Rühl, Isabel T1 - Phosphorus sum parameter analysis using HR-CS-GFMAS N2 - Organophosphate (OP) esters (OPEs) are widely used as flame retardants (FRs) and can for that purpose be found in textiles, furnitures, electronics and more. They can also be used as plasticizers or lubricants. OPEs have been found in air, water and sediment as environmental pollutants and are associated with potential health risks like cancer. In this study, a method for the phosphorus sum parameter analysis using HR-CS-GFMAS was optimized for environmental (water) samples. For this purpose, three FR substances (TPP, VPA, TDCPP) were used. T2 - SALSA Make and Measure ... and Machines CY - Online meeting DA - 16.09.2021 KW - HR-CS-GFMAS KW - Phosphorus KW - Organophosphate esters KW - Flame retardants PY - 2021 AN - OPUS4-53303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin T1 - Taking Fluorine Interaction to the Extremes using XRD and DFT Simulations N2 - This work aims to investigate the role of F-F and F-π interactions in dictating structural and mechanical properties, through a combination of X-ray powder diffraction and dispersion-corrected density functional. As no benchmarking data exist for F-dominating organic system, we first assess how different functionals affect the mechanical properties of the material. T2 - CRC 1349 Fluorine-Specific Interactions Symposium CY - Online meeting DA - 27.09.2021 KW - High Pressure KW - Fluorine Interaction KW - Hexafluorobenzen KW - Density Functional Theory PY - 2021 AN - OPUS4-53654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Simões, R. G. A1 - Bernardes, C. E. S. A1 - Ramisch, Yen A1 - Bienert, Ralf A1 - Röllig, Matthias A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Real-Time In situ XRD Study of Simvastatin Crystallization in Levitated Droplets N2 - Simvastatin (SV) is an important active pharmaceutical ingredient (API) for treatment of hyperlipidemias, which is known to exist in different crystalline and amorphous phases. It is, therefore, an interesting model to investigate how the outcome of evaporative crystallization in the contactless environment of an acoustically levitated droplet may be influenced by key experimental conditions, such as temperature, solvent properties (e.g., polarity and hygroscopicity), and dynamics of the evaporation process. Here, we describe a real-time and in situ study of simvastatin evaporative crystallization from droplets of three solvents that differ in volatility, polarity, and protic character (acetone, ethanol, and ethyl acetate). The droplet monitorization relied on synchrotron X-ray diffraction (XRD), Raman spectroscopy, imaging, and thermographic analysis. A pronounced solvent-dependent behavior was observed. In ethanol, a simvastatin amorphous gel-like material was produced, which showed no tendency for crystallization over time; in ethyl acetate, a glassy material was formed, which crystallized on storage over a two-week period to yield simvastatin form I; and in acetone, form I crystallized upon solvent evaporation without any evident presence of a stable amorphous intermediate. The XRD and Raman results further suggested that the persistent amorphous phase obtained from ethanol and the amorphous precrystallization intermediate formed in ethyl acetate were similar. Thermographic analysis indicated that the evaporation process was accompanied by a considerable temperature decrease of the droplet surface, whose magnitude and rate correlated with the solvent volatility (acetone > ethyl acetate > ethanol). The combined thermographic and XRD results also suggested that, as the cooling effect increased, so did the amount of residual water (most likely captured from the atmosphere) remaining in the droplet after the organic solvent was lost. Finally, the interpretation of the water fingerprint in the XRD time profiles was aided by molecular dynamics simulations, which also provided insights into the possible role of H2O as an antisolvent that facilitates simvastatin crystallization. KW - Simvastatin KW - In-situ KW - API KW - Crystallization PY - 2021 DO - https://doi.org/10.1021/acs.cgd.1c00509 SN - 1528-7483 VL - 21 IS - 8 SP - 4665 EP - 4673 PB - ACS Publications AN - OPUS4-53663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Möckel, J. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Sack, I. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Taupitz, M. A1 - Adams, L. C. A1 - Keller, S. A1 - Ludwig, A. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging N2 - Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls’ Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis. KW - Magnetic resonance imaging KW - MRI KW - Imaging KW - Human serum albumin KW - Extracellular matrix KW - Macrophages KW - Contrast agent KW - Atherosclerotic plaques KW - Gadofosveset KW - Aneurysm PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536725 DO - https://doi.org/10.3390/biology10100964 VL - 10 IS - 10 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Ermakov, A. A1 - Kornev, R. A1 - Gornushkin, Igor B. T1 - Laser induced dielectric breakdown in reactive mixture SiF4 + H2 N2 - Important chemical process of reduction of SiF4 by hydrogen is realized in laser induced dielectric breakdown (LIDB) plasma in a gas mixture of SiF4 and H2. The process may be an alternative to a method of Plasma enhanced chemical vapor deposition (PECVD) which is commonly used for production of pure and isotopically pure silicon films. The composition of laser induced plasma in gases SiF4, SiF4 + H2, SiF4 + H2 + Ar at atmospheric pressure is studied and compared to the composition of inductively coupled plasma (ICP) in the same gases but at reduced pressure of 3 Torr. The gaseous products of chemical reactions are inferred from optical emission spectroscopy (OES) and IR spectroscopy. The reaction products of silicon fluoride SiF and fluorosilanes SiHxFy (x, y = 1, 2, 3) in LIDB plasma are observed and confirmed by equilibrium chemistry calculations and simulations of plasma expansion dynamics using a fluid dynamic-chemical plasma model. It is further suggested that chemisorption of fluorinated species like SiFx (x = 1, 2) followed by the surface reaction with H-atoms lead to a formation of silicon-to‑silicon bonds on a substrate surface. A conclusion is drawn that energetic laser induced plasma can prove efficient for one-step PECVD by hydrogen reduction of SiF4. KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2021 DO - https://doi.org/10.1016/j.sab.2021.106099 VL - 179 SP - 106099 PB - Elsevier B.V. AN - OPUS4-53583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Application of Diffusive Gradients in Thin-films (DGT) and spectroscopic techniques to analyze phosphorus in soils N2 - A wide range of analytical methods are used to estimate the plant-availability of soil phosphorus (P). Previous investigations showed that analytical methods based on the Diffusive Gradients in Thin films (DGT) technique provide a very good correlations to the amount of bioavailable nutrients and pollutants in environmental samples (Davison 2016, Vogel et al. 2017). However, the DGT results do not identify which P compound of the soil has the high bioavailability. But there are various spectroscopic techniques (infrared, Raman, P K-edge and L-edge XANES and P NMR spectroscopy) available to characterize P species in soils. Therefore, spectroscopic investigation of DGT binding layers after deployment allow us to determine the specific compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared, P K- and L-edge X-ray absorption near-edge structure (XANES) and NMR spectroscopy, respectively. Additionally, microspectroscopic techniques make it also possible to analyze P compounds on the DGT binding layer with a lateral resolution down to 1 μm2. Therefore, species of elements and compounds of e.g. a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients in the environment. T2 - SPP1685 Closing Conference: New Approaches to Ecosystem Nutrition - Phosphorus and Beyond CY - Freiburg, Germany DA - 25.10.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling PY - 2021 AN - OPUS4-53641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling Equilibrium Chemistry in Laser Induced Plasmas and Plasma Chemical Reactors N2 - A brief introduction will be given on modeling chemical reactions in laser induced plasmas using stoichiometric and non-stoichiometric approaches. Several applications will be considered, which can benefit from such modeling. Those include plasma enhanced chemical vapor deposition (PECVD), surface modification and surface coating, and molecular analysis by LIBS. Each application will be illustrated by simulations of relevant chemical systems. For PECVD, chemical systems are BCl3/H2/Ar, BF3/H2/Ar, BCl3/BF3, Mo/BF3/H2; for surface modification/coating it is Ti/air; for molecular LIBS they are CaCO3/Ar, Ca(OH)2/Ar, and CaCl2/Ar. Advantages and shortcomings of equilibrium chemical hydrodynamic models of laser induced plasmas will be discussed. T2 - Moscow University, Department of Chemistry CY - Moscow, Russia DA - 26.10.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Emission spectroscopy KW - Surface coating KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg Manfred A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul T1 - Microplastic analysis using TED-GC/MS: H/D-Exchange of decomposition products of D-marked polystyrene as an internal standard N2 - Deuterated polystyrene (D-PS) improves microplastic detection with TED-GC / MS, among other things through higher reproducibility. It is inexpensive (0.1 ct / analysis) and can be dosed quickly and reproducibly thanks to its good solubility (e.g. in toluene). However, certain matrices lead to an exchange of the deuterium with hydrogen. The poster shows the measuring principle, in which matrices H/D-exchange takes place, the results of kinetic studies and ways of preventing or circumventing the H/D-exchange. T2 - SALSA MAKE AND MEASURE 2021 CY - Online meeting DA - 16.09.2021 KW - Microplastic KW - H/D-Exchange KW - Internal Standard KW - TED-GC/MS KW - Thermoanalytic PY - 2021 AN - OPUS4-53681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René T1 - Towards hydrogen economy: correlative ex-situ ellipsometric analysis and operando investigation during oxygen evolution reaction of mesoporous iridium oxides films N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g. film thickness, optical and electronic properties). The fact that the material properties cannot be taken directly from the measured spectra, the developed models have to be validated. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties. Moreover, the electronic structures of the catalysts reveal a direct correlation with electrochemical activities. The development of an environmental cell offers the possibility of investigations under real conditions. This will allow changes in the optical and electronic properties during the electrocatalytic oxygen evolution reaction. T2 - Colloquium Department Seminar 6. CY - BAM, Berlin, Germany DA - 03.03.2020 KW - Hydrogen economy KW - Correlative ex-situ ellipsometric analysis KW - Ellipsometric operando investigation KW - Oxygen evolution reaction KW - Mesoporous iridium oxides films PY - 2020 AN - OPUS4-51215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Fischer, Michael A1 - Thomas, Marcus A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Calibration Service as a Gateway to Sustainable Research and Development N2 - Over decades, the German Federal Institute for Materials Research and Testing (BAM) has established a sophisticated calibration laboratory for force, temperature and electrical quantities. Since more than 15 years it is accredited, currently by the national accreditation body (DAkkS), and offers its service also to external entities on a global scale. As a public provider, we are furthermore committed to research and development activities that demand measurements with highest quality and low level of uncertainties. Two R&D examples are highlighted within this contribution. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Calibration of force KW - Calibration of temperature KW - Calibration of electrical quantities KW - Measurement uncertainty KW - New sensor principles PY - 2020 SN - 978-3-9819376-2-6 DO - https://doi.org/10.5162/SMSI2020/E3.3 SP - 374 EP - 375 AN - OPUS4-51222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nitsche, Michael T1 - Federal Research & development supports market surveillance N2 - Example: Testing and rating of heat pumps and air conditioners Example: Surveillance of Toys Example: Safety of compressed gas storage vessels for Hydrogen T2 - EU Market Surveillance Conference 2020 CY - Online meeting DA - 05.11.2020 KW - Market surveillance PY - 2020 AN - OPUS4-51930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solovyev, N. A1 - El-Khatib, Ahmed A1 - Costas-Rodrigues, M. A1 - Schwab, K. A1 - Griffin, E. A1 - Raab, A. A1 - Platt, B. A1 - Theuring, F. A1 - Vogl, Jochen A1 - Vanhaecke, F. T1 - Cu, Fe and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy N2 - Alzheimer’s disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron and zinc. In AD, distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau May alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared to those for the corresponding age- and gendermatched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain, and in serum of L66 mice compared to WT. For 5xFAD mice, Zn exhibited a trend towards a lighter isotopic composition in brain and a heavier isotopic composition in serum compared to WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition May serve as a marker for proteinopathies Underlying AD and other types of dementia. KW - Alzheimer’s disease KW - Tau KW - Amyloid-beta KW - Copper KW - Iron KW - Zinc KW - Multi-collector inductively coupled plasma-mass spectrometry (ICP-MS) KW - Brain KW - Serum KW - Isotopic analysis KW - Total element determination PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520214 DO - https://doi.org/10.1016/j.jbc.2021.100292 VL - 296 SP - 100292 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -