TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Brown, J. A1 - Hardie, K. A1 - Unger, Wolfgang T1 - Model systems and sample preparation for surface characterisation of bacteria and biofilms by near-ambient pressure XPS N2 - Bacterial samples are typically freeze dried or cryo-prepared prior to XPS analysis to allow for measurements in ultra-high vacuum (UHV). The sample environment in the near-ambient pressure (NAP) XPS instrument EnviroESCA allows for measurements in up to 15 mbar water vapor, thus, sample preparation is no longer restricted to UHV-compatible techniques. For instance, biofilms grown in medium can be transferred directly from the medium to the measurements chamber, maintaining a humid environment throughout the measurements. Considering the complexity of bacterial samples, sample preparation must be carefully considered in order to obtain meaningful and reproducible results. In this talk, various strategies for sample preparation of bacteria and biofilms for NAP-XPS measurements will be discussed. Model systems of planktonic bacteria, artificial biofilms resembling the exopolysaccharide matrix and biofilms have been characterised in various conditions. The stability and homogeneity of the samples was assessed by monitoring the C1s core level peak at different sample locations. The quality of the XPS-spectra is also influenced by the gas environment, which will be exemplified by core level spectra of P. Fluorescens acquired in air, water vapor and ultra-high vacuum. T2 - 18th European conference on applications of surface and interface analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - NAP-XPS KW - Biofilms KW - Bacteria KW - E. coli KW - XPS PY - 2019 AN - OPUS4-49189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Weigert, Florian A1 - Wegner, Karl David T1 - Nanocrystals with Luminescence in the vis, NIR and SWIR – Photophysics and Applications N2 - Luminescent nanocrystals like core/shell semiconductor quantum dots and lanthanide doped nanophosphors as well as gold nanoclusters with emission in the visible (vis) and particularly in the near infrared (NIR) and short wavelength infrared (SWIR) region have been increasingly used as reporters in the life sciences and for bioimaging studies in the last years. This has led to sophisticated core-shell particle architectures of different chemical composition utilizing semiconductor quantum dots and lanthanide-based nanocrystals and initiated the design of gold nanoclusters with different ligands. In addition, this led to an increasing number of quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield to identify optimum particle structures. In the following, an overview of different classes of nanocrystalline emitters and their photophysics is provided and examples for the absolute characterization of the photoluminescence properties of these different vis/NIR/SWIR emitters are shown including excitation power density-dependent studies on the ensemble and single particle level. Also, the impact of such measurements on a profound mechanistic understanding of the underlying nonradiative deactivation pathways is highlighted as required for reporter design. T2 - MIMIT 2019 CY - Peking, People's Republic of China DA - 18.10.2019 KW - Fluorescence KW - Quantum yield KW - Integrating sphere spectroscopy KW - Dye KW - Nanocrystal KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide nanoparticle KW - Old nanocrystal KW - Imaging KW - Lifetime KW - Nanoparticle PY - 2019 AN - OPUS4-49361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Richter, Maria A1 - Schneider, Thomas T1 - Determining Photoluminescence Quantum Yields of Molecular and Nanocrystal Emitters in the UV/vis/NIR/SWIR N2 - The comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters require accurate and quantitative photo-luminescence measurements. This is of special importance for all photoluminescence applications in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. T2 - Kolloqium National Center for Nanoscience and Technology CY - Peking, People's Republic of China DA - 18.10.2019 KW - Fluorescence KW - Quantum yield KW - Integrating sphere spectroscopy KW - Dye KW - Nanocrystal KW - NIR KW - SWIR KW - Quantum dot KW - Fluorescence standard KW - Uncertainty KW - Calibration PY - 2019 AN - OPUS4-49362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuner, Maximilian A1 - Koch, Matthias A1 - Haase, H. A1 - Kühn, S. T1 - Measuring the sum – A novel screening method for ergot alkaloids in food N2 - Ergot alkaloids play a significant role in human history for more than 1000 years and are part of the most common contaminants of food and feed worldwide. Their high toxicity against humans and livestock even at low concentrations causes a high demand for quick and reliable analytics even though no European limits for ergot alkaloids have been determined yet. Currently the most common methods for the quantitation of the six major ergot alkaloids and their corresponding stereoisomers are HPLC based, using either fluorescence or mass spectrometric detection. Whereas these conventional detection methods measure each compound individually, a novel approach is to transfer all ergot alkaloids to one basic structure, which could be measured as a sum parameter. Since all ergots contain a lysergic acid amide moiety and a differing peptide component, cleaving the molecule into a simple lysergic acid derivative, which could be quantified via either HPLC-FLD or MS/MS, is intended. To clean up the cleavage reaction mixture molecularly imprinted polymers (MIPs) are a simple and effective way to separate the desired structure. Due to the selectivity of MIPs, an improved matrix separation is expected, which results in fewer interferences in the FLD and the possibility to measure samples with more complex matrices. When fully developed, the novel method could overcome some major drawbacks of the conventional detection methods. Higher throughput and the need for less well-trained personnel are just two advantages, that should lead to a quick and cheap quantitation of ergot alkaloids. First results of this project will be presented, funded by the German ZIM program (Zentrales Innovationsprogramm Mittelstand) of the Federal Ministry for Economic Affairs and Energy. T2 - WMFmeetsIUPAC 2019 CY - Belfast, UK DA - 14.10.2019 KW - Ergot KW - Mycotoxins KW - Molecularly imprinted polymers PY - 2019 AN - OPUS4-49437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nymark, P. A1 - Hongisto, V. A1 - Radnik, Jörg A1 - Unger, Wolfgang A1 - Kohonen, P. A1 - Haase, A. A1 - Jensen, K. A. A1 - Grafström, R. T1 - Grouping of representative nanomaterials is efficiently executed by combining high-throughput-generated biological data with physicochemical data N2 - Grouping of nanomaterials (NM) promises to serve effectively to reduce the extensive safety testing needs associated with regulatory risk assessment. Key challenges in this task are how to rapidly and cost-efficiently generate the needed data, and how to best combine structural material characteristics with biological effects data. Herein, we performed NM grouping from combining existing physiochemical data with high-throughput screening (HTS)-derived hazard assessment data generated in the human lung epithelial cell line BEAS-2B. Twenty-one NMs from the European Joint Research Centre´s Representative Nanomaterials Repository (diverse nanoforms of substances ZnO, SiO2 and TiO2) and five reference chemicals were analyzed by HTS assays for cytotoxicity/cell viability (CellTiterGlo, Dapi-staining), oxidative stress (8-OHdG), apoptosis (Caspase-3), and DNA damage repair (γH2AX). Additionally, physicochemical data relevant for grouping of NMs under REACH (ECHA, 2017 Appendix R.6-1) were collated for 15 of the NMs, including from EU-funded projects (NanoReg2, caLIBRAte) and the OECD Testing Programme of Nanomaterials. The diverse data types were scaled, normalized and integrated using a newly developed scoring pipeline inspired by the US-EPA Toxicological Prioritization Index (ToxPi). Results demonstrated that the in vitro-derived hazard data permitted substance-based grouping of the selected NMs, whereas integration of physicochemical data deepened the grouping of specific nanoforms within each substance group. Furthermore, a case study on 10 TiO2 NMs showed that hazard-based grouping allowed for read across of physicochemical data between 6 NMs acting as source nanoforms and 4 NMs acting as target nanoforms. The ToxPi tool and scoring pipeline permitted transparent visualization of the final grouping, while giving equal weight to different types of data/results related to structure and biology. Overall, this study aligns fully with the ECHA recommendations for grouping of NM (Appendix R.6-1), i.e. i) to aim at identification of criteria for grouping nanoforms (and non-nanoforms) within one substance, and ii) to provide additional information beyond physicochemical data to support read across between nanoforms. T2 - Eurotox 2019 CY - Helsinki, Finland DA - 08.09.2019 KW - Grouping KW - Nanomaterials KW - Regulatory risk assesment KW - High-throughput screening PY - 2019 AN - OPUS4-49439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Future projects in Microbeam Analysis better Prepared within VAMAS N2 - The presentation points out and discusses potential future projects on microbeam analysis which shall benefit from the pre-standardisation platform VAMAS (Versailles Project on Advanced Materials and Standards) which is basically related to Organisation and participation in international inter-laboratory comparisons. Ideas and strategies of better synergies between VAMAS and ISO projects (including promotion and a dedicated liaison) are discusssed. T2 - 26th Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - Hangzhou, China DA - 23.10.2019 KW - Standardisation KW - Microbeam analysis KW - VAMAS KW - Pre-standardisation PY - 2019 AN - OPUS4-49443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Discussion on the Systematic Review of ISO/DIS 15632 Instrumental Parameters for the Specification and Checking of EDS for Use in EPMA N2 - The Systematic Review of ISO/DIS 15632 Selected Instrumental Parameters for the Specification and Checking of Energy-Dispersive X-Ray Spectrometers for Use in Electron Probe Microanalysers is discusssed. Zero strobe peak, better description of dead-time and of the pulse-processing electronics are the major issues under discussion. T2 - 26th Plenary Meeting of ISO/TC 202 Microbeam Analysis CY - Hangzhou, China DA - 23.10.2019 KW - Standardisation KW - Electron probe microanalysis KW - EDS performance check KW - ISO KW - X-ray detectors PY - 2019 AN - OPUS4-49447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Presentation at AVIC-Workshop - Analysis of the operation of accreditation bodies in Europe N2 - Accreditation is one of the relevant tasks in a modern Quality Infrastructure, as the competence of conformity assessment bodies is assured through accreditation performed by accreditation bodies. To compare the operation of accreditation bodies in Europe and identify best practices a management tool was elaborated and validated by applying it to eight accreditation bodies. The tool made a comparison of the operations of the accreditation bodies possible, despite different sizes, operational processes and organizational forms. The benchmarking project comprised three stages. In the first stage, the processes of accreditation bodies were systematically analyzed. A process map was developed and processes of special relevance for the performance of accreditation bodies were identified and underpinned by indicators. In the second stage, the processes of the German accreditation body Deutsche Akkreditierungsstelle GmbH (DAkkS) were assigned to the tool. This validation stage was used to check and modify the indicators when necessary. In the third stage, the transferability of the model was analyzed by extension to seven other accreditation bodies operating in Europe. The third stage of the project resulted in a workshop attended by experts from the participating ABs, which was used to discuss the results of the comparison and to identify best practices. T2 - Visit & Workshop of NQI Lab SAMR/AVIC and BAM CY - Berlin, Germany DA - 29.10.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-49449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Cu project on calibration approaches for absolute isotope ratios N2 - This presentations summarizes the difficulties in the purification of enriched copper isotopes by high vacuum subimation. It shows as well thelimitations for a CCQM key comparison on this topic. T2 - CCQM Isotope Ratio Work Group Meeting CY - Bern, Switzerland DA - 09.10.2019 KW - Absolute isotope ratio KW - Isotope purification KW - Metal sublimation KW - Gravimtric isotope mixtures PY - 2019 AN - OPUS4-49518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Heckel, Thomas A1 - Brackrock, Daniel T1 - Linear and matrix phased array inspection of complex thin wall components N2 - The application of phased arrays in either linear or matrix arrangement in combination with signal processing opens the door for the mechanized inspection of different thin wall materials itself as well as their joining methods. Modern lightweight components are typically manufactured by a composition of different types of e.g. steels, metals, fiber reinforced plastics and glass. Dependent on the material combinations e.g. welding, brazing, bonding, cladding or coating may be applied during the manufacturing process to join different semi-finished products to form the component. The resulting complex material composition and different damage mechanisms pose new challenges to non-destructive testing with ultrasound due to the different material properties and the overall arrangement of the materials employed. The sound field variation capabilities of array probes may be helpful to overcome some of these challenges if adapted to the specific inspection task. Examples for the non-destructive mechanized phased array inspection of different types of materials and joining methods will be presented. T2 - KINT Symposium CY - Amsterdam, The Netherlands DA - 30.10.2019 KW - Matrix array KW - Phased array KW - Joints PY - 2019 AN - OPUS4-49538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - Emission Testing for Indoor Products N2 - The chemical emissions from products are tested by means of emission test chambers under defined conditions (climate, loading, air change rate). The standard method for the determination of volatile organic compounds (VOC) is the sampling onto Tenax-tubes followed by thermal desorption (TDS) and gas chromatography-mass spectrometry (GC-MS) analysis. The EU-LCI list includes some very volatile organic compounds (VVOC) and some VOC for which there are limitations when using the standard method. For VVOC additional sampling is required using stronger absorbers like Carbotrap or multi-bed adsorption tubes. The analysis of VVOC also requires a different GC oven program and a different column for the separation. For the determination of formaldehyde and other low boiling aldehydes (e.g. acetaldehyde, acetone, propanal, propenal) DNPH-cartridges are used which are extracted with acetonitrile followed by liquid chromatography (HPLC-UV) analysis. The derivatisation of propenal and other unsaturated aldehydes (e.g. 2-butenal) with DNPH might lead to lower findings due to incomplete derivatization and forming of by-products. For a better quantification of acetic acid the use of ion chromatography (IC) is recommended because the analysis of acetic acid with the standard method (TDS) leads to lower findings due to break through during sampling. The use of ion chromatography for the analysis of organic acids requires a third sampling technique. The acids are adsorbed onto silica-gel and extracted with water. T2 - ISESISIAQ 2019 CY - Kaunas, Lituania DA - 18.08.2019 KW - Indoor Air Quality KW - Emission Testing KW - Indoor Products KW - VOC Emission KW - Construction Products PY - 2019 AN - OPUS4-49406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirtsch, Mona A1 - Koch, Claudia A1 - Dudek, Gabriele T1 - Presentation at AVIC-Workshop: BAM initiative QI-FoKuS N2 - QI-FoKuS stands for „Quality Infrastructure – Research for Conformity Assessment and Safety“. Supported by the BMWi, a new recurring survey of companies was launched under this name in end-September 2019 in a joint project between the TU Berlin and the Federal Institute for Materials Research and Testing (BAM). The first company survey deals with the use and certification of management systems with a special focus on information security and the criteria for the selection of certification bodies. T2 - Visit & Workshop of NQI Lab SAMR/AVIC and BAM CY - Berlin, Germany DA - 29.10.2019 KW - Conformity Assessment KW - Information Security KW - Accreditation KW - Certification KW - QI-FoKuS PY - 2019 AN - OPUS4-49477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirtsch, Mona A1 - Blind, K. T1 - Presentation at AVIC-Workshop: Exploring the diffusion of the information security management system standard ISO/IEC 27001 N2 - We explore the adoption and diffusion of the international information security management system standard ISO/IEC 27001 with Web Mining of German firm websites using the Mannheim Enterprise Panel dataset (MUP). T2 - Visit & Workshop of NQI Lab SAMR/AVIC and TU-Berlin CY - Berlin, Germany DA - 31.10.2019 KW - ISO/IEC 27001 KW - Web Mining KW - Information security PY - 2019 AN - OPUS4-49478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Recknagel, Sebastian T1 - Reference materials for non-metal analysis N2 - The procedure for certification of reference materials in BAM in accordance with the rules of ISO Guide 35 is described using examples. In addition, a comprehensive overview of reference materials for the analysis of non-metals oxygen, hydrogen, nitrogen, coal and sulfur is given. T2 - LECO Workshop: CHNOS determination in inorganic (high tec) materials CY - Berlin, Germany DA - 22.10.2019 KW - CRM KW - Non-metal analysis KW - ISO-Guide 35 KW - Reference materials PY - 2019 AN - OPUS4-49458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Krom, I. A1 - Heikens, D. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Baldan, A. T1 - CRMs for (semi-)VOCs in sorbent tubes N2 - EN 16516 sets the test method and requirements for the determination of emissions of Volatile Organic Compounds (VOCs) from building materials into indoor air. To address the quality control requirements for the class of semi-VOCs (SVOCs), VSL developed gaseous reference materials. A novel home-made dynamic gas mixture preparation system, operating according to ISO 6145-4 (continuous injection method), has recently been developed and validated. Thanks to the stable temperature control up to 100 oC, the system can prevent condensation of the SVOCs in air at indoor air concentration levels. The in-situ obtained SVOC gas standards can be sampled in sorbent tubes to obtain SVOC transfer standards. A study was performed to determine the optimal sorbent material and storage conditions. This study will be presented together with the results of the 2018 Round Robin test for emission test chamber measurements organised by BAM. Using the novel system, VSL prepared transfer standards with known amounts of VOCs and SVOCs for participants to evaluate their analytical performance. T2 - Emissions and Odours from Materials CY - Brussels, Belgium DA - 07.10.2019 KW - CRM KW - VOC transfer standards KW - Round robin test KW - Material emissions testing PY - 2019 AN - OPUS4-49423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Ziegler, Mathias T1 - Robot-assisted laser thermography for surface breaking crack detection on complex shaped components N2 - Laser thermography using a focused (spot or line) beam has proved to be effective for detection of surface breaking cracks on planar samples. In this work, we use the same principle, but applied to complex shaped components, like a rail cross-section, a gear, and a gas turbine blade. We use a six-axis robot to move the sample in-front of our thermographic setup. Several scanning-path and thermographic parameters are explored: scanning speed, density of points in each scanning slice, laser power, camera framerate. Additionally, we explore semi-automatic evaluation algorithms for crack detection, as well as 2D-to-3D registration of the found indications. T2 - SPIE Future Sensing Technologies 2023 CY - Yokohama, Japan DA - 18.04.2023 KW - Flying line thermography KW - Crack-detection algorithms PY - 2023 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12327/1232715/Robot-assisted-infrared-thermography-for-surface-breaking-crack-detection-on/10.1117/12.2666757.short AN - OPUS4-57594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - Automatic inspection of surface breaking cracks using laser scanning thermography N2 - In this work, we report on a method for automatic inspection of components using laser scanning thermography, in which the relative motion is performed by a robot to fully inspect complex test objects such as turbine blades. We demonstrate our evaluation algorithms with the aim of automatically detecting surface defects on calibrated specimens. We show the influence of the excitation laser, which can be varied in terms of spot geometry, wavelength, and scan scheme. Additionally, we show some advantages, versatility, and current challenges of using a programmed robot for non-destructive evaluation in thermography. T2 - International Conference in Photoacoustics and Photothermal Phenomena (ICPPP21) CY - Bled, Slovenia DA - 19.06.2022 KW - Flying line thermography KW - Surface breaking defects KW - Canny approach PY - 2022 AN - OPUS4-55386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate this by imaging a line pattern and a star-shaped structure through a metal sheet with a resolution four times better than the width of the thermal point-spread-function. The ground-breaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function similar to the Abbe limit for a certain optical wavelength. T2 - 14th Quantitative InfraRed Thermography Conference, QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Compressed Sensing KW - Super Resolution PY - 2018 AN - OPUS4-49940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Maierhofer, Christiane A1 - Gaal, Mate A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Blankschän, Michel A1 - Hosseini, Seyed A1 - Lodeiro, M. A1 - Segur, D. T1 - Comparison of the performance of ultrasonic non-destructive testing methods on inspection of fibre reinforced plastics N2 - In the last twenty years, components made of fibre-reinforced plastic became a prominently used material in safety-relevant structures. Periodic in-service inspection of these structures using reliable non-destructive testing methods became a relevant issue in the field. The goal of the EMRP-funded project VITCEA (Validated Inspection Techniques for Composites in Energy Applications) aims on the evaluation of the performance of various non-destructive testing methods on the inspection of fibre-reinforced plastics. In this talk the results of the comparison of different ultrasonic testing methods will be discussed. There are two challenges for the ultrasonic inspection of fibre-reinforced plastics. Firstly, different material properties of the fibre and the resin cause anisotropic acoustical behaviour of the material. Secondly, the physical layout of fibre layers leads to complex structures of fibre-reinforced plastic parts, and thus to a complex acoustical response. Both result in a reduction of the signal to noise ratio and make interpretation of measurement results rather extensive. During the VITCEA project, the acoustical behaviour of fibre-reinforced plate materials has been simulated. Specimens with artificial flaws for the evaluation of the detection thresholds have been designed and manufactured. Various mechanized ultrasonic testing methods including phased-array sensors, air-coupled transducers, immersion tank testing and contact technique have been evaluated on the specially designed specimen. Laboratory scale tests and a round robin test have been carried out. The probability of detection and the detection thresholds for each method have been estimated. T2 - ECNDT - European Conference on Non-Destructive Testing 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Comparison ndt methods FRP fibre reinforced plastics ultrasound PY - 2018 AN - OPUS4-47213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection for laser powder bed fusion with active laser thermography N2 - Defects are still common in metal components built with Additive Manufacturing (AM). Process monitoring methods for laser powder bed fusion (PBF-LB/M) are used in industry, but relationships between monitoring data and defect formation are not fully understood yet. Additionally, defects and deformations may develop with a time delay to the laser energy input. Thus, currently, the component quality is only determinable after the finished process. Here, active laser thermography, a non-destructive testing method, is adapted to PBF-LB/M, using the defocused process laser as heat source. The testing can be performed layer by layer throughout the manufacturing process. The results of the defect detection using infrared cameras are presented for a custom research PBF-LB/M machine. Our work enables a shift from post-process testing of components towards in-situ testing during the AM process. The actual component quality is evaluated in the process chamber and defects can be detected between layers. T2 - 2023 Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - Additive Manufacturing KW - Additive Fertigung KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-58137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. A1 - Haltmeier, M. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Photothermal radiometry with an infrared camera allows the contactless temperature measurement of multiple surface pixels simultaneously. A short light pulse heats the sample. The heat propagates through the sample by diffusion and the corresponding temperature increase is measured at the samples surface by an infrared camera. The main drawback in radiometric imaging is the loss of the spatial resolution with increasing depth due to heat diffusion, which results in blurred images for deeper lying structures. We circumvent this information loss due to the diffusion process by using blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. T2 - Fifth NDTonAIR Training Event: Thermography Workshop CY - Linz, Austria DA - 13.02.2019 KW - Super resolution KW - Thermography KW - Laser Thermography KW - Compressed Sensing KW - NDT PY - 2019 AN - OPUS4-49912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Thermographic Detection of Internal Defects using Photothermal Super Resolution Reconstruction and 2D structured Illumination Patterns N2 - For a long time, the rule of thumb for active thermography as a non-destructive testing method was that the resolution of internal defects/inhomogeneities is limited to a ratio of defect depth/defect size ≤ 1. This is due to the diffusive nature of thermal conduction in solids. So-called super resolution approaches have recently allowed this physical limit to be overcome many times over. This offers the attractive possibility of developing thermography from a purely near surface-sensitive testing method to one with improved depth range. How far this development can be pushed is the subject of current research. We have already been able to show that this classical limitation for one- and two-dimensional defect geometries can be overcome by illuminating the test object sequentially in a structured manner with individual laser spots and thus subsequently calculating a defect map from the resulting measurement data by applying photothermal super resolution reconstruction, which allows significantly improved separation of individual closely spaced defects. As a result, this method benefits strongly from the combination of sequential spatially structured illumination and modern numerical optimization methods, which come at the expense of higher experimental complexity. This leads to long measurement times, large data sets, and tedious numerical analysis, in contrast to the application of established standard thermographic methods with homogeneous illumination. In this work, we report on the application of full-area spatially structured two-dimensional illumination patterns, which, by applying state-of-the-art laser projector technology in conjunction with a high-power laser, makes it possible to achieve an efficient implementation of photothermal super-resolution reconstruction even for larger test areas in the first place. T2 - 13th European Conference on Non-destructive Testing CY - Lisbon, Portugal DA - 03.07.2023 KW - Thermography KW - Super resolution KW - Digital light processing KW - Material testing KW - Internal defects KW - DMD PY - 2023 AN - OPUS4-57909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 AN - OPUS4-55262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Ziegler, Mathias T1 - Robot-assisted laser thermography - Towards automatic characterization of surface defects N2 - By means of laser thermography, surface defects, in particular surface breaking cracks, can be detected with high sensitivity. Basically, this requires a focused heat source (high-power laser), a thermographic camera and a relative movement between laser and test object, as well as a suitable evaluation algorithm to distinguish between surface defects and defect-free areas. In this paper we report on a method in which the relative motion is realised by a robot to fully inspect large and non-planar test objects such as rail sections, turbine blades, gears, etc. We show the influence of the excitation laser, which can be varied in terms of spot geometry, wavelength, and scan scheme, and we demonstrate our evaluation algorithms with the aim of automatically detecting surface defects. T2 - 16th Quantitative Infrared Thermography Conference CY - Paris, France DA - 04.07.2022 KW - Flying line thermography KW - Surface breaking defects KW - Robot-assisted thermography PY - 2022 AN - OPUS4-55560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -