TY - JOUR A1 - Neuschaefer-Rube, U. A1 - Illemann, J. A1 - Sturm, M. A1 - Bircher, B. A1 - Meli, F. A1 - Bellon, Carsten A1 - Evsevleev, Sergei T1 - Validation of a fast and traceable radiographic scale calibration of dimensional computed tomography JF - Measurement Science and Technology N2 - A fast and highly precise method of determining the geometrical scale factor of computed tomography (CT) measurements has been validated successfully by Bundesanstalt für Materialforschung und -prüfung (BAM), the Federal Institute of Metrology (METAS) and Physikalisch-Technische Bundesanstalt (PTB) within the scope of AdvanCT (Advanced Computed Tomography for dimensional and surface measurements in industry), a project funded in the European Metrology Programme for Innovation and Research (EMPIR). The method has been developed by PTB and requires only two radiographic images of a calibrated thin 2D standard (hole grid standard) from two opposite directions. The mean grid distance is determined from both radiographs. From this and with the help of the calibration result, the radiographic scale and therefore the voxel size is determined. The procedure takes only a few minutes and avoids a time-consuming CT scan. To validate the method, the voxel sizes determined via this method were compared with voxel sizes determined from CT scans of calibrated objects. Relative deviations between the voxel sizes in the range of 10−5 were achieved with minimal effort using cone-beam CT systems at moderate magnifications. KW - Dimensional metrology KW - Voxel size KW - Industrial CT KW - Geometrical magnification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553271 DO - https://doi.org/10.1088/1361-6501/ac74a3 SN - 0957-0233 VL - 33 IS - 9 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, R. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shkrunin, V. A1 - Ermakov, A. T1 - Features of hydrogen reduction of SiF4 in ICP plasma JF - Spectrochimica Acta Part B N2 - Probe diagnostics is used to determine the electron temperature and electron number density in a low pressure inductively coupled plasma (ICP) ignited in the mixture of SiF4, Ar and H2. Emission spectra of mixtures with different stoichiometry of components are investigated and the electron density distribution function (EDDF) is estimated. The optimal conditions for high conversion of SiF4 into Si are found by studying the dependence of the yield of silicon upon the ratio of reagents. The maximum achieved yield of silicon is 85% under the optimal conditions. Based on the analysis of IR and MS spectra of exhaust gases, 5% of initial SiF4 converts into volatile fluorosilanes. A rate of production of Si is 0.9 g/h at the energy consumption 0.56 kWh /g. KW - Plasma enhanced chemical vapor deposition KW - PECVD KW - Silicon tetrafluoride KW - Emission spectroscopy KW - Probe diagnostics PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106502 SN - 0584-8547 VL - 195 SP - 106502 PB - Elsevier B.V. AN - OPUS4-55316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding JF - Crystengcomm N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lilensten, L. A1 - Provost, K. A1 - Perrière, L. A1 - Fonda, E. A1 - Couzinié, J. A1 - Amman, F. A1 - Radtke, Martin A1 - Dirras, G. A1 - Guillot, I. T1 - Experimental investigation of the local environment and lattice distortion in refractory medium entropy alloys JF - Scripta Materialia N2 - EXAFS analysis of pure elements, binary and ternary equiatomic refractory alloys within the Nb-Zr-Ti-Hf- Ta system is performed at the Nb and Zr K-edges to analyze the evolution of the chemical local environ- ment and the lattice distortion. A good mixing of the elements is found at the atomic scale. For some compounds, a distribution of distances between the central atom and its neighbors suggests a distortion of the structure. Finally, analysis of the Debye-Waller parameters shows some correlation with the lat- tice distortion parameter δ², and allows to quantify experimentally the static disorder in medium entropy alloys. KW - BAMline KW - Refractory alloys KW - EXAFS KW - Debye-Waller parameter PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114532 SN - 1359-6462 VL - 211 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-55287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Margreiter, R. A1 - Baumann, J. A1 - Mantouvalou, I. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Strub, E. T1 - Investigations on fire-gilding JF - Archaeometry N2 - Fire-gilding is a historic technique for the application of golden layers on a number of different base materials utilizing a gold amalgam. This technique leaves a significant amount of Hg in the golden layer, giving archeometrists a reliable indicator to identify firegildings. Recent findings on presumably fire-gilded objects have shown in several cases significantly lower Hg content than previously studied objects. This prompted a synchrotron-based X-ray fluorescence investigation into the Hg distribution along the material–gilding interface, as well as a series of measurements regarding the Hg content development in fire-gilded samples during artificial aging. This work presents findings on laboratory-prepared fire-gildings, indicating an Hg enrichment at the interface of firegilded silver samples. Notably, such an enrichment is missing in fire-gilded copper samples. Further, it is confirmed that fire-gilded layers typically do not undercut an Hg bulk content of 5%. In this light, it seems improbable that ancient samples that contain <5% Hg are fire-gilded. The results presented in this study might lead to a non-destructive method to identify the Hg enrichment at the interface. This might be obtained by a combination of different non-destructive measurements and might also work unambiguously in samples in which the gold top layer is altered. KW - BAMline KW - X-Ray Fluorescence KW - Gilding KW - Depth profile KW - Archaeometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552885 DO - https://doi.org/10.1111/arcm.12797 SN - 0003-813X SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-55288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clark, P.C.J A1 - Andresen, Elina A1 - Sear, M. J. A1 - Favaro, M. A1 - Girardi, L. A1 - van de Krol, R. A1 - Resch-Genger, Ute A1 - Starr, D.E. T1 - Quantification of the Activator and Sensitizer Ion Distributions in NaYF4:Yb3+, Er3+ Upconverting Nanoparticles Via Depth-Profiling with Tender X-Ray Photoemission JF - Small N2 - The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000–6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+, [Er3+]/[Yb3+], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs’ dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3·6H2O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+]/[Yb3+] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs. KW - Shell KW - Nanomaterial KW - Nano KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface KW - Coating KW - Core-shell KW - XPS KW - Intermixing KW - HAXPES KW - Method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552075 DO - https://doi.org/10.1002/smll.202107976 SN - 1613-6813 SP - 1 EP - 13 PB - Wiley-VCH-Verlag CY - Weinheim, Germany AN - OPUS4-55207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS JF - Biointerphases N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator JF - Optics Express N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549836 DO - https://doi.org/10.1364/oe.448932 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice JF - Nanomaterials N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Kerndorff, A. A1 - Ricking, M. A1 - Bednarz, M. A1 - Obermaier, N. A1 - Lukas, M. A1 - Asenova, M. A1 - Bordós, G. A1 - Eisentraut, Paul A1 - Hohenblum, P. A1 - Hudcova, H. A1 - Humer, F. A1 - István, T. G. A1 - Kirchner, M. A1 - Marushevska, O. A1 - Nemejcová, D. A1 - Oswald, P. A1 - Paunovic, M. A1 - Sengl, M. A1 - Slobodnik, J. A1 - Spanowsky, K. A1 - Tudorache, M. A1 - Wagensonner, H. A1 - Liska, I. A1 - Braun, U. A1 - Bannick, C. G. T1 - Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach JF - ACS ES&T Water N2 - In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. KW - Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), monitoring KW - Microplastics KW - River KW - Suspended particulate matter (SPM) KW - Sedimentation box (SB) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551444 DO - https://doi.org/10.1021/acsestwater.1c00439 VL - 2 IS - 7 SP - 1174 EP - 1181 PB - ACS Publications AN - OPUS4-55144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films JF - Advanced optical technologies N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The finite volume method in the context of the finite element method JF - Materials Today: Proceedings N2 - The finite volume method (FVM), like the finite element method (FEM), is a numerical method for determining an approximate solution for partial differential equations. The derivation of the two methods is based on very different considerations, as they have historically evolved from two distinct engineering disciplines, namely solid mechanics and fluid mechanics. This makes FVM difficult to learn for someone familiar with FEM. In this paper we want to show that a slight modification of the FEM procedure leads to an alternative derivation of the FVM. Both numerical methods are starting from the same strong formulation of the problem represented by differential equations, which are only satisfied by their exact solution. For an approximation of the exact solution, the strong formulation must be converted to a so-called weak form. From here on, the two numerical methods differ. By appropriate choice of the trial function and the test function, we can obtain different numerical methods for solving the weak formulation of the problem. While typically in FEM the basis functions of the trial function and test function are identical, in FVM they are chosen differently. In this paper, we show which trial and test function must be chosen to derive the FVM alternatively: The trial function of the FVM is a “shifted” trial function of the FEM, where the nodal points are now located in the middle of an integration interval rather than at the ends. Moreover, the basis functions of the test function are no longer the same as those of the trial function as in the FEM, but are shown to be a constant equal to 1. This is demonstrated by the example of a 1D Poisson equation. KW - Finite Volume Method KW - Finite Element Method KW - Variational Calculation KW - Numerical Methods PY - 2022 DO - https://doi.org/10.1016/j.matpr.2022.05.460 SN - 2214-7853 VL - 62 SP - 2679 EP - 2683 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions JF - Angewandte Chemie International Edition N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI JF - Cancers N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtsch, Mona A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Quality assurance in supply chains during the COVID-19 pandemic: Empirical evidence on organisational resilience of conformity assessment bodies JF - Total quality management & business excellence N2 - Global supply chains rely on the compliance and safety of their products, processes, and facilities. These vital services (often referred to as ‘quality assurance’ or ‘conformity assessment’ services) are provided by Conformity Assessment Bodies (CABs). This empirical study explores the impact of the COVID-19 pandemic on CABs as well as their response to the resulting challenges. Data was gathered through an online survey among all accredited CABs in Germany, which resulted in 555 valid responses. Taking a resilience perspective, we reveal that CABs were hit hard by the disruptions caused by the pandemic, albeit to different degrees, in part due to their type of services, size, and sectors served. Furthermore, we find that contingency plans do not directly cushion order declines (as the main indicator of the economic impact of the pandemic) but rather indirectly through helping CABs respond more quickly, which in turn mitigates their order declines. However, our results show that contingency plans can also have adverse effects if they hinder flexible reaction to the crisis. The findings of our study help managers and policymakers learn from the COVID-19 pandemic and improve the resilience of the conformity assessment sector and quality assurance in the event of future crises. KW - Quality Infrastructure KW - Digitalization KW - Testing laboratories KW - Organizational resilience KW - COVID-19 KW - Conformity assessment PY - 2022 DO - https://doi.org/10.1080/14783363.2022.2078189 SP - 1 EP - 23 PB - Taylor & Francis AN - OPUS4-55066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission JF - Chemical Science N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550719 DO - https://doi.org/10.1039/d2sc00415a VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, Y. Y. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. T1 - Equilibrium model of titanium laser induced plasma in air with reverse deposition of titanium oxides JF - Spectrochimica acta / B N2 - A chemical-hydrodynamic model of laser induced plasma is developed to study a process of deposition of titanium oxides from titanium laser induced plasma to the titanium target surface. The model is relevant to texturing and coating of titanium bone implants that is done by scanning the ablation laser across implant surfaces. Such the procedure improves the biocompatibility and durability of the implants. The model considers plasma chemical reactions, formation of condensed species inside the plasma plume, and deposition and accumulation of these species on the ablation surface. A chemical part of the model is based on minimization of Gibbs free energy of the chemical system; it is used to calculate the chemical composition of the plasma. A hydrodynamic part uses the 2D fluid-dynamic equations that model a 3D axisymmetric plasma plume and assumes the mass and energy exchange between the plasma and the surface. The initial parameters for the model are inferred from experiment. The model shows that condensed titanium oxides, mostly TiO2, form in a peripheral plasma zone and gradually adhere to the surface during the plasma plume evolution. The model predicts the major component and thickness of the deposit and can be applied for the optimization of experiments aimed at surface modification. KW - Fluid dynamic model KW - Plasma chemistry KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106449 SN - 0038-6987 SN - 0584-8547 VL - 193 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling JF - Faraday Discussions N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564728 DO - https://doi.org/10.1039/d2fd00115b SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-56472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Thewes, R. A1 - Pelkner, Matthias T1 - Online Process Monitoring for Additive Manufacturing Using Eddy Current Testing With Magnetoresistive Sensor Arrays JF - IEEE Sensors Journal N2 - The rising popularity of additive manufacturing processes leads to an increased interest in possibilities and methods for related process monitoring. Such methods ensure improved process quality and increase the understanding of the manufacturing process, which in turn is the basis for stable component quality, e.g., required in the aerospace industry or in the medical sector. For laser powder bed fusion, a handful of process monitoring tools already exist, such as optical tomography, thermography, pyrometry, imaging, or laser power monitoring. Although these tools provide helpful information about the process, more information is required for an accurate in-depth understanding. In this article, advanced approaches in eddy current testing (ET) are combined, such as single wire excitation, magnetoresistive (MR) sensor arrays, and heterodyning to build up a system that can be used for online process monitoring of laser powder bed fusion. In addition to detailed information about the developed ET system and underlying signal processing, the first results of magnetoresistance-basedonline ET during the laser powder fusion process are presented. While producing a step-shaped cuboid, each layer is tested during recoating. Test results show that not only the contours of the topmost layer are detected but also the contours of previous layers covered by powder. At an excitation frequency of 1 MHz, a penetration depth of approx. 400 μm is obtained. To highlight the possibilities of ET for online process monitoring of laser powder bed fusion, results are compared with postexposure images of the integrated layer control system (LCS). KW - Process monitoring KW - Eddy current testing KW - Giant magneto resistance (GMR) KW - Additive manufacturing KW - Laser powder bed fusion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560881 DO - https://doi.org/10.1109/JSEN.2022.3205177 VL - 22 IS - 20 SP - 19293 EP - 19300 PB - IEEE CY - New York, NY AN - OPUS4-56088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iro, M. A1 - Ingerle, D. A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kregsamer, P. A1 - Streli, C. T1 - Investigation of polycapillary half lenses for quantitative confocal micro-X-ray fluorescence analysis JF - Journal of synchrotron radiation N2 - The use of polycapillary optics in confocal micro-X-ray fluorescence analysis (CMXRF) enables the destruction-free 3D investigation of the elemental composition of samples. The energy-dependent transmission properties, concerning intensity and spatial beam propagation of three polycapillary half lenses, which are vital for the quantitative interpretation of such CMXRF measurements, are investigated in a monochromatic confocal laboratory setup at the Atominstitut of TU Wien, and a synchrotron setup on the BAMline beamline at the BESSY II Synchrotron, Helmholtz-Zentrum-Berlin. The empirically established results, concerning the intensity of the transmitted beam, are compared with theoretical values calculated with the polycap software package and a newly presented analytical model for the transmission function. The resulting form of the newly modelled energy-dependent transmission function is shown to be in good agreement with Monte Carlo simulated results for the complete energy regime, as well as the empirically established results for the energy regime between 6 keV and 20 keV. An analysis of possible fabrication errors was conducted via pinhole scans showing only minor fabrication errors in two of the investigated polycapillary optics. The energy-dependent focal spot size of the primary polycapillary was investigated in the laboratory via the channel-wise evaluation of knife-edge scans. Experimental results are compared with data given by the manufacturer as well as geometric estimations for the minimal focal spot size. Again, the resulting measurement points show a trend in agreement with geometrically estimated results and manufacturer data. KW - BAMline KW - Synchrotron KW - Capillary KW - confocal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562430 DO - https://doi.org/10.1107/S1600577522009699 SN - 1600-5775 VL - 29 SP - 1376 EP - 1384 PB - International Union of Crystallography CY - Chester AN - OPUS4-56243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water JF - Nanomaterials N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costabel, S. A1 - Hiller, Thomas A1 - Dlugosch, R. A1 - Kruschwitz, Sabine A1 - Müller Petke, M. T1 - Evaluation of single-sided nuclear magnetic resonance technology for usage in geosciences JF - Measurement Science and Technology N2 - Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T1) and transverse (T2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T1 relaxation data, unbiased SiS NMR results for T2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05s. This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content >0.2s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the µm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks. KW - Single-sided NMR KW - Geosciences KW - Nuclear magnetic resonance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561676 DO - https://doi.org/10.1088/1361-6501/ac9800 SN - 0957-0233 VL - 34 IS - 1 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieber, M. J. A1 - Wilke, M. A1 - Appelt, O. A1 - Oelze, Marcus A1 - Koch-Müller, M. T1 - Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – A proxy for melting of carbonated mantle lithologies JF - European journal of mineralogy N2 - The most profound consequences of the presence of Ca–Mg carbonates (CaCO3–MgCO3) in the Earth’s upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3–MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3–MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 ◦C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (∼ Mg0.1–0.9Ca0.9–0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO3–MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites. KW - High pressure experiments KW - Laser Ablation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561197 DO - https://doi.org/10.5194/ejm-34-411-2022 SN - 0935-1221 VL - 34 IS - 5 SP - 411 EP - 424 PB - Copernicus Publications CY - Göttingen AN - OPUS4-56119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silveira, A. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Longo, E. A1 - Greving, I. A1 - Lasch, P. A1 - Shahar, R A1 - Zaslansky, P. T1 - Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material JF - Materials & Design N2 - Vertebrate bones are made of a nanocomposite consisting of water, mineral and organics. Water helps bone material withstand mechanical stress and participates in sensation of external loads. Water diffusion across vertebrae of medaka (bone material lacking osteocytes) and zebrafish (bone material containing osteocytes) was compared using neutron tomography. Samples were measured both wet and following immersion in deuterated-water (D2O). By quantifying H+ exchange and mutual alignment with X-ray lCT scans, the amount of water expelled from complete vertebra was determined. The findings revealed that anosteocytic bone material is almost twice as amenable to D2O diffusion and H2O exchange, and that unexpectedly, far more water is retained in osteocytic zebrafish bone. Diffusion in osteocytic bones (only 33 % – 39 % water expelled) is therefore restricted as compared to anosteocytic bone (~ 60 % of water expelled), presumably because water flow is confined to the lacunar-canalicular network (LCN) open-pore system. Histology and Raman spectroscopy showed that anosteocytic bone contains less proteoglycans than osteocytic bone. These findings identify a previously unknown functional difference between the two bone materials. Therefore, this study proposes that osteocytic bone retains water, aided by non-collagenous proteins, which contribute to its poroelastic mechano-transduction of water flow confined inside the LCN porosity. KW - Bone porosity KW - Anosteocytic bone KW - Water permeability KW - Neutron tomography KW - Proteoglycans PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564563 DO - https://doi.org/10.1016/j.matdes.2022.111275 VL - 224 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burgmayer, R. A1 - Bake, Friedrich A1 - Enghardt, L. T1 - Design and Evaluation of a Zero Mass Flow Liner JF - AIAA Journal N2 - In this study, the concept of a zero mass flow liner is evaluated. The concept enables impedance control by theinduction of, acoustically actuated, periodic bias flowthrough the facing sheet of the liner. Bymeans of the periodic bias flow, the impedance of the liner is adapted to different grazing flowconditions.The equivalent fluid impedancemodel for perforated plates is modified to account for the effects of periodic bias and grazing flow. A generally applicable optimization routine, using the impedance of the lined surface as a boundary condition in a numeric calculation, is implemented. Based on the results of the optimization, a zero mass flow liner is manufactured and evaluated experimentally. The damping characteristics are assessed in the form of dissipated energy along the lined surface. Prediction and measurements show reasonable agreement. The zero mass flow liner delivers broadband dissipation of high peak value over a range of grazing flow Mach numbers. Under grazing flow, the effect of periodic bias flow is reduced. For a ratio of grazing to bias flow velocities larger than five, no appreciable effect is found. This poses considerable energy requirements on the actuation source for the application in high-Mach-number flow regimes. KW - Zero Massflow Liner KW - Acoustic Damping KW - Liner PY - 2022 DO - https://doi.org/10.2514/1.J062197 SN - 1533-385X SP - 1 EP - 12 PB - AIAA CY - Reston, Va. AN - OPUS4-56410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Klewe, Tim T1 - Comparison of the Calcium Carbide Method and Darr Drying to Quantify the Amount of Chemically Bound Water in Early Age Concrete JF - Materials N2 - Hydration is the exothermic reaction between anhydrous cement and water, which forms the solid cement matrix of concrete. Being able to evaluate the hydration is of high interest for the use of both conventional and more climate-friendly building materials. The experimental monitoring is based on temperature or moisture measurements. The first needs adiabatic conditions, which can only be achieved in laboratory. The latter is often measured comparing the weight of the material sample before and after oven drying, which is time-consuming. This study investigates the moisture content of two cement-based and two calcium sulphate based mixtures for the first 90 days by using the calcium carbide method and oven drying at 40 °C and 105 °C (Darr method). Thereby, the amount of chemically bound water is determined to derive the degree of hydration. The calcium carbide measurements highly coincide with oven drying at 40 °C. The calcium carbide method is therefore evaluated as a suitable alternative to the time-consuming Darr drying. The prompt results are seen as a remarkable advantage and can be obtained easily in laboratory as well as in the field. KW - Concrete KW - Hydration KW - Material moisture KW - Calcium carbide method KW - Bound water KW - Darr method KW - Oven drying KW - Chemisorption KW - Physisorption PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564519 DO - https://doi.org/10.3390/ma15238422 VL - 15 IS - 23 SP - 1 EP - 16 PB - MDPI AN - OPUS4-56451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio T1 - Experimental volumetric hydrogen uptake determination at 77 K of commercially available metal-organic framework materials JF - C - Journal of carbon research N2 - Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders. KW - Hydrogen adsorption KW - Commercial metal-organic frameworks KW - Hydrogen uptake reproducibility KW - Volumetric uptake KW - Packing density PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542215 DO - https://doi.org/10.3390/c8010005 SN - 2311-5629 VL - 8 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-54221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis JF - Methods and Applications in Fluorescence N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 DO - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, R. A1 - Lyamkin, V. A1 - Cabeza, S. A1 - Evsevleev, S. A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and Bulk Residual Stress Analysis of S235JRC + C Steel TIG Weld by Diffraction and Magnetic Stray Field Measurements JF - Experimental Mechanics N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - Residual stress KW - Magnetic stray field KW - Synchrotron X-ray diffraction KW - Neutron diffraction KW - TIG welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547419 DO - https://doi.org/10.1007/s11340-022-00841-x VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer AN - OPUS4-54741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, T. A1 - Giese, S. A1 - Wang, S. A1 - Muth, Thilo A1 - Renard, B.Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides JF - Nature Machine Intelligence N2 - Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. KW - Mass spectrometry KW - Machine learning KW - Deep learning KW - Peptide identification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547580 DO - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 SP - 378 EP - 388 PB - Springer Nature CY - London AN - OPUS4-54758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments JF - Metabolites N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air JF - Plasma Chemistry and Plasma Processing N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirschberg, L. A1 - Bake, Friedrich A1 - Knobloch, K. A1 - Hulshoff, S. A1 - Hirschberg, A. T1 - Experimental investigations of indirect noise due to modulation of axial vorticity and entropy upstream of a choked nozzle JF - Journal of Sound and Vibration N2 - An experimental cold-gas study of the response of a choked convergent–divergent nozzle to swirl perturbations is presented. The perturbations were obtained by means of upstream unsteady tangential injections into initially steady flows with different values of steady background swirl. The swirl perturbations induced changes in the axial mass-flow rate, due to either their ingestion or evacuation by the nozzle. This in turn caused a downstream acoustic response. For low-intensity background swirl the responses were found to be similar to those obtained without steady background swirl. Perturbations of a high-intensity background swirl led to different effects. For long injection times, the negative mass-flow rate modulation occurred in two stages. The first stage was similar to that of the background-swirl free case. The second stage occurred after a short time delay, and induced a much stronger negative acoustic response. This unexpected behavior suggests that a significant part of the tangentially injected fluid flows upstream inducing an accumulation of swirl, which is – after tangential injection is ceased – suddenly cleared out through the nozzle. A scaling rule for the amplitudes of these acoustic responses is reported. Furthermore, quasi-steady models, based on steady-state measurements are proposed. These models predict the downstream acoustic response amplitude within a factor two. Additionally, preliminary empirical evidence of the effect of swirl on the downstream acoustic response due to the interaction of entropy patches with a choked nozzle is reported. This was obtained by comparison of sound produced by abrupt radial or tangential sonic injection, upstream from the choked nozzle, of air from a reservoir at room temperature to that from a reservoir with a higher stagnation temperature. Because the mass flow through the nozzle does not increase instantaneously, the injected higher-enthalpy air accumulates upstream of the injection-port position in the main flow. This eventually induces a large downstream acoustic pulse when tangential injection is interrupted. The magnitude of the resulting sound pulse can reach that of a quasi-steady response of the nozzle to a large air patch with a uniform stagnation temperature equal to that of the upstream-injected heated air. This hypothesis is consistent with the fact that the initial indirect-sound pulse is identical to one obtained with unheated air injection. The authors posit that – given all of the insight gleaned from them in this case – acoustic measurements of indirect sound appear to be a potentially useful diagnostic tool. KW - Aeroacoustics KW - Indirect combustion noise KW - Vorticity noise KW - Entropy noise KW - Swirl PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548331 DO - https://doi.org/10.1016/j.jsv.2022.116989 SN - 0022-460X VL - 532 SP - 1 EP - 22 PB - Elsevier Ltd. AN - OPUS4-54833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development JF - Metabolites N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C JF - Inorganic Chemistry N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548226 DO - https://doi.org/10.1021/acs.inorgchem.1c03442 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P. P. A1 - Prencipe, M. A1 - Feiler, Torvid A1 - Emmerling, Franziska A1 - Bacchi, A. T1 - On the mechanism of cocrystal mechanochemical reaction via low melting eutectic: A time-resolved in situ monitoring investigation JF - Crystal growth and design N2 - Mechanochemistry has become a sustainable and attractive cost-effective synthetic technique, largely used within the frame of crystal engineering. Cocrystals, namely, crystalline compounds made of different chemical entities within the same crystal structure, are typically synthesized in bulk via mechanochemistry; however, whereas the macroscopic aspects of grinding are becoming clear, the fundamental principles that underlie mechanochemical cocrystallization at the microscopic level remain poorly understood. Time-resolved in situ (TRIS) monitoring approaches have opened the door to exceptional detail regarding mechanochemical reactions. We here report a clear example of cocrystallization between two solid coformers that proceeds through the formation of a metastable low melting binary eutectic phase. The overall cocrystallization process has been monitored by time-resolved in situ (TRIS) synchrotron X-ray powder diffraction with a customized ball milling setup, currently available at μ Spot beamline at BESSY-II, Helmholtz-Zentrum Berlin. The binary system and the low melting eutectic phase were further characterized via DSC, HSM, and VT-XRPD. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552977 DO - https://doi.org/10.1021/acs.cgd.2c00262 SN - 1528-7505 VL - 22 IS - 7 SP - 4260 EP - 4267 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging JF - Advances in x-ray analysis N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Westphalen, Tanja A1 - Kaminski, Katja T1 - Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples JF - Talanta Open N2 - Estrogens are endocrine disrupting chemicals and of high concerns due to demonstrated harmful effects on the environment and low effect levels. For monitoring and risk assessment, several estrogens were included in the "watch list" of the EU Water Framework Directive which sets very low environmental quality standard (EQS) levels for Estrone (E1) and 17β-Estradiol (E2) of 0.4 ng L−1 and for 17α-Ethinylestradiol (EE2) of 0.035 ng L−1 requiring sensitive detection methods, as well as extensive sample preparation. A sensitive, derivatization-free, isotope dilution calibration HPLC-MS/MS method for a panel of 5 selected estrogens (including the 3 estrogens of the EU WFD watchlist), and a procedure for the reproducible preparation of a representative whole water matrix including mineral water, humic acids and solid particulate matter are presented. These are used in a diligent comparison of classical solid phase extraction (SPE) on hydrophilic-lipophilic balanced (HLB) phase to SPE on an estrogen-specific molecularly imprinted polymer phase (MISPE) for ultra-trace levels of the analytes (1–10 ng L−1). Additionally, a two-step procedure combining HLB SPE disks followed by MISPE is evaluated. The tow-step procedure provides superior enrichment, matrix removal and sample throughput while maintaining comparable recovery rates to simple cartridge SPE. Estimated method quantification limits (MQLs) range from 0.109–0.184 ng L−1 and thus meet EQS-levels for E1 and E2, but not EE2. The representative whole water matrix provides a reproducible comparison of sample preparation methods and lays the foundation for a certified reference material for estrogen analysis. The presented method will serve as the basis for an extended validation study to assess its use for estrogen monitoring in the environment. KW - Estrogens KW - Whole water samples KW - Molecular imprinted polymers KW - EU-WFD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563547 DO - https://doi.org/10.1016/j.talo.2022.100163 SN - 2666-8319 VL - 6 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-56354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jasiuniene, E. A1 - Yilmaz, Bengisu A1 - Smagulova, D. A1 - Bhat, G. A. A1 - Cicenas, V. A1 - Zukauskas, E. A1 - Mazeika, L. T1 - Non-Destructive Evaluation of the Quality of Adhesive Joints Using Ultrasound, X-ray, and Feature-Based Data Fusion JF - Applied Sciences N2 - The aim of this work is to achieve reliable nondestructive evaluation (NDE) of adhesively bonded aerospace components by developing novel multidimensional data fusion techniques, which would combine the information obtained by ultrasonic and X-ray NDE methods. Separately, both NDE techniques have their advantages and limitations. The integration of data obtained from pulse echo immersion ultrasound testing and radiography holds immense potential to help improve the reliability of non-destructive evaluation. In this study, distinctive features obtained from single techniques, traditional ultrasonic pulse echo testing, and radiography, as well as fused images, were investigated and the suitability of these distinctive features and fusion techniques for improving the probability of defect detection was evaluated. For this purpose, aluminum single lap joints with brass inclusions were analyzed using ultrasound pulse echo and radiography techniques. The distinctive features were extracted from the data obtained, and images of features obtained by both techniques were fused together. Different combinations of features and fusion algorithms were investigated, considering the desire to automate data evaluation in the future. KW - Data fusion KW - Ultrasonics KW - Radiography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565789 DO - https://doi.org/10.3390/app122412930 VL - 12 IS - 24 SP - 1 EP - 20 PB - MDPI AN - OPUS4-56578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns JF - Journal of applied crystallography N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Samaitis, V. A1 - Yilmaz, Bengisu A1 - Jasiuniene, E. T1 - Adhesive bond quality classification using machine learning algorithms based on ultrasonic pulse-echo immersion data JF - Journal of Sound and Vibration N2 - In this study, we explored the detection of weak bonds (WBs) due to contamination and faulty curing (FC) using linear ultrasound and machine learning. For this purpose, aluminium single-lap adhesive joints containing three variants of bonding quality were investigated: perfect bond, WB due to release agent (RA) contamination, and WB due to FC. The data, according to the deviation of the bonding protocol, were arranged in two groups, creating two datasets: distinct and complete. Each dataset included all bonding conditions (perfect, RA, and FC), although the distinct dataset contained only marginal cases, which were expected to be well separable, whereas the complete dataset included data with minor deviations from the bonding protocol. Pulse-echo C-scan images were acquired for all prepared samples in the immersion tank, and 45 features were initially extracted from the time traces representing each bonding group. The initial data were analysed via a t-test and pairwise correlation analysis to reveal statistically significant features. Then, we performed dimensionality reduction using tree-based, recursive, sequential, and linear discriminant analysis (LDA) feature selectors to explore feature importance and classification accuracy with different feature subsets. Finally, the important features identified with the different feature selectors were fed to support vector machine (SVM) classifiers, and the classification accuracies were compared amongst the different feature subsets. The classification accuracy using a distinct dataset in some cases demonstrated nearly 99% accuracy, indicating that significant bonding protocol deviations could be easily detected. It was demonstrated that classification accuracy increased with the number of features. However, even in the case of the 2D feature space obtained using linear discriminant analysis, the bonding quality classification accuracy remained higher than 84%. The feature subspace reduction with LDA demonstrated sufficient classification accuracy and an improvement of nearly 40% in training time compared with that for the initial feature set. Thus, the classical ultrasonic pulse-echo C-scan with an LDA feature transformation and SVM classifier could be used to identify the deviations in the bonding protocol in aluminium single-lap adhesive joints. KW - Adhesive bonding KW - Defect characterisation KW - Machine learning KW - Ultrasonic imaging PY - 2023 DO - https://doi.org/10.1016/j.jsv.2022.117457 VL - 546 SP - 1 EP - 18 PB - Journal of Sound and Vibration AN - OPUS4-56569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars JF - Crystal Growth & Design N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565276 DO - https://doi.org/10.1021/acs.cgd.2c01227 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alcalde-Vasquez, R. A1 - Moreno-Pedraza, A. A1 - Rosas-Román, I. A1 - Guillén-Alonso, H. A1 - Riedel, Jens A1 - Partida-Martínez, L. P. A1 - Winkler, R. T1 - MoBiMS: A Modular Miniature Mass Analyzer for the Real-Time 2 Monitoring of Gases and Volatile Compounds in Biological Systems JF - Microchemical Journal N2 - Living organisms constantly interact with their environment, including through the exchange of gases. Respiration and the release and uptake of volatile organic compounds (VOCs) create dynamic microenvironments in biological systems. Studying the kinetics of volatiles in biological systems requires expensive instruments, and data analysis is challenging. Therefore, we aimed to design a minimal analytical device for measuring the composition of gaseous mixtures in realtime. We built the ‘Modular Biological Mass Spectrometer’ (MoBiMS) from 3D-printed parts and custom sensors to fit a wide array of experimental set-ups. We tested the chemical detection range and temporal resolution of the MoBiMS employing pure compounds and complex biological samples. Compounds with a higher than 0.4 mmHg vapor pressure and a molecular weight up to 154 g/mol were reliably sensed within seconds. The generated electron impact (EI) spectra were directly comparable with standard databases like the NIST EI library. Under a direct analysis approach, the MoBiMS identified the characteristic odor of banana (Musa sp.), that is, isoamyl acetate; tracked the dynamics of CO2 release while the Alka-Seltzer® reaction occurred showed the kinetics of the transient production and consumption of carbon dioxide during photosynthesis. MoBiMS also discriminated between volatile compounds ions coming from tobacco (Nicotiana benthamiana) leaves and the surrounding air through untargeted analysis. The small footprint of the MoBiMS and its relatively low energy consumption facilitate in situ analyses, as an additional gas supply is not necessary with EI ionization. The MoBiMS is easy to assemble, and its construction and operation are very cost-efficient compared to commercial devices. The analytical performance of the MoBiMS is suitable for real-time studies of biological systems, environmental monitoring, and medical diagnostics. KW - Mass spectrometry KW - Instrumentation KW - Miniaturization KW - Volatiles PY - 2022 DO - https://doi.org/10.1016/j.microc.2021.107090 SN - 0026-265X VL - 175 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Laser Ablation Secondary Electrospray Ionization for In Situ Mass Spectrometric Interrogation of Acoustically-Levitated Droplets JF - Analytical Chemistry N2 - The composition of acoustically levitated droplets was probed by a novel combination of mid-IR laser evaporation and subsequent postionization via secondary electrospray ionization. The combination of microliter samples and subnanoliter sampling provided time-resolved interrogation of droplets and allowed for a kinetic investigation of the laser-induced release of the analyte, which was found to strongly depend on the analytes. The observed substancespecific delayed release of the analytes permitted baseline-separated discrimination of the analytes, ideal for the study of complex samples. The additionally applied postionization scheme was found to enable efficient detection of small volatile compounds as well as peptides. The detection of small molecules and peptides occurred under very different sampling geometries, pointing to two distinct underlying ionization mechanisms. Overall, our results suggest that the experimental setup presented in this study can serve as a widely applicable platform to study chemical reactions in acoustically levitated droplets as model reactors. KW - Acoustic levitation KW - Mass spectrometry KW - Electrospray KW - Laser ablation PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c03800 SN - 0003-2700 VL - 2022 SP - 1 EP - 5 PB - ACS Publications CY - Washington AN - OPUS4-56531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Defect reconstruction in a two-dimensional semi-analytical waveguide model via derivative-based optimization JF - The Journal of the Acoustical Society of America N2 - This paper considers an indirect measurement approach to reconstruct a defect in a two-dimensional waveguide model for a non-destructive ultrasonic inspection via derivative-based optimization. The propagation of the mechanical waves is simulated by the scaled boundary finite element method that builds on a semi-analytical approach. The simulated data are then fitted to given data associated with the reflected waves from a defect which is to be reconstructed. For this purpose, we apply an iteratively regularized Gauss-Newton method in combination with algorithmic differentiation to provide the required derivative information accurately and efficiently. We present numerical results for three kinds of defects, namely, a crack, delamination, and corrosion. The objective function and the properties of the reconstruction method are investigated. The examples show that the parameterization of the defect can be reconstructed efficiently as well as robustly in the presence of noise. KW - Mechanical waves KW - Corrosion KW - Finite-element analysis KW - Ultrasonic testing KW - Nondestructive testing techniques KW - Symbolic computation KW - Materials analysis KW - MATLAB KW - Newton Raphson method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565485 DO - https://doi.org/10.1121/10.0013574 VL - 152 IS - 2 SP - 1217 EP - 1229 PB - AIP Publ. CY - Melville, NY AN - OPUS4-56548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schnur, C. A1 - Goodarzi, P. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Tschöke, K. A1 - Moll, J. A1 - Schütze, A. A1 - Schneider, T. T1 - Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves JF - Sensors N2 - Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated. KW - Composite structures KW - Structural health monitoring KW - Carbon fibre-reinforced plastic KW - Interpretable machine learning KW - Automotive industry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542060 DO - https://doi.org/10.3390/s22010406 SN - 1424-8220 VL - 22 IS - 1 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mellios, N. A1 - Oesch, Tyler A1 - Spyridis, P. T1 - Finite element modelling of UHPC under pulsating load using X-ray computed tomography based fiber distributions JF - Materials and structures N2 - The benefits of including fibers in ultra-high performance concrete (UHPC) are attributed to their good bond with the matrix and, hence, an optimal utilization of their properties. At the same time, though, fiber reinforcement may contribute to anisotropy in the composite material and induce weak areas. The influence of the fibers’ orientation on the material properties is a matter of current scientific discourse and it is known to play a vital role in structural design. In the case studies presented herein, mechanical laboratory tests using pulsating load regimes on UHPC with a strength of more than 200 MPa were simulated by use of finite element models. The orientations of the fibers were measured for each test sample prior to failure using an X-ray computed tomography (CT) scanner, and these orientations are explicitly implemented into the model. The paper discusses the methodology of merging data retrieved by CT image processing and state-of-the-art FE simulation techniques Moreover, the CT scanning was carried out throughout the testing procedure, which further enables the comparison of the mechanical tests and the FE models in terms of damage propagation and failure patterns. The results indicate that the overall fiber configuration and behavior of the samples can be realistically modelled and validated by the proposed CT-FE coupling, which can enhance the structural analysis and design process of elements produced with steel fiber reinforced and UHPC materials. KW - Ultra-high performance concrete KW - Steel fiber reinforced concrete KW - Fiber orientation KW - X-ray computed tomography KW - Non-linear finite element modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542105 DO - https://doi.org/10.1617/s11527-021-01833-4 SN - 1871-6873 VL - 55 IS - 1 SP - 1 EP - 20 PB - Springer CY - Dordrecht AN - OPUS4-54210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kudela, P. A1 - Radzienski, M. A1 - Moix-Bonet, M. A1 - Willberg, C. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Tschöke, K. A1 - Moll, J. T1 - Dataset on full ultrasonic guided wavefield measurements of a CFRP plate with fully bonded and partially debonded omega stringer JF - Data in brief N2 - The fourth dataset dedicated to the Open Guided Waves platform presented in this work aims at a carbon fiber composite plate with an additional omega stringer at constant temperature conditions. The dataset provides full ultrasonic guided wavefields. Two types of signals were used for guided wave excitation, namely chirp signal and tone-burst signal. The chirp signal had a frequency range of 20-500kHz. The tone-burst signals had a form of sine modulated by Hann window with 5 cycles and carrier frequencies 16.5kHz, 50kHz, 100kHz, 200kHz, 300kHz. The piezoceramic actuator used for this purpose was attached to the center of the stringer side surface of the core plate. Three scenarios are provided with this setup: (1) wavefield measurements without damage, (2) wavefield measurements with a local stringer debond and (3) wavefield measurements with a large stringer debond. The defects were caused by impacts performed from the backside of the plate. As result, the stringer feet debonds locally which was verified with conventional ultrasound measurements. KW - Lamb waves KW - Composite panel KW - Impact damage KW - Damage detection KW - Scanning laser Doppler vibrometry KW - Structural health monitoring KW - Non-destructive evaluation KW - Open data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545242 DO - https://doi.org/10.1016/j.dib.2022.108078 SN - 2352-3409 VL - 42 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -