TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. G. A1 - Kornev, R. A. A1 - Polyakov, V. S. T1 - Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials N2 - The composition of hydrogen and hydrogen-methane plasmas containing ~10% of BX₃, SiX₄, GeX₄ (X = F, Cl), SF₆, MoF₆ and WF₆ is calculated for the temperature range ~300-4000 K using the equilibrium chemical model. The calculations provide valuable information about thermodynamic parameters (pressure, temperature) needed for condensation of pure elements (in H₂ plasma) and their carbides (in H₂ + CH₄ plasma) and about intermediate reaction products. Using volatile fluorides for plasma chemical deposition alleviates obtaining monoisotopic elements and their isotopic compounds because fluorine is monoisotopic. PECVD is promising method for one-step conversion of fluorides to elemental isotopes and their carbides. For fluorides, further insight is needed into properties of plasmas supported by different types of discharges. KW - Plasma chemistry KW - Modeling chemical reactions KW - Plasma enhanced chemical vapor deposition KW - Reduction of volatile chlorides and fluorides by hydrogen PY - 2020 DO - https://doi.org/10.1007/s10967-020-07295-2 VL - 326 IS - 1 SP - 407 EP - 421 PB - Springer CY - Dordrecht AN - OPUS4-51144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Képeš, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J. T1 - Tomography of double-pulse laser-induced plasmas in the orthogonal geometry N2 - The temporal evolution of laser-induced plasmas is studied in the orthogonal double-pulse arrangement. Both the pre-ablation mode (an air spark is induced above the sample surface prior to the ablation pulse) and the re-heating mode (additional energy is delivered into the plasma created by the ablation pulse) is considered. The plasmas are investigated in terms of the temporal evolution of their electron density, temperature, and volume. The plasma volumes are determined using a time-resolved tomography technique based on the Radon transformation. The reconstruction is carried out for both white-light and band-pass filtered emissivities. The white-light reconstruction corresponds to the overall size of the plasmas. On the other hand, the band-pass emissivity reconstruction shows the distribution of the atomic sample species (Cu I). Moreover, through spectrally resolved tomographic reconstruction, the spatial homogeneity of the electron density and temperature of the plasmas is also investigated at various horizontal slices of the plasmas. Our results show that the pre-ablation geometry yields a more temporally stable and spatially uniform plasma, which could be beneficial for calibration-free laser-induced breakdown spectroscopy (LIBS) approaches. On the contrary, the plasma generated in the re-heating geometry exhibits significant variations in electron density and temperature along its vertical axis. Overall, our results shed further light on the mechanisms involved in the LIBS signal enhancement using double-pulse ablation. KW - Laser-induced plasma KW - Laser-induced breakdown spectroscopy KW - Double-pulse laserinduced breakdown spectroscopy KW - Plasma tomography KW - Radon reconstruction PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.06.078 SN - 0003-2670 SN - 0378-4304 VL - 1135 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-51142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Yan A1 - Yu, H. A1 - Gornushkin, Igor B. A1 - Li, J. A1 - Wu, Q. A1 - Zhang, Z. A1 - Li, X. T1 - Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy N2 - Remote and on-line measurement of chromium on structural steel surface in nuclear power plants is critical for protection against fluid accelerated corrosion. To improve the insufficient sensitivity of fiber-optic laser-induced breakdown spectroscopy toward trace element detection, a dual-pulse spectral enhancement system is set up. In an iron matrix, for the purpose of improving sensitivity of trace chromium analysis and reducing the self-absorption of iron, the effects of key parameters are investigated. The optimal values of the parameters are found to be: 450 ns inter-pulse delay, 700 ns gate delay, 30 mJ/6 mJ pulse energy ratio, and 19.8 mm lens-to-sample distance (corresponding to a 799 μm laser focused spot size). Compared to the single-pulse system, the shot number of dual-pulse ablation is limited for reducing surface damage. After the optimization of the dual-pulse system, the signal-to-noise ratio of the trace chromium emission line has been improved by 3.5 times in comparison with the single-pulse system, and the self-absorption coefficient of matrix iron has been significantly reduced with self-reversal eliminated. The number of detectable lines for trace elements has more than doubled thus increasing the input for spectral calibration without significantly increasing the ablation mass. Three calibration methods including internal standardization, partial least squares regression and random forest regression are employed to determine the chromium and manganese concentrations in standard samples of low alloy steel, and the limit of detection is respectively calculated as 36 and 515 ppm. The leave-one-out cross validation method is utilized to evaluate the accuracy of chromium quantification, and the concentration mapping of chromium is performed on the surface of a steel sample (16MND5) with a relative error of 0.02 wt.% KW - Fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) KW - Dual-pulse KW - Parameter optimization KW - Spectral enhancement KW - Self-absorption coefficient KW - Concentration mapping PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2020.147497 SN - 0169-4332 VL - 533 IS - 147497 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam AN - OPUS4-51143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 DO - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation N2 - Two sets of polystyrene nanoparticles (PSNPs) with comparable core sizes but different carboxyl group densities were made and separated using asymmetric flow field flow fractionation (AF4), capillary electrophoresis (CE), and the off-line hyphenation of both methods. Our results revealed the significant potential of two-dimensional off-line AF4-CE hyphenation to improve the separation and demonstrated for the first time, the applicability of CE to determine the functional group density of nanoparticles (NPs). Compared to the result acquired with conductometric titration, the result obtained with synthesized 100 nm sized PSNPs revealed only a slight deviation of 1.7%. Commercial 100 nm sized PSNPs yielded a deviation of 4.6 %. For 60 nm sized PSNPs, a larger deviation of 10.6 % between both methods was observed, which is attributed to the lower separation resolution. KW - Nanoparticle KW - A4F KW - Capillary electrophoresis KW - Carboxyl group PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461392 VL - 1626 SP - 461392 PB - Elsevier B.V. AN - OPUS4-51080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland T1 - Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? N2 - In recent years numerous reports have highlighted the options of chemical breath analysis with regard to noninvasive cancer detection. Certain volatile organic compounds (VOC) supposedly present in higher amounts or in characteristic patterns have been suggested as potential biomarkers. However, so far no clinical application based on a specific set of compounds appears to exist. Numerous reports on the capability of sniffer dogs and sensor arrays or electronic noses to distinguish breath of cancer patients and healthy controls supports the concept of genuine cancer-related volatile profiles. However, the actual compounds responsible for the scent are completely unknown and there is no correlation with the potential biomarkers suggested on basis of chemical trace analysis. It is outlined that specific features connected with the VOC analysis in breath – namely small concentrations of volatiles, interfering background concentrations, considerable sampling effort and sample instability, impracticability regarding routine application - stand in the way of substantial progress. The underlying chemicalanalytical challenge can only be met considering the severe susceptibility of VOC determination to these adverse conditions. Therefore, the attention is drawn to the needs for appropriate quality assurance/quality control as the most important feature for the reliable quantification of volatiles present in trace concentration. Consequently, the advantages of urine as an alternative matrix for volatile biomarker search in the context of diagnosing lung and other cancers are outlined with specific focus on quality assurance and practicability in clinical chemistry. The headspace over urine samples as the VOC source allows adapting gas chromatographical procedures well-established in water analysis. Foremost, the selection of urine over breath as non-invasive matrix should provide considerably more resilience to adverse effects during sampling and analysis. The most important advantage of urine over breath is seen in the option to partition, dispense, mix, spike, store, and thus to dispatch taylor-made urine samples on demand for quality control measures. Although it is still open at this point if cancer diagnosis supported by non-invasively sampled VOC profiles will ultimately reach clinical application the advantages of urine over breath should significantly facilitate urgently required steps beyond the current proof-of-concept stage and towards standardisation. KW - VOC KW - Breath KW - Urine KW - Lung cancer KW - Volatile organic compounds PY - 2020 DO - https://doi.org/10.1016/j.mehy.2020.110060 VL - 143 SP - 110060 PB - Elsevier Ltd. AN - OPUS4-51066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Magkos, Sotirios A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Direct iterative reconstruction of computed tomography trajectories: Reconstruction from limited number of projections with DIRECTT N2 - X-ray computed tomography has many applications in materials science and non-destructive testing. While the standard filtered back-projection reconstruction of the radiographic data sets is fast and simple, it typically fails in returning accurate results from missing or inconsistent projections. Among the alternative techniques that have been proposed to handle such data is the Direct Iterative REconstruction of Computed Tomography Trajectories (DIRECTT) algorithm. We describe a new approach to the algorithm, which significantly decreases the computational time, while achieving a better reconstruction quality than that of other established algorithms. KW - Computed tomography KW - DIRECTT KW - Iterative reconstruction KW - Limited data PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514403 DO - https://doi.org/10.1063/5.0013111 SN - 0034-6748 VL - 91 IS - 10 SP - 103107-1 EP - 103107-8 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-51440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulletti, A. A1 - Giannelli, P. A1 - Capineri, L. A1 - Prager, Jens T1 - Characterization of a Flexible Piezopolymer-based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves N2 - Structural health monitoring (SHM) is a term that groups together techniques adopted to evaluate in a continued fashion the structural integrity and degradation of technical appliances. SHM is particularly attractive for components that are difficult to access or expensive to take off-line. Among many other techniques, SHM can be performed using ultrasonic guided waves (UGW) which have an advantage of traveling over Long distances. Various guided wave modes exist along with many methods for their generation and sensing, e.g by means of interdigital transducers (IDT). This contribution is dedicated to the design and characterization of a flexible piezopolymerbased IDT which allows for the selective excitation of UGW, resulting in more straightforward data analysis. The designed IDT was characterized using a 3D Laser Doppler Vibrometer (3D LDV) in the air to identify and analyze the IDT’s Vibration modes. Then the transducer was mounted on an aluminum plate, and the generated wavefield was measured with the 3D LDV. According to this investigation, we demonstrate that it is possible to selectively excite desired guided wave mode, namely the A0 mode, suppressing the excitation of the S0 mode. Moreover, the measured wavefield allows for analysis of the directivity of the designed IDT. All in all the results show good correlation between theoretical predictions and measured values, thus allowing to use the current design in terms of selective excitation as it is. T2 - I2020 IEEE International Ultrasonics Symposium (IUS) CY - Online meeting DA - 07.09.2020 KW - Lamb waves KW - Non-Destructive Testing KW - Structural Health Monitoring KW - Polyvinylidene Fluoride (PVDF) PY - 2020 SN - 978-1-7281-5448-0 SP - 1261, 45 AN - OPUS4-51441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirilina, E. A1 - Helbling, S. A1 - Morawski, M. A1 - Pine, K. A1 - Reimann, K. A1 - Jankuhn, S. A1 - Dinse, J. A1 - Deistung, A. A1 - Reichenbach, J. R. A1 - Trampel, R. A1 - Geyer, S. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Arendt, T. A1 - Bazin, P.-L. A1 - Weiskopf, N. T1 - Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping N2 - Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans. KW - Magnetic resonance imaging KW - Laser ablation KW - ICP-MS KW - Brain KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514430 DO - https://doi.org/10.1126/sciadv.aaz9281 SN - 2375-2548 VL - 6 IS - 41 SP - eaaz9281 PB - American Association for the Advancement of Science (Science/AAAS) CY - Washington, DC, USA AN - OPUS4-51443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Gornushkin, Igor B. A1 - Kornev, R. A1 - Nazarov, V. A1 - Polyakov, V. A1 - Shkrunin, V. T1 - Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low‑Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration N2 - The physical plasma parameters, temperature and electron number density, are studied in the RF-IC (RF inductively coupled) discharge at a reduced pressure of 3 Torr in mixtures of MoF6 with Ar, H2 and CH4. The emission spectra of mixtures are investigated. It is shown that in the presence of argon, the concentration of free electrons in plasma and dissociation rate of MoF6 increase. A main role of molecular hydrogen is the generation of atomic hydrogen that binds atomic fuorine and leads to the formation of gaseous and solid products. Exhaust gas mixtures exiting the reactor are analyzed by mass spectrometry. It is shown that for all cases, the conversion of MoF6 into reaction products is close to 100%. A thermodynamic analysis of the equilibrium composition of MoF6 systems with Ar, H2 and CH4 was carried out and the obtained results are in good agreement with experimentally observed composition of the solid and gas phases. Analysis of solid deposits from mixture MoF6/H2/Ar revealed the presence of molybdenum powder and large amount of amorphous MoFx. The deposit obtained from mixtures with methane, MoF6/H2/Ar/CH4, contained crystalline molybdenum carbide, Mo3C2. KW - Molybdenum carbide KW - RF ICP discharge KW - Reduction of MoF6 KW - Thermodynamic KW - Molybdenum PY - 2020 DO - https://doi.org/10.1007/s11090-020-10138-3 SN - 0272-4324 VL - 41 IS - 2 SP - 673 EP - 690 PB - Springer AN - OPUS4-51569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas, K. R. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Rajagopal, P. A1 - Balasubramaniamam, K. T1 - Defect detection in steel bars up to 600 °C using laser line thermography N2 - Crack detection in steel bars at high surface temperatures is a critical problem in any manufacturing industry. Surface breaking cracks are the major problems during the billet casting. Many NDT techniques are proven its capability in crack detection at room temperature. Here, we are demonstrating the possibility of exposure of cracks using laser line thermography at higher surface temperatures (up to 600 °C). A continuous-wave (CW) laser is used to excite the sample kept at higher surface temperatures. The temperature distribution over the sample due to the laser line scanning is captured using a temperature calibrated infrared (IR) thermal camera. The response of the sample temperature in crack detection is investigated using a validated FE model. The impact of the oxide layer in crack detection is investigated by using two types of samples; one without any oxide layer and the second is with the oxide layer. The influence of laser power in the detection of defects at high temperatures is studied. 3D numerical models were developed for the cases; when the sample is with oxide layer and without any oxide layer for a better understanding of physics. The surface temperature rise due to laser heating is higher for the scaled sample compared to the no-scale sample. The presence of the oxide layer above the parent metal will reduce the reflectivity of the surface. Lower reflectivity will lead to increased absorption of incident energy so that the surface temperature rise will be higher than the surface with no scale. Thermal contrast linearly depends on laser power, which means higher laser power will increase the defect detectability even at a higher surface temperature. KW - Laser thermography KW - High temperature KW - Modeling KW - Surface cracks KW - Non-destructive testing PY - 2020 DO - https://doi.org/10.1016/j.infrared.2020.103565 SN - 1350-4495 VL - 111 SP - 103565 PB - Elsevier B.V. AN - OPUS4-51573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Pramann, A. A1 - Vogl, Jochen A1 - Lee, K.-S. A1 - Yim, Y.-H. A1 - Malinovskiy, D. A1 - Hill, S. A1 - Dunn, P. A1 - Goenaga-Infante, H. A1 - Ren, T. A1 - Wang, J. A1 - Vocke jr., R. D. A1 - Rabb, S: A. A1 - Narukawa, T. A1 - Yang, L. A1 - Mester, Z. A1 - Meija, J. A1 - Aref'ev, D. G. A1 - Marchin, V. A1 - Sharin, A. G. A1 - Bulanov, A. D. A1 - Potapov, A. M. A1 - Otopkova, P. A. A1 - Kessel, R. T1 - The comparability of the determination of the molar mass of silicon highly enriched in 28Si: results of the CCQM-P160 interlaboratory comparison and additional external measurements N2 - An international comparison study on the accurate determination of the molar mass M(Si) of silicon artificially enriched in 28Si (x(28Si) > 0.9999 mol mol−1) has been completed. The measurements were part of the high level CCQM-P160 pilot study assessing the ability of National Metrology Institutes (NMIs) and Designated Institutes (DIs) to make such measurements at the lowest possible levels of measurement uncertainty and to identify possible difficulties when measuring this kind of sample. This study supports the molar mass measurements critical to disseminating the silicon route to realizing the new definitions for the kilogram and the mole. Measurements were also made by one external research institute and an external company. The different institutes were free to choose their experimental (mass spectrometric) set-ups and equipment, thereby enabling also the comparison of different techniques. The investigated material was a chemically pure, polycrystalline silicon material. The subsequent modified single crystalline secondary product of this material was intended for the production of silicon which was used for two additional spheres in the context of the redetermination of the Avogadro constant NA, required for the revision of the International System of Units (SI) via fundamental constants which came into force from May 2019. The CCQM pilot study was organized by Physikalisch-Technische Bundesanstalt (PTB). Aqueous silicon solutions were shipped to all participating institutions. The data analysis as well as the uncertainty modelling and calculation of the results was predefined. The participants were provided with an uncertainty budget as a GUM Workbench® file as well as a free software license for the duration of the comparison. The agreement of the values of the molar mass (M(Si) = 27.976 942 577 g mol−1) was excellent with ten out of 11 results reported within the range of relative uncertainty of 1 × 10−8 required for the revision of the SI. KW - Absolute isotope ratio KW - Molar mass KW - Avogadro constant KW - Revision of the SI PY - 2020 DO - https://doi.org/10.1088/1681-7575/abbdbf VL - 57 IS - 6 SP - 065028 PB - IOP Science CY - Cambridge AN - OPUS4-51500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Editorial for the special issue "Modern Raman spectroscopy of minerals" N2 - Raman spectroscopy provides vibrational fingerprints of chemical compounds enabling their unambiguous identification. The assignment of Raman spectra to minerals is straightforward, if appropriate reference data is accessible. Modern couplings of Raman spectroscopy with microscopy (Raman microspectroscopy) merge the high structural specificity with down to sub-micrometre spatial resolution. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations (varying relative Raman band intensities); (sub)stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, strain (the latter three shifting Raman bands); and crystallinity (changing Raman band widths), enabling a comprehensive physico-chemical characterisation of minerals. Thus, Raman spectroscopy – including its in situ measurement capabilities – provides possibilities to study mineral paragenesis in both, natural and man-made samples at the micrometre scale. While in 1928 the first experimental evidence for inelastic light scattering was provided by C. V. Raman and K. S. Krishnan by using sunlight for excitation, filters for selecting the inelastically scattered light, and their eyes for detection (later, photographic plates for acquisition of spectra were employed), modern Raman spectrometers make use of laser excitation, dispersive spectrographs and charge coupled device (CCD) detection. This Special Issue includes technological developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits and archaeological objects to inorganic phases in man-made materials. The studied minerals include fossil resins, typical rock-forming minerals (calcite, quartz, forsterite), iron-sulphur species (e.g., mackinawite), a range of sulphates (gypsum, bassanite, anhydrite III, anhydrite II, celestine, barite, ternesite), as well as silicate minerals like garnets (e.g., almandine). KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Physico-chemical characterisation of minerals KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515041 DO - https://doi.org/10.3390/min10100860 VL - 10 SP - 860 PB - MDPI CY - Basel AN - OPUS4-51504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Isopescu, R. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Rossi, A. M. A1 - Ortel, Erik A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles N2 - In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm. KW - Machine learning KW - Nanoparticles KW - Titanium dioxide KW - Size KW - Shape KW - Synthesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515084 DO - https://doi.org/10.1038/s41598-020-75967-w VL - 10 IS - 1 SP - 18910 PB - Springer Nature AN - OPUS4-51508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leisegang, T. A1 - Levin, A.A. A1 - Kupsch, Andreas T1 - From the Ritter pile to the aluminum ion battery– Peter Paufler’s academic genealogy N2 - This article highlights Peter Paufler’s academic genealogy on the occasion of his 80th birthday. We describe the academic background since 1776, which covers 11 generations of scientists: Ritter, Ørsted, Hansteen, Keilhau, Kjerulf, Brøgger, Goldschmidt, Schulze, Paufler, Meyer, and Leisegang. The biographies of these scientists are described in spotlight character and references to scientists such as Dehlinger, Ewald, Glocker, Röntgen, Vegard, Weiss, and Werner are given. A path is drawn that begins in the Romanticism with electrochemistry and the invention of what is probably the first accumulator. It leads through the industrialization and the modern geology, mineralogy, and crystallography to crystal chemistry, metal and crystal physics and eventually returns to electrochemistry and the aluminum-ion accumulator in the era of the energy transition. The academic genealogy exhibits one path of how crystallography develops and specializes over three centuries and how it contributes to the understanding of the genesis of the Earth and the Universe, the exploration of raw materials, and the development of modern materials and products during the industrialization and for the energy transition today. It is particularly characterized by the fields of physics and magnetism, X-ray analysis, and rare earth compounds and has strong links to the scientific landscape of Germany (Freiberg) and Scandinavia, especially Norway (Oslo), as well as to Russia (Moscow, Samara, St. Petersburg). The article aims at contributing to the history of science, especially to the development of crystallography, which is the essential part of the structural science proposed by Peter Paufler. KW - Academic genealogy KW - Crystallography KW - Festschrift KW - Physics KW - Structural science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515254 DO - https://doi.org/10.1515/zkri-2020-0063 SN - 2196-7105 VL - 235 IS - 11 SP - 481 EP - 511 PB - De Gruyter CY - Berlin AN - OPUS4-51525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - You, Yi A1 - Gornushkin, Igor B. A1 - Zheng, R. A1 - Riedel, Jens T1 - High-throughput underwater elemental analysis by μJ-laser-induced breakdown spectroscopy at kHz repetition rates: part I, ultrasound-enhanced optical emission spectroscopy towards application perspectives N2 - In recent years, laser-induced breakdown spectroscopy (LIBS) has gained significant attention as a means for simple elemental analyses. The suitability of LIBS for contactless analysis allows it to be a perfect candidate for underwater applications. While the majority of LIBS systems still rely upon sub-kHz pulsed lasers, this contribution introduces 10s-kHz low pulse-energy lasers into underwater LIBS to improve the throughput and statistical validity. Interestingly, the spectral component significantly changed above a critical laser repetition-rate threshold. Spectral lines of atomic hydrogen and oxygen stemming from water become visible beyond a ∼10 kHz repetition rate. This observation suggests a different plasma dynamic compared to low repetition rates. When the pulse-to-pulse interval becomes sufficiently short, a cumulative effect begins to be significant. Apparently, the new phenomena occur on a timescale corresponding to a threshold rate of ∼10 kHz, i.e. ∼100 μs. Analytically, the high repetition rates result in improved statistical validity and throughput. More plasma events per unit time allowed the use of low efficiency Echelle spectrometers without compromising on the analytical performance. Meanwhile, the presence of H I and O I out of the water (as the matrix) also offers internal standardization in underwater elemental analysis. Since the laser fluence was on the lower edge of the plasma threshold, an additional ultrasound source was introduced to induce external perturbation, which significantly improved the plasma formation stability. A huge advantage of LIBS is the possibility of detecting almost all elements within a sample simultaneously. Throughout the periodic table, chlorine is one of the most challenging elements. Consequently, Ca2+ and Na+ were used as samples to demonstrate the capability of this high repetition-rate LIBS platform. As an ambitious benchmark for our system, chlorine detection in water was also discussed. KW - High repetition rate KW - Laser-induced breakdown spectroscopy PY - 2020 DO - https://doi.org/10.1039/D0JA00290A VL - 35 IS - 12 SP - 2901 EP - 2911 PB - The Royal Society of Chemistry AN - OPUS4-51564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - You, Yi A1 - Riedel, Jens T1 - High-throughput underwater elemental analysis by μJ-laser-induced breakdown spectroscopy at a kHz repetition rate: part II, understanding the high repetition-rate from a fundamental perspective N2 - The technological advances in lasers enabled the wide application of laser-induced breakdown spectroscopy (LIBS) as a powerful analytical means for elemental analyses. Rather than commonly used lasers that operate at several to several-tens of Hz, the high repetition rate ones that operate at tens of kHz showed superior analytical advantages while implying unique excitation pathways. Specifically, the production of excited atomic hydrogen and oxygen, which can serve as internal standards, is quite different from that in commonly reported double-pulse LIBS. In this part of the work, it was found that the atomic emitters stemming from water are not related to cavitation bubbles. Moreover, the emitter productions of dissolved species, e.g., Na+, and water-related species, e.g., H-α, are two distinctive mechanisms. Towards analytical applications of the high repetition-rate system, the fundamental investigation can provide important guidelines to address real-life challenges. In this part of the work, the high repetition-rate regime of operation is explored from a more kinetic perspective. KW - High repetition rate KW - Laser-induced breakdown spectroscopy PY - 2020 DO - https://doi.org/10.1039/D0JA00291G VL - 35 IS - 12 SP - 2912 EP - 2919 PB - Royal Society of Chemistry AN - OPUS4-51565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Warschat, Carsten A1 - You, Yi A1 - Rurack, Knut A1 - Riedel, Jens T1 - Stimulated Raman scattering by intracavity mixing of nanosecond laser excitation and fluorescence in acoustically levitated droplets N2 - Raman spectroscopy is becoming a commonly used, powerful tool for structural elucidation and species identification of small liquid samples, e.g. in droplet-based digital microfluidic devices. Due to the low scattering cross sections and the temporal restrictions dictated by the droplet flow, however, it depends on amplification strategies which often come at a cost. In the case of surface-enhanced Raman scattering (SERS), this can be an enhanced susceptibility towards memory effects and cross talk, whereas resonant and/or stimulated Raman techniques require higher instrumental sophistication, such as tunable lasers or the high electromagnetic field strengths which are typically provided by femtosecond lasers. Here, an alternative instrumental approach is discussed, in which stimulated Raman scattering (SRS) is achieved using the single fixed wavelength output of an inexpensive diode-pumped solid-state (DPSS) nanosecond laser. The required field strengths are realized by an effective light trapping in a resonator mode inside the interrogated droplets, while the resonant light required for the stimulation is provided by the fluorescence signal of an admixed laser dye. To elucidate the underlying optical processes, proof-of-concept experiments are conducted on acoustically levitated droplets, mimicking a highly reproducible and stable digital fluidic system. By using isotope-labeled compounds, the assignment of the emitted radiation as Raman scattering is firmly corroborated. A direct comparison reveals an amplification of the usually weak spontaneous Stokes emission by up to five orders of magnitude. Further investigation of the optical power dependence reveals the resulting gain to depend on the intensity of both, the input laser fluence and the concentration of the admixed fluorophore, leaving SRS as the only feasible amplification mechanism. While in this study stable large droplets have been studied, the underlying principles also hold true for smaller droplets, in which case significantly lower laser pulse energy is required. Since DPSS lasers are readily available with high repetition rates, the presented detection strategy bears a huge potential for fast online identification and characterization routines in digital microfluidic devices. KW - Ultrasonic levitation KW - Stimulated Raman Spectroscopy PY - 2020 DO - https://doi.org/10.1039/D0AY01504K VL - 12 IS - 42 SP - 5046 EP - 5054 PB - Royal Society of Chemistry AN - OPUS4-51566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515351 DO - https://doi.org/10.1007/s00216-020-03010-y SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, U.E.A. A1 - Streli, C. A1 - Radtke, Martin T1 - Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded apertures N2 - X-ray imaging methods are used in many fields of research, as they allow a non-destructive Investigation of the elemental content of various samples. As for every imaging method, for X-ray imaging the optics are of crucial importance. However, these optics can be very expensive and laborious to build, as the requirements on surface roughness and precision are extremely high. Angles of reflection and refraction are often in the range of a few mrad, making a compact design hard to achieve. In this work we present a possibility to simplify X-ray imaging. We have adapted the coded aperture method, a high energy radiation imaging method that has its origins in astrophysics, to full field X-ray fluorescence imaging. In coded aperture imaging, an object is projected through a known mask, the coded aperture, onto an area sensitive detector. The resulting image consists of overlapping projections of the object and a reconstruction step is necessary to obtain the information from the recorded image. We recorded fluorescence images of different samples with an energy-dispersive 2D detector (pnCCD) and investigated different reconstruction methods. With a small coded aperture with 12 holes we could significantly increase the count rate compared to measurements with a straight polycapillary optic. We show that the reconstruction of two different samples is possible with a deconvolution approach, an iterative algorithm and a neural network. These results demonstrate that X-ray fluorescence imaging with coded apertures has the potential to deliver good results without scanning and with an improved count rate, so that measurement times can be shortened compared to established methods. KW - X-ray fluorescence imaging KW - Coded apertures KW - Imaging KW - Elemental mapping KW - Image reconstruction PY - 2020 DO - https://doi.org/10.1039/d0ja00146e VL - 35 IS - 7 SP - 1423 EP - 1434 PB - Royal Society of Chemistry CY - United Kingdom AN - OPUS4-51518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Prozzi, M. A1 - Mansfeld, Ulrich A1 - Hodoroaba, Vasile-Dan A1 - Minero, C. T1 - Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra N2 - Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping Agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation. KW - Polyethylene glycol KW - Strontium titanate KW - Controlled morphology KW - Photoelectrochemistry KW - Electron microscopy KW - EDS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512892 DO - https://doi.org/10.3390/nano10091892 VL - 10 IS - 9 SP - 1892 PB - MDPI CY - Basel, CH AN - OPUS4-51289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medeiros, V.L. A1 - Goulart de Araujo, L. A1 - Ratero, D.R. A1 - Paula, A.S. A1 - Ferreira Molina, E. A1 - Jaeger, Christian A1 - Takehiro Marumo, J. T1 - Synthesis and physicochemical characterization of a novel adsorbent based on yttrium silicate: A potential material for removal of lead and cadmium from aqueous media N2 - A new metallosilicate based on yttrium was synthesized and characterized by XRD, FT-IR, 29Si MAS-NMR, and 89Y MAS-NMR. The mixed framework of the material was confirmed by the detection of distinct chemical shift groups using 29Si MAS-NMR (at -82 to -87 ppm, -91 to -94 ppm, -96 to -102 ppm, and -105 to -108 ppm), as well as four distinct chemical shifts in the 89Y MAS-NMR spectrum (at -89, -142, -160, and -220 ppm). Adsorption and kinetic analyses indicated the potential of the new material for the removal of lead and cadmium from aqueous media. The adsorption results for lead indicated that dynamic equilibrium was reached after five hours, with total lead removal of around 94 %, while for cadmium it was reached in the first hour, with total Cadmium removal of around 74 %. The adsorptions of lead and cadmium were modeled using pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models. Although both models provided high R2 values (0.9903 and 0.9980, respectively), the PSO model presented a much lower χ2 red value (4.41×10−4), compared to the PFO model (2.12×10−3), which indicated that the rate-limiting step was probably due to the chemisorption of lead from the solution onto the yttrium-based metallosilicate. KW - Yttrium silicates KW - 29Si KW - 89Y MAS-NMR KW - Adsorption KW - Chemisorption KW - Cadmium and lead remediation PY - 2020 DO - https://doi.org/10.1016/j.jece.2020.103922 VL - 8 SP - 103922 PB - Elsevier Ltd. AN - OPUS4-51292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiffmann, J. A1 - Emmerling, Franziska A1 - Martins, Ines A1 - Van Wüllen, L. T1 - In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR N2 - We present an approach towards the in situ solid state NMR monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. MAS NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions in situ, such as Raman spectroscopy or X-ray diffraction. KW - Mechanochemistry KW - Solid state NMR KW - NMR probe Development PY - 2020 DO - https://doi.org/10.1016/j.ssnmr.2020.101687 VL - 109 SP - 101687 PB - Elsevier Inc. AN - OPUS4-51283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 DO - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Kugler, Stefan T1 - Analiza możliwości wykorzystania w Polsce popiołów ze spalania komunalnych osadów ściekowych na cele nawozowe T1 - Use of municipal sewage sludge ash for fertilizing purposes. An analysis of possibilities in Poland N2 - Popioły pochodzące z instalacji do spalania komunalnych osadów ściekowych, znajdującej się na terytorium Polski, poddano procesom termochemicznego przekształcania, dzięki czemu otrzymano produkty nawozowe spełniające kryteria dopuszczające je do obrotu jako nawozy mineralne. Ponadto dokonano analizy możliwości wykorzystania popiołów na cele nawozowe zgodnie z obecnie przyjętymi dokumentami strategicznymi i planistycznymi dotyczącymi gospodarki odpadami na poziomie krajowym i europejskim. N2 - Ashes from thermal transformation of municipal sewage sludge were thermochem. modified at 1000°C in the presence of NaHCO3 and sewage sludge to obtain CaNaPO4 and reduce the content of heavy metals in the produced fertilizer. Its bioavailability was more than 99% higher than that of raw ashes (50%). The nutrient content was 13.56 % Ca, 6.33% P, 4.36% K and 5.0% Fe. The content of heavy metals in fertilizer products met the std. requirements and was exceeded only in the case of Pb (278.3 mg/kg d.m.). KW - Ashes KW - Waste KW - Phosphorus KW - Recovery KW - Fertilizer PY - 2020 DO - https://doi.org/10.15199/62.2020.8.14 VL - 99 IS - 8 SP - 1186 EP - 1191 AN - OPUS4-51267 LA - pol AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, Annika A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - PQQ KW - Lanthanoide KW - Coordination chemistry KW - Rare earth elements separations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512707 DO - https://doi.org/10.1002/chem.202002653 VL - 26 IS - 44 SP - 10133 EP - 10139 AN - OPUS4-51270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtsch, Mona A1 - Kinne, J. A1 - Blind, K. T1 - Exploring the Adoption of the International Information Security Management System Standard ISO/IEC 27001: A Web Mining-Based Analysis N2 - In the light of digitalization and recent EU policy initiatives, information is an important asset that organizations of all sizes and from all sectors should secure. However, in order to provide common requirements for the implementation of an information security management system, the internationally well-accepted ISO/IEC 27001 standard has not shown the expected growth rate since its publication more than a decade ago.In this article, we apply web mining to explore the adoption of ISO/IEC 27001 through a series of 2664 out of more than 900 000 German firms from the Mannheim Enterprise Panel dataset that refers to this standard on their websites. As a result, we present a “landscape” of ISO/IEC 27001 in Germany, which shows that firms not only seek certifications themselves but often refer on their websites to partners who are certified instead. Consequently, we estimate a probit model and find that larger and more innovative firms are more likely to be certified to ISO/IEC 27001 and that almost half of all certified firms belong to the information and communications technology (ICT) service sector. Based on our findings, we derive implications for policymakers and management and critically assess the suitability of web mining to explore the adoption of management system standards. KW - Adoption KW - Information security KW - Management system standards KW - Standards KW - Web mining PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513284 DO - https://doi.org/10.1109/TEM.2020.2977815 VL - 68 IS - 1 SP - 87 EP - 100 AN - OPUS4-51328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Claudia A1 - Blind, K. T1 - Towards Agile Standardization: Testbeds in Support of Standardization for the IIoT N2 - The Industrial Internet of Things (IIoT) poses multiple challenges to traditional standardization, due to the complexity, dynamics, and accelerating speed of technological progress. The need for a timely availability of standards calls for new approaches and tools to enhance standardization processes for smart manufacturing. Industry and standards development organizations worldwide are seeking new solutions. Testbeds have been acknowledged in innovation policy as a powerful tool for knowledge transfer and the further development of emerging technologies. Lately, they have also attracted increasing attention from the standardization perspective as a promising tool for a more agile standards development process. Proponents of such testbeds expect them to support standardization by providing validated solutions and accelerating the processes to meet the growing demands for faster standardization without any detriment to quality. In an explorative, qualitative approach this article is the first to investigate the operation and impact of testbeds in standardization processes based on a multiple case study on testbeds implemented worldwide in the context of the IIoT. KW - Testumgebung KW - Reallabor KW - Normung KW - Standards KW - Standardization KW - Industrie 4.0 KW - Smart manufacturing KW - Industrial internet of things KW - Agility KW - Agile PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513300 DO - https://doi.org/10.1109/TEM.2020.2979697 VL - 68 IS - 1 SP - 59 EP - 74 AN - OPUS4-51330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van den Bossche, T. A1 - Verschaffelt, P. A1 - Schallert, K. A1 - Barsnes, H. A1 - Dawyndt, P. A1 - Benndorf, D. A1 - Renard, B. Y. A1 - Mesuere, B. A1 - Martens, L. A1 - Muth, Thilo T1 - Connecting MetaProteomeAnalyzer and PeptideShaker to Unipept for Seamless End-to-End Metaproteomics Data Analysis N2 - Although metaproteomics, the study of the collective proteome of microbial communities, has become increasingly powerful and popular over the past few years, the field has lagged behind on the availability of user-friendly, end-to-end pipelines for data analysis. We therefore describe the Connection from two commonly used metaproteomics data processing tools in the field, MetaProteomeAnalyzer and PeptideShaker, to Unipept for downstream analysis. Through these connections, direct end-to-end pipelines are built from database searching to taxonomic and functional annotation. KW - Metaproteomics KW - Bioinformatics KW - Software KW - Pipelines PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00136 VL - 19 IS - 8 SP - 3562 EP - 3566 PB - ACS Publications AN - OPUS4-51331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiebenhoefer, H. A1 - Schallert, K. A1 - Renard, B. Y. A1 - Trappe, K. A1 - Schmid, E. A1 - Benndorf, D. A1 - Riedel, K. A1 - Muth, Thilo A1 - Fuchs, S. T1 - A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane N2 - Metaproteomics, the study of the collective protein composition of multi-organism systems, provides deep insights into the biodiversity of microbial communities and the complex functional interplay between microbes and their hosts or environment. Thus, metaproteomics has become an indispensable tool in various fields such as microbiology and related medical applications. The computational challenges in the analysis of corresponding datasets differ from those of pure-culture proteomics, e.g., due to the higher complexity of the samples and the larger reference databases demanding specific computing pipelines. Corresponding data analyses usually consist of numerous manual steps that must be closely synchronized. With MetaProteomeAnalyzer and Prophane, we have established two open-source software solutions specifically developed and optimized for metaproteomics. Among other features, peptide-spectrum matching is improved by combining different search engines and, compared to similar tools, metaproteome annotation benefits from the most comprehensive set of available databases (such as NCBI, UniProt, EggNOG, PFAM, and CAZy). The workflow described in this protocol combines both tools and leads the user through the entire data analysis process, including protein database creation, database search, protein grouping and annotation, and results visualization. To the best of our knowledge, this protocol presents the most comprehensive, detailed and flexible guide to metaproteomics data analysis to date. While beginners are provided with robust, easy-to-use, state-of-the-art data analysis in a reasonable time (a few hours, depending on, among other factors, the protein database size and the number of identified peptides and inferred proteins), advanced users benefit from the flexibility and adaptability of the workflow. KW - Bioinformatics KW - Protocol KW - Microbial proteomics KW - Software KW - Mass spectrometry KW - Metaproteomics PY - 2020 DO - https://doi.org/10.1038/s41596-020-0368-7 SN - 1750-2799 VL - 15 IS - 10 SP - 3212 EP - 3239 PB - Nature Publishing Group AN - OPUS4-51335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Raichlin, Y. T1 - Review on recent advances in analytical applications of molecular emission and modelling N2 - The review mainly deals with two topics that became important in applications of laser-induced breakdown spectroscopy (LIBS) in recent years: the emission of halogen- and rare-earth-containing molecules and selective excitation of molecules by molecular laser-induced fluorescence (MLIF). The first topic is related to the emission of alkaline-earth diatomic halides MX, M = Ca, Mg, Ba, Sr and X = F, Cl, Br, and I and rare-earth element (REE) oxides LaO, YO, and ScO. These molecules form in laser-induced plasma (LIP) soon after its ignition and persist for a long time, emitting broad bands in a visible part of the spectrum. They are best detected after relatively long delay times when emission from interfering plasma species (atoms and ions) has already been quenched. Such behavior of molecular spectra allows of using, for their detection, inexpensive CCD detectors equipped with simple electronic or mechanical shutters and low-resolution spectrometers. A main target for analysis by molecular spectroscopy is halogens; these elements are difficult to detect by atomic spectroscopy because their most intense atomic lines lie in the vacuum UV. Therefore, in many situations, emission from CaF and CaCl may provide a substantially more sensitive detection of F and Cl than emission from elemental F and Cl and their ions. This proved to be important in mining and concrete industries and even Mars exploration. A similar situation is observed for REEs; their detection by atomic spectroscopy sometimes fails even despite the abundance of atomic and ionic REEs' lines in the UV-VIS. For example, in minerals and rocks with low concentrations of REEs, emission from major and minor mineral elements hinders the weak emission from REEs. Many REEs do not form molecules that show strong emission bands in LIP but can still be detected with the aid of LIP. All REEs except La, Y, and Sc exhibit long-lived luminescence in solid matrices that is easily excited by LIP. The luminescence can be detected simultaneously with molecular emission of species in LIP within the same time and spectral window. The second topic is related to the combination of MLIF and LIBS, which is a technique that was proved to be efficient for analysis of isotopic molecules in LIP. For example, the characteristic spectral signals from isotopic molecules containing 10B and 11B are easier to detect with MLIF-LIBS than with laser ablation molecular isotopic spectrometry (LAMIS) because MLIF provides strong resonance excitation of only targeted isotopes. The technique is also very efficient in detection of halogen molecules although it requires an additional tunable laser that makes the experimental setup bulky and more expensive. KW - Plasma induced luminescence KW - Molecular emission KW - Laser induced plasma KW - Plasma modeling KW - Molecular analysis KW - LIBS PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105989 VL - 173 SP - 105989 PB - Elsevier B. V. AN - OPUS4-51420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, A. A1 - von Randow, M. A1 - Voigt, A.-L. A1 - von der Au, Marcus A1 - Fischer, E. A1 - Meermann, Björn A1 - Wagner, M. T1 - Ingestion and toxicity of microplastics in the freshwater gastropodLymnaea stagnalis: No microplastic-induced effects alone or incombination with copper N2 - The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6–96 h of exposure to 5–90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h–7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4–100,000 particles mL−1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics. KW - Lymnaea stagnalis KW - Microplastic-induced effects KW - Mixture toxicity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513551 DO - https://doi.org/10.1016/j.chemosphere.2020.128040 VL - 263 SP - 128040 PB - Elsevier Ltd. AN - OPUS4-51355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schade, U. A1 - Dawei, C. A1 - Puskar, L. A1 - Ritter, E. A1 - Beckmann, Jörg T1 - Removal of Etalon Features in the Far-Infrared–Terahertz Transmittance Spectra of Thin Polymer Films N2 - Etalon features in infrared spectra of stratified samples, their influence on the interpretation and methods to circumvent their presence in infrared spectra have been in discussion for decades. This paper focuses on the application of a method originally developed to remove interference fringes in the mid-infrared spectra for far-infrared Fourier transform spectroscopy on thin polymer films. We show that the total transmittance-reflectance technique, commonly used for mid-infrared, also works successfully in the far infrared spectral range where other approaches fail. Experimental spectra obtained by such technique are supported by model calculations and reveal the possibility and limits to obtain almost undisturbed far-infrared spectra which are suitable to determine low energy vibrations of ionomer salts under certain sample conditions. KW - Far-infrared spectroscopy KW - Absorption KW - Etalon feature KW - Total transmittance reflectance PY - 2020 DO - https://doi.org/10.1177/0003702820922295 VL - 74 IS - 12 SP - 1530 EP - 1539 PB - Sage journals AN - OPUS4-51367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Kolmangadi, Mohamed Aejaz A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Electrical conductivity and multiple glassy dynamics of crow-ether based columnar liquid crystals N2 - The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals (CLCs) bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), columnar liquid crystalline (Colh) and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3 process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS) employing temperature modulated DSC and FSC (TMDSC and TMFSC). The advanced calorimetric investigations revealed that besides the α2 process in agreement with BDS, a second dynamic glass transition (α1-process) is present which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1 , α2 and α3 processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. one order of magnitude at phase transition from the crystalline to the hexagonal phase. KW - Columnar Liquid Crystal PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.0c06854 VL - 124 IS - 39 SP - 8728 EP - 8739 PB - ACS AN - OPUS4-51374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Determination of readiness for laying based on material moisture, corresponding relative humidity, and water release N2 - The moisture content of the subfloor has to be determined before installation to avoid damages of the floor covering. Only if the readiness for layering is reached, an installation without damages can be expected in all cases. In general, three different approaches exist to measure the residual water content: determination of the moisture content, determination of the water release, or determination of the corresponding relative humidity. All three approaches are tested in laboratory at eight different screed types including two different samples thicknesses in each case. The moisture content and the water release are measured by sample weighing, the corresponding relative humidity is measured by embedded sensors. All three approaches are compared and correlated to each other. The evaluations show only weak correlation and, in several cases, contradicting results. Samples are considered as being ready for layering and not-being ready for layering at the same time, depending on the chosen approach. Due to these contradicting results, a general threshold for the risk of damage cannot be derived based on these measurements. Furthermore, the experiment demonstrates that the measurement of corresponding relative humidity is independent of the considered screed type or screed composition. This makes the humidity measurement to very promising approach for the installation of material moisture monitoring systems in the future. KW - Material moisture KW - Readiness for laying KW - Screed KW - Corresponding relative humidity KW - Partially saturated pores PY - 2020 DO - https://doi.org/10.3139/120.111581 VL - 62 IS - 10 SP - 1033 EP - 1040 PB - Carl Hanser Verlag GmbH & Co. KG CY - München AN - OPUS4-51405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherb, T. A1 - Fantin, Andrea A1 - Checcia, S. A1 - Stephan-Scherb, Christiane A1 - Escolástico, S. A1 - Franz, A. A1 - Seeger, J. A1 - Meulenberg, W. A. A1 - d'Acapito, F. A1 - Serra, J. M. T1 - Unravelling the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d mixed ionic electronic conductors N2 - Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the Oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-yWO12-d, the ionic/electronic transport mechanism in Nd6-yWO12-d is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-d and molybdenum-substituted Nd5.7W0.75Mo0.25O12-d prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replacesWat bothWyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-yWO12-d. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W(W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-yWO12-d is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies. KW - Powder diffraction KW - Mixed conductors KW - X-ray absorption spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514607 DO - https://doi.org/10.1107/S1600576720012698 VL - 53 SP - 1471 EP - 1483 AN - OPUS4-51460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broicher, Cornelia A1 - Zeng, F. A1 - Pfänder, N. A1 - Frisch, M. A1 - Bisswanger, T. A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Palkovits, S. A1 - Beine, A. K. A1 - Palkovits, R. T1 - Iron and Manganese Containing Multi-Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction - Unravelling Influences on Activity and Stability N2 - Hydrogen economy is a central aspect of future energy supply, as hydrogen can be used as energy storage and fuel. In order tomake water electrolysis efficient, the limiting oxygen evolution reaction (OER) needs to be optimized. Therefore, C-based composite materials containing earth-abundant Fe and Mn were synthesized, characterized and tested in the OER. For pyrolysis temperatures above 700°C N-rich multi-walled carbon nanotubes (MWCNT) are obtained. Inside the tubes Fe3C particles are formed, Fe and Mn oxides are incorporated in the carbon matrix and metal spinel nanoparticles cover the outer surface. The best catalyst prepared at 800°C achieves a low overpotential of 389 mV (at 10 mA/cm2) and high stability (22.6 h). From electrochemical measurements and characterization it can be concluded that the high activity is mainly provided by MWCNT, Fe3C and the metal oxides in the conductive carbon matrix. The metal spinel nanoparticles in contrast protect the MWCNT from oxidation and thereby contribute to the high stability. KW - Oxygen Evolution Reaction KW - Carbon Nanotubes KW - Stability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513955 DO - https://doi.org/10.1002/cctc.202000944 VL - 12 IS - 21 SP - 1 EP - 8 PB - Wiley Online Libary AN - OPUS4-51395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Reply to the comment on “synthesis of cyclic polymers and flaws of the Jacobson-Stockmayer theory” by R. Szymanski N2 - In a recent publication the authors have presented theoretical and experimental results indicating that the Jacobson–Stockmayer (JS) theory does not provide a correct description of reversible polycondensations for all polymers and for high conversions (e.g. polycondensation in bulk). In this context reversibility means that all condensation step whether resulting in chain growth or in cyclization are reversible and thus, part of an equilibrium. The first two sections of that paper were focused on the demonstration that small, and above all, large cycles can be formed by end-to-end (ete) cyclization in reversible like in irreversible polycondensations. A significant contribution of ete-cyclization to the course of reversible polycondensations was denied by J + S apparently as a contribution to Florýs dogma, that the end groups of long polymer chains will never meet. KW - Polylactide KW - MALDI-TOF MS KW - Jacobsen-Stockmayer theory PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513985 DO - https://doi.org/10.1039/D0PY01118E VL - 11 IS - 38 SP - 6226 EP - 6228 PB - Royal Society of Chemistry AN - OPUS4-51398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Alentiev, D. A1 - Bermeshev, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation N2 - For the first time, dielectric and calorimetric investigations of an homologous series of Janus polynorbornenes with rigid main backbones and flexible -Si(OR)3 side groups, of differing length alkyl chains (R = Propyl, Butyl, Hexyl, Octyl, Decyl) is reported. Generally, this class of polymers has some potential for applications in the field of gas separation membranes. Two dielectrically active processes are observed at low temperatures, denoted as β- and α- relaxation. The former can be assigned to localized fluctuations, whilst the latter is related to the glassy dynamics of the flexible -Si(OR)3 side groups, creating a nanophase separation in both the alkyl chain rich and backbone rich domains. This is confirmed through temperature modulated DSC measurements and X-ray scattering experiments. The glass transition temperatures of the backbone rich domains, which are beyond or near to their degradation temperatures in terms of conventional DSC, are determined for the first time using Fast Scanning Calorimetry employing both fast heating and cooling rates. This is complimented with scattering experiments that show how the size of the alkyl chain rich domains increases with chain length. Alongside these results, a significant conductivity contribution was observed for all poly(tricyclononenes) with -Si(OR)3 side groups, which is interpreted in terms of a percolation model. KW - Polynorbornenes KW - Broadband Dielectric Spectrscopy KW - Advanced calorimetry PY - 2020 DO - https://doi.org/10.1021/acs.macromol.0c01450 VL - 53 IS - 17 SP - 7410 EP - 7419 PB - ACS AN - OPUS4-51196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -