TY - INPR A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H nuclear magnetic resonance (qNMR) of aromatic amino acids for protein quantification N2 - qNMR is a valuable technique for metrological studies due to the uniformity of its signal response for all chemical species of an isotope of interest, which enables compound-independent calibration. However, protein quantification remained challenging as large molecules produce wide, low-intensity signals that reduce the already low sensitivity. Combining qNMR with the hydrolysis of protein samples into amino acids circumvents many of these issues and facilitates the use of NMR spectroscopy for absolute protein and peptide quantification.In this work, different conditions have been tested for quantifying aromatic amino acids and proteins. First, we examined the pH-based signal shifts in the aromatic region. The preferable pH depends on the selection of the amino acids for quantification and which internal standard substance should be used to avoid peak overlap. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, have been applied as internal standards. The quantification of amino acids from an amino acid standard, as well as from a certified reference material (bovine serum albumin), was performed. Using the first two suggested internal standards, recovery was ~ 97 % for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98 ± 2 and 88 ± 4 %, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - AAA KW - Protein hydrolysis KW - Metrology KW - Traceability KW - Reference materials KW - Internal standards KW - Calibration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564520 DO - https://doi.org/10.20944/preprints202211.0569.v1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Westphalen, Tanja A1 - Kaminski, Katja T1 - Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples N2 - Estrogens are endocrine disrupting chemicals and of high concerns due to demonstrated harmful effects on the environment and low effect levels. For monitoring and risk assessment, several estrogens were included in the "watch list" of the EU Water Framework Directive which sets very low environmental quality standard (EQS) levels for Estrone (E1) and 17β-Estradiol (E2) of 0.4 ng L−1 and for 17α-Ethinylestradiol (EE2) of 0.035 ng L−1 requiring sensitive detection methods, as well as extensive sample preparation. A sensitive, derivatization-free, isotope dilution calibration HPLC-MS/MS method for a panel of 5 selected estrogens (including the 3 estrogens of the EU WFD watchlist), and a procedure for the reproducible preparation of a representative whole water matrix including mineral water, humic acids and solid particulate matter are presented. These are used in a diligent comparison of classical solid phase extraction (SPE) on hydrophilic-lipophilic balanced (HLB) phase to SPE on an estrogen-specific molecularly imprinted polymer phase (MISPE) for ultra-trace levels of the analytes (1–10 ng L−1). Additionally, a two-step procedure combining HLB SPE disks followed by MISPE is evaluated. The tow-step procedure provides superior enrichment, matrix removal and sample throughput while maintaining comparable recovery rates to simple cartridge SPE. Estimated method quantification limits (MQLs) range from 0.109–0.184 ng L−1 and thus meet EQS-levels for E1 and E2, but not EE2. The representative whole water matrix provides a reproducible comparison of sample preparation methods and lays the foundation for a certified reference material for estrogen analysis. The presented method will serve as the basis for an extended validation study to assess its use for estrogen monitoring in the environment. KW - Estrogens KW - Whole water samples KW - Molecular imprinted polymers KW - EU-WFD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563547 DO - https://doi.org/10.1016/j.talo.2022.100163 SN - 2666-8319 VL - 6 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-56354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Frick, D. A1 - Jacobsen, L. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - Atomic absorption spectroscopy and machine learning for lithium isotopic study N2 - The isotopic analysis of lithium is also relevant to the study of geological phenomena.1 In this work we propose improvements to the method for the isotopic analysis of lithium using a high-resolution continuum source atomic absorption spectrometer (HR-CS-AAS) coupled to a double echelle modular spectrometer (DEMON). 2 This tool for isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←2 2S electronic transition around 670.788 nm. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm. For the training of the algorithm (XGBoost), a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol-1 was used. Subsequently, the procedure was validated of a set of stock chemicals (Li2CO3, LiNO3, LiCl and LiOH) and a BAM candidate reference material, the cathode material LiNi1/3Mn1/3Co1/3O2 (NMC111). Finally, the ML model was applied to the set of geological samples, previously digested, for the determination of their isotope ratio. The optical resolution was improved from 140,000 to 790,000 to better deconvolution the lithium isotopic components in the atomic spectrum. And the method was compared with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The results are metrologically comparable. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium isotope KW - Atomic absorption spectroscopy PY - 2022 AN - OPUS4-56357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arndt, R.W. A1 - Grosse, C.U, A1 - Maehner, D. A1 - Niederleithinger, Ernst A1 - Taffe, A. A1 - Algernon, D. A1 - Berger, J. A1 - Kessler, S. A1 - Krueger, M. A1 - Kruschwitz, Sabine A1 - Ufermann-Wallmeier, D. A1 - Walther, A. T1 - Non-destructive testing in civil engineering: A memorandum for teaching at German-speaking universities N2 - This contribution summarizes actual developments and draft fundamental teaching topics in the field of nondestructive testing in civil engineering (NDT-CE). It is based on the first memorandum on teaching and research in the field of NDT-CE at German speaking universities and provides an overview of the academic education and highlights possible focuses, especially in teaching but also takes into account noteworthy developments and topics in research in the field of NDT-CE. Suggestions are given for the development and advancement of the teaching curricula in regards to a comprehensive and sound professional education of students in civil engineering and adjacent disciplines. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Curriculum KW - NDT-CE KW - University KW - Competencies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563269 UR - https://www.ndt.net/article/ndtce2022/paper/61547_manuscript.pdf SP - 1 EP - 10 PB - NDT.net AN - OPUS4-56326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Frisch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks N2 - The appearance of irregularities such as keyhole porosity is a major challenge for the production of metal parts by laser powder bed fusion (PBF-LB/M). The utilization of thermographic in-situ monitoring is a promising approach to extract the thermal history which is closely related to the formation of irregularities. In this study, we investigate the utilization of convolutional neural networks to predict keyhole porosity based on thermographic features. Here, the porosity information calculated from an x-ray micro computed tomography scan is used as reference. Feature engineering is performed to enable the model to learn the complex physical characteristics of the porosity formation. The model is examined with regard to the choice of hyperparameters, the significance of thermal features and characteristics of the data acquisition. Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - GIMC SIMAI YOUNG 2022 CY - Pavia, Italy DA - 29.09.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data N2 - The formation of irregularities such as keyhole porosity pose a major challenge to the manufacturing of metal parts by laser powder bed fusion (PBF-LB/M). In-situ thermography as a process monitoring technique shows promising potential in this manner since it is able to extract the thermal history of the part which is closely related to the formation of irregularities. In this study, we investigate the utilization of machine learning algorithms to detect keyhole porosity on the base of thermographic features. Here, as a referential technique, x-ray micro computed tomography is utilized to determine the part's porosity. An enhanced preprocessing workflow inspired by the physics of the keyhole irregularity formation is presented in combination with a customized model architecture. Furthermore, experiments were performed to clarify the role of important parameters of the preprocessing workflow for the task of defect detection . Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - International Conference on NDE 4.0 CY - Berlin, Germany DA - 24.10.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa T1 - Global status and trends of Digital Transformation in conformity assessment - Insights from our QI-FoKuS study N2 - This presentation summarizes major findings from an international study in 16 countries and regions on digital transformation in conformity assessment bodies such as testing and calibration laboratories or certification and inspection bodies. It draws from survey data of 1.476 participants and specifically highlights findings on the digital maturity of the organizations, providing an international comparison. T2 - 5º Simposio Latinoamericano de Laboratorios de Calibración y Ensayos - ASOCEC 2022 CY - Online meeting DA - 22.11.2022 KW - Quality Infrastructure KW - Digitalization KW - Testing laboratories KW - Conformity assessment KW - Certification KW - Digital transformation KW - TIC PY - 2022 AN - OPUS4-56385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - HR-CS-GFMAS as a new screening method for emerging pollutants – per- and polyfluoroalkyl substances (PFASs) in the environment N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of several thousand individual compounds. Many PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. In the present work a HR-CS-GFMAS method for EOF analysis was utilized for suspended particulate matter (SPM) analysis in German rivers in time lines from 2005–2020. Therefore, time and spatial resolved trends were investigated. In addition, SPM samples were analyzed for the Σ41PFAS using target analysis based on UHPLC-HRMS. Overall, target analysis drastically underestimated the total PFAS burden in SPM of German rivers compared to the EOF HR-CS-GFMAS analysis. Using a fluorine mass balance approach, only 0.2% to 38.6% of the EOF was explainable using the Σ41PFAS determined with target analysis. Our study highlights the need to integrate PFAS sum parameters (e.g., EOF with HR-CS-GFMAS) in PFAS risk assessment strategies. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - SPM PY - 2022 AN - OPUS4-56392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krankenhagen, Rainer T1 - Comment on "Sizing the depth and width of ideal delaminations using modulated photothermal radiometry" [J. Appl. Phys. 131, 085106 (2022)] N2 - Comment on the article "Sizing the depth and width of ideal delaminations using modulated photothermal radiometry" by Agustín Salazar and Arantza Mendioroz, Journal of Applied Physics 131, 085106 (2022, https://doi.org/10.1063/5.0085178). KW - Ideal delamination KW - Modulated photothermal radiometry KW - Delamination depth KW - Delamination width PY - 2022 DO - https://doi.org/10.1063/5.0107603 VL - 132 SP - 1 PB - AIP CY - Melville, NY AN - OPUS4-56261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - High Speed for High Entropy Materials N2 - Time is the most valuable parameter in synchrotron experiments. This is costly and some of the experiments suffer from low efficiency due to low counting statistics. With today's high processing power long experiments are run in a shorter time and increase efficiency. With optimization algorithms time in "counting-hungry" experiments reduced by factor of 10. Our project is to develop a new method to analyze the chemical properties of complex materials non-destructively and efficiently, such as high entropy materials subjected to corrosion processes. A better understanding of the corrosion process will help to develop corrosion-resistant materials and reduce the cost of corrosion damage, which averages around 2.5 trillion USD annually. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - High entropy materials KW - Grazing exit KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Optimization of Depth Resolved X-Ray Absorption Spectroscopy in Grazing Emission Mode for Characterizing Compositionally Complex Alloys N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - XAFS 2022, The 19th International XAFS Conference CY - Sydney, Australia DA - 10.07.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - Optimization KW - XAS PY - 2022 AN - OPUS4-56270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, Christina A1 - Radtke, Martin T1 - Scanning-Free Grazing Exit XANES Analysis of Stratified Samples and the Optimization of the Data Collection Process N2 - The components that are used in structural and in high temperature applications generally face significant challenges with respect to oxidation behaviours and metalworking processes. In most of the cases, harsh environmental conditions lead materials to degrade due to corrosion. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect this information in sub-micrometre depth range. In order to obtain structural information, such as regarding oxidation states or atomic/molecular geometric arrangement, the GEXRF approach can also be combined with the X-ray absorption spectroscopy (XAS) method. The position and energy sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. We address the feasibility of our setup and provide a new optimization procedure (Bayesian Optimization and Gaussian Regression) to decrease measuring time. The results settle on a conceptual study on a reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer). T2 - Denver X-Ray Conference DXC 2022 CY - Washington D.C., USA DA - 07.08.2022 KW - GEXRF KW - High entropy alloys KW - High entropy materials KW - Optimization KW - XANES KW - Grazing exit KW - XAS PY - 2022 AN - OPUS4-56271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cakir, Cafer Tufan A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Streli, C. A1 - Radtke, Martin T1 - Bayesian optimization for depth resolved analysis of complex alloys with grazing exit XANES N2 - Compositionally complex alloys (CCAs) are a new class of alloys containing at least 5 elements with concentrations between 5 and 35 atomic percent. Due to their adjustable composition, which enables modifications of mechanical properties (such as hardness, strength and ductility etc) and their stability at high temperatures, CCAs have been the focus of various studies [1,2]. Especially the corrosion behavior of CCAs has been a wide research interest. However, there are only few studies that deals with the degradation process on such materials, which is highly relevant for the safety aspect for future component design. To thoroughly investigate the corrosion processes and to determine oxidation states of metal components within the reaction products, we need special analytical tools. Since the grazing exit X-ray fluorescence (GEXRF) offers a non-destructive way to collect notable information regarding the high temperature oxidation, we consider it as a useful method to investigate how CCAs behave in corrosive environments. The main idea of grazing geometry is to enhance the fluorescence signal of the surface. This enables highly sensitive surface analyses of thin protective film on surface in sub-micrometer scale [3]. When compared to a conventional CCD-based camera, the advantage and most important feature of the detector system (Color X-Ray Camera (CXC)) is that each pixel is an energy sensitive detector. The position and area sensitive detector, with 264x264 pixel detector area, provides information regarding the signal emitted from the sample as a function of the emission angle and thus allows depth-sensitive analysis. Furthermore, the data collected from samples of an incidence energy which can be controlled with a resolution of 0.5 eV provides XANES data to determine oxidation states. In this contribution, we address the feasibility of our setup and new optimization procedure (Bayesian Optimization and Gaussian Regression). The results of a conceptual study regarding layer properties of the reference sample (Cr-Oxide layer (300nm) on Cr layer (500nm) on Si wafer) and CrCoNi (Cr-Oxide (>1µm) layer on CrCoNi substrate) medium entropy alloy. T2 - European Conference on X-ray Spectrometry. EXRS 2022 CY - Bruges, Belgium DA - 26.06.2022 KW - GEXRF KW - High entropy alloys KW - XANES KW - Grazing exit KW - High entropy materials KW - XAS KW - Optimization PY - 2022 AN - OPUS4-56272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Lisec, Jan A1 - Swinnen, J. V. A1 - Zaidi, N. T1 - Too complex to fail? Targeting fatty acid metabolism for cancer therapy N2 - Given the central role of fatty acids in cancer pathophysiology, the exploitation of fatty acid metabolism as a potential antineoplastic therapy has gained much attention. Several natural and synthetic compounds targeting fatty acid metabolism were hitherto identified, and their effectiveness against cancer cell proliferation and survival was determined. This review will discuss the most clinically viable inhibitors or drugs targeting various proteins or enzymes mapped on nine interconnected fatty acid metabolism-related processes. We will discuss the general significance of each of these processes and the effects of their inhibition on cancer cell progression. Moreover, their mechanisms of action, limitations, and future perspectives will be assessed. KW - Fatty acids KW - Fatty acid synthesis KW - Fatty acid desaturation KW - Fatty acid uptake KW - Cancer therapy PY - 2022 DO - https://doi.org/10.1016/j.plipres.2021.101143 SN - 0163-7827 VL - 85 SP - 1 EP - 12 PB - Elsevier AN - OPUS4-53864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schweitzer, T. A1 - Strangfeld, Christoph T1 - Enhancing the spectral signatures of ultrasonic fluidic transducer pulses for improved time-of-flight measurements N2 - Air-coupled ultrasonic (ACU) testing has proven to be a valuable method for increasing the speed in non-destructive ultrasonic testing and the investigation of sensitive specimens. A major obstacle to implementing ACU methods is the significant signal power loss at the air–specimen and transducer–air interfaces. The loss between transducer and air can be eliminated by using recently developed fluidic transducers. These transducers use pressurized air and a natural flow instability to generate high sound power signals. Due to this self-excited flow instability, the individual pulses are dissimilar in length, amplitude, and phase. These amplitude and angle modulated pulses offer the great opportunity to further increase the signal-to-noise ratio with pulse compression methods. In practice, multi-input multi-output (MIMO) setups reduce the time required to scan the specimen surface, but demand high pulse discriminability. By applying envelope removal techniques to the individual pulses, the pulse discriminability is increased allowing only the remaining phase information to be targeted for analysis. Finally, semi-synthetic experiments are presented to verify the applicability of the envelope removal method and highlight the suitability of the fluidic transducer for MIMO setups. KW - Air-coupled ultrasound KW - Fluidics KW - Signal processing KW - Pulse compression KW - MIMO KW - Hilbert transform PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537853 DO - https://doi.org/10.1016/j.ultras.2021.106612 SN - 0041-624X VL - 119 SP - 1 EP - 12 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-53785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schnur, C. A1 - Goodarzi, P. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Tschöke, K. A1 - Moll, J. A1 - Schütze, A. A1 - Schneider, T. T1 - Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves N2 - Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated. KW - Composite structures KW - Structural health monitoring KW - Carbon fibre-reinforced plastic KW - Interpretable machine learning KW - Automotive industry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542060 DO - https://doi.org/10.3390/s22010406 SN - 1424-8220 VL - 22 IS - 1 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mellios, N. A1 - Oesch, Tyler A1 - Spyridis, P. T1 - Finite element modelling of UHPC under pulsating load using X-ray computed tomography based fiber distributions N2 - The benefits of including fibers in ultra-high performance concrete (UHPC) are attributed to their good bond with the matrix and, hence, an optimal utilization of their properties. At the same time, though, fiber reinforcement may contribute to anisotropy in the composite material and induce weak areas. The influence of the fibers’ orientation on the material properties is a matter of current scientific discourse and it is known to play a vital role in structural design. In the case studies presented herein, mechanical laboratory tests using pulsating load regimes on UHPC with a strength of more than 200 MPa were simulated by use of finite element models. The orientations of the fibers were measured for each test sample prior to failure using an X-ray computed tomography (CT) scanner, and these orientations are explicitly implemented into the model. The paper discusses the methodology of merging data retrieved by CT image processing and state-of-the-art FE simulation techniques Moreover, the CT scanning was carried out throughout the testing procedure, which further enables the comparison of the mechanical tests and the FE models in terms of damage propagation and failure patterns. The results indicate that the overall fiber configuration and behavior of the samples can be realistically modelled and validated by the proposed CT-FE coupling, which can enhance the structural analysis and design process of elements produced with steel fiber reinforced and UHPC materials. KW - Ultra-high performance concrete KW - Steel fiber reinforced concrete KW - Fiber orientation KW - X-ray computed tomography KW - Non-linear finite element modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542105 DO - https://doi.org/10.1617/s11527-021-01833-4 SN - 1871-6873 VL - 55 IS - 1 SP - 1 EP - 20 PB - Springer CY - Dordrecht AN - OPUS4-54210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P. P. A1 - Prencipe, M. A1 - Feiler, Torvid A1 - Emmerling, Franziska A1 - Bacchi, A. T1 - On the mechanism of cocrystal mechanochemical reaction via low melting eutectic: A time-resolved in situ monitoring investigation N2 - Mechanochemistry has become a sustainable and attractive cost-effective synthetic technique, largely used within the frame of crystal engineering. Cocrystals, namely, crystalline compounds made of different chemical entities within the same crystal structure, are typically synthesized in bulk via mechanochemistry; however, whereas the macroscopic aspects of grinding are becoming clear, the fundamental principles that underlie mechanochemical cocrystallization at the microscopic level remain poorly understood. Time-resolved in situ (TRIS) monitoring approaches have opened the door to exceptional detail regarding mechanochemical reactions. We here report a clear example of cocrystallization between two solid coformers that proceeds through the formation of a metastable low melting binary eutectic phase. The overall cocrystallization process has been monitored by time-resolved in situ (TRIS) synchrotron X-ray powder diffraction with a customized ball milling setup, currently available at μ Spot beamline at BESSY-II, Helmholtz-Zentrum Berlin. The binary system and the low melting eutectic phase were further characterized via DSC, HSM, and VT-XRPD. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552977 DO - https://doi.org/10.1021/acs.cgd.2c00262 SN - 1528-7505 VL - 22 IS - 7 SP - 4260 EP - 4267 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -