TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Laser spectroscopy methods for calcium isotope analysis N2 - Calcium isotope analysis can be an important tool for paleoclimate studies of the carbon cycle, as well in carbon capture technology, but its utility is limited by challenges using conventional mass spectrometry. We propose a new fast, precise, and high-throughput technology based on multiple complementary high-resolution spectroscopies analyzed by machine-learning. T2 - Seminars Chemical Physics Caltech CY - Pasadena, CA, USA DA - 13.04.2022 KW - Calcium KW - Atomic spectroscopy KW - CaF KW - Calcium monofluoride KW - Carbon cycle KW - Doppler effect KW - Sub-doppler spectroscopy KW - Laser spectroscopy PY - 2022 AN - OPUS4-56499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hallier, Dorothea C. T1 - Inonizing Radiation Damage to Nucleoprotein Filaments . Literaturseminar N2 - Literaure Seminar on progress of doctoral thesis with title "ionizing radiation damage to nucleoprotein filaments involved in DNA recombination, replication and repair" T2 - Literaturseminar Uni Potsdam CY - Potsdam, Germany DA - 25.01.2022 KW - Radiation KW - Radiation damage KW - Nucleoprotein filaments KW - Radiation damage dosimetry KW - Gene-V Protein KW - Single-stranded DNA-binding protein KW - GVP G5P KW - Protein purification and expression KW - DNA PY - 2022 AN - OPUS4-56537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in Croatia - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in Croatia. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565380 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hallier, Dorothea C. T1 - Jahresvortrag Ionizing radiation damage to nucleoprotein filaments N2 - Jahresvortrag AG Seitz Fraunhofer IZI BB Potsdam about progress of doctoral thesis with the title "Ionizing Radiation Damage to Nucleoprotein filaments involved in DNA recombination, replication and repair T2 - Jahresmeeting Fraunhofer IZI-BB Potsdam, AG Biomarkervalidierung und Assayentwicklung CY - Potsdam, Germany DA - 18.02.2022 KW - Radiation KW - Radiation damage KW - Nucleoprotein filaments KW - Single-stranded DNA-binding protein KW - Protein expression and purification KW - DNA KW - Radiation damage dosimetry PY - 2022 AN - OPUS4-56539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for the Chemical Investigation of Concrete N2 - LIBS is a complementary method to XRF and can detect all elements without the need for vacuum conditions. Automated systems are already commercially available capable of scanning surfaces with a resolution of up to 0.1 mm within a few minutes. In addition to possible applications in R&D, LIBS is also used for practical applications in building materials laboratories and even on-site. In view of ageing infrastructure facilities, a reliable assessment of the condition of concrete structures is of increasing interest. For concrete structures, the ingress of potential harmful ions is affecting the serviceability and eventually structural performance. Pitting corrosion induced by penetrating chlorides is the dominant deterioration mechanism. Condition assessment based on frequently performed chloride profiling can be useful to identify the extent and evolution of chloride ingress. This could prove to be more economical than extensive repairs, especially for important infrastructure facilities. Currently the most common procedure for determining the chloride content is wet chemical analysis with standard resolution of 10 mm. The heterogeneity is not considered. LIBS is an economical alternative for determining the chloride content at depth intervals of 1 mm or less. It provides 2D distributions of multiple elements and can locate spots with higher concentrations. The results are directly correlated to the mass of binder and can also be performed on-site with a mobile LIBS-System. The application of a LIBS-system is presented. Calibration is required for quantitative analysis. Concrete cores were drilled, sliced and analyzed to determine the 2D-distribution of harmful elements. By comparing the chloride ingress and the carbonation, the interaction of both processes can be visualized in a measurement that takes less than 10 minutes for a 50 mm x 100 mm drill core. A leaflet on the use of LIBS for the chloride ingress assessment has been completed. T2 - NDT-CE 2022 - The International Symposium on Nendestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Chlorides KW - Corrosion KW - Imaging KW - Service life KW - Damage assessment KW - LIBS PY - 2022 AN - OPUS4-56540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hallier, Dorothea C. A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Seitz, H. T1 - An XPS study on X-ray radiation damage: Chemical changes to Gene-V Protein of Bacteriophage M13 N2 - X-ray photoelectron spectroscopy (XPS) is used to analyze the direct damage of ionizing radiation to a single-stranded DNA binding protein: Gene-V Protein (G5P). T2 - Science Day Uni Potsdam Institut für Biochemie und Biologie CY - Potsdam, Germany DA - 11.10.2022 KW - XPS KW - Radiaton damage KW - G5P GVP KW - Single-stranded DNA-binding protein KW - X-ray KW - DNA PY - 2022 AN - OPUS4-56541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Tukhmetova, Dariya A1 - Rodiouchkina, K. A1 - Vanhaecke, F. T1 - On-line hyphenation of capillary electrophoresis with multicollector-ICP-MS (CE/MC-ICP-MS) for species-specific isotope ratio analysis of sulfur species N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different elemental species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared with data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was high enough to distinguish the rivers from one another by the isotopic signature of the river water sulfate. Next to environmental applications, a current field is species-specific isotopic analysis of biomolecules, as sulfur is the only covalently bound constituent of proteins which can be analyzed by MC-ICP-MS. Data analysis of transient signals in terms of isotope ratio determination is further issue - we developed a small free accessible App allowing for fast data analysis taking relevant aspects (e.g., mass bias correction, peak picking, …) into account. T2 - SCIX 2022 CY - Cincinnati, OH, USA DA - 02.10.2022 KW - CE KW - MC-ICP-MS KW - Speciation Analysis KW - Species-specific Isotope ratios PY - 2022 AN - OPUS4-56543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Defect Characterization in Plate Models Facilitated by Algorithmic Differentiation N2 - In non-destructive testing and structural health monitoring with ultrasonic waves, the quantification of damage in components is one of the main tasks. In many shell-like structures, such as plates, pipes, or laminate components, ultrasonic waves propagate as guided waves. Although guided waves enable the testing of large areas, their multimodal and dispersive properties make it challenging to analyze signals. So, there is a need for more advanced algorithms to handle these properties, especially when reconstructing damage position and geometry. The reconstruction can be formulated as an inverse problem where the measured signals are fitted with a simulative forward model. Due to the small wavelength of ultrasonic waves, classic forward models based on, e.g., the Finite Element Method are computationally intensive. In contrast, the authors use the semi-analytical Scaled Boundary Finite Element Method (SBFEM) to reduce the computational effort. The SBFEM approximates arbitrary long, undamaged parts of the structure with only a few degrees of freedom. This contribution summarizes a general inverse procedure based on algorithmic differentiation in combination with the SBFEM. Results are presented for damaged 2D cross-sectional models of waveguides. These results include an analysis of the robustness of the proposed algorithms against noise. T2 - DAGA 22 CY - Stuttgart, Germany DA - 21.03.2022 KW - Structural health monitoring KW - Inverse Methods KW - SBFEM KW - Algorithmic Differentiation KW - Non-destructive testing PY - 2022 VL - 2022 SP - 871 EP - 874 AN - OPUS4-56547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Döring, Sarah A1 - Flemig, Sabine A1 - Konthur, Zoltán T1 - Cost-effective method for full-length sequencing of monoclonal antibodies N2 - With the development of hybridoma technology, monoclonal antibodies are increasingly important in therapeutic and analytical applications. For recombinant expression in mammalian cells, knowledge of the variable regions of both, heavy (VH) and light (VL) chain, is a necessary prerequisite for generating expression plasmids. Furthermore, cloning antibody sequences including constant regions CH1 to CH3 and CL reduces impact of hybridoma cell loss and associated full natural antibody sequence leakage. Here, we show a cost-effective workflow for amplification of IgG antibody variable regions in combination with advanced methods for full-length cloning of monoclonal antibodies. T2 - Adlershofer Forschungsforum CY - Berlin, Germany DA - 11.11.2022 KW - Monoclonal Antibodies KW - DNA-Sequencing KW - PCR PY - 2022 AN - OPUS4-56275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Zacharias, M. A1 - Makowski, M. R. A1 - Weller, Michael G. T1 - Finding the Ticking Timebomb - MRI probe for the detection of aneurysms N2 - Screening against ADAMTS4 reveals a specific peptide, which was turned into an MRI probe. The aneurysm in a mouse modal was visualized via MRI. A differentiation between stable and unstable aneurysm in an early state was performed. Using the probe as tool for an easy and non-invasive rupture assessment is possible. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Magnetic resonance imaging KW - Peptide library KW - OBOC library KW - Synthetic peptides KW - Contrast agent KW - Imaging KW - ADAMTS4 KW - MALDI-TOF mass spectrometry KW - Cardiovascular diseases KW - Medicine KW - Diagnostic KW - Screening KW - Risk assessment KW - Aorta PY - 2022 AN - OPUS4-56313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, T. A1 - Sens-Schönfelder, C. A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - Imaging of Small-Scale Heterogeneity and Absorption Using Adjoint Envelope Tomography: Results From Laboratory Experiments N2 - To complement the information provided by deterministic seismic imaging at length scales above a certain resolution limit we present the first application of adjoint envelope tomography (AET) to experimental data. AET uses the full envelopes of seismic records including scattered coda waves to obtain information about the distribution of absorption and small-scale heterogeneity which provide complementary information about the investigated medium. Being below the resolution limit this small-scale structure cannot be resolved by conventional tomography but still affects wave propagation by attenuating ballistic waves and generating scattered waves. Using ultrasound data from embedded sensors in a meter-sized concrete specimen we image the distribution of absorption and heterogeneity expressed by the intrinsic quality factor Q−1 and the fluctuation strength ɛ that characterizes the strength of the heterogeneity. The forward problem is solved by modeling the 2-D multiple nonisotropic scattering in an acoustic medium with spatially variable heterogeneity and attenuation using the Monte-Carlo method. Gradients for the model updates are obtained by convolution with the back-propagated envelope misfit using the adjoint formalism in analogy to full waveform inversion. We use a late coda time window to invert for absorption and an earlier time window to infer the distribution of heterogeneity. The results successfully locate an area of salt oncrete with increased scattering and concentric anomalies of intrinsic attenuation. The resolution test shows that the recovered anomalies constitute reasonable representations of internal structure of the specimen. KW - Ultrasound KW - Scattering KW - Tomography KW - Concrete KW - Heterogeneity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563163 DO - https://doi.org/10.1029/2022JB024972 SN - 2169-9313 VL - 127 IS - 11 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-56316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Guangliang, Y. A1 - Mahon, D. A1 - Gardner, S. T1 - Muon tomography applied to assessment of concrete structures: First experiments and simulations. N2 - Non-destructive techniques for reinforced or prestressed concrete inspection such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened new fields of application. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. In a second step, we have performed simulations to assess the potential for a set of important testing problems such as grouting defects in tendon ducts. The next steps include the development of mobile detectors and optimizing acquisition and imaging parameters. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Muon tomography KW - Concrete KW - Inspection KW - Simulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563224 UR - https://www.ndt.net/article/ndtce2022/paper/60943_manuscript.pdf SP - 1 EP - 8 PB - NDT.net AN - OPUS4-56322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Guangliang, Y. A1 - Mahon, D. A1 - Gardner, S. T1 - Muon tomography applied to assessment of concrete structures: First experiments and simulations. N2 - Non-destructive techniques for reinforced or prestressed concrete inspection such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened new fields of application. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. In a second step, we have performed simulations to assess the potential for a set of important testing problems such as grouting defects in tendon ducts. The next steps include the development of mobile detectors and optimizing acquisition and imaging parameters. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Muon tomography KW - Concrete KW - Inspection KW - Simulation PY - 2022 AN - OPUS4-56323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Kulow, A. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Streli, C. A1 - Fittschen, U. E. A. A1 - Hampel, S. T1 - Energy Resolved Imaging with Coded Apertures N2 - Our aim is to develop a simple and inexpensive method for full field X-ray fluorescence imaging.We combine an energydispersive array detector with a coded aperture to obtain high resolut ion images. To obtain the information from the recorded image a reconstruction step is necessary. The reconstruction methods we have developed, were tested on simulated data and then applied to experimental data. The first tests were carried out at the BAMline @BESSY II. This method enables the simultaneous detection of multiple elements,which is important e.g. in the field of catalysis. T2 - SRI 2021 CY - Online meeting DA - 28.3.2022 KW - Synchrotron KW - BAMline KW - Machine Learning KW - Coded Aperture PY - 2022 AN - OPUS4-56298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ladu, Luana A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in West Africa - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in West Africa. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563631 UR - https://www.qi-fokus.de SP - 1 EP - 45 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ladu, Luana A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in Mexico - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in Mexico. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563645 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in New Zealand - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in New Zealand. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. This study is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity Assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564038 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -