TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khanipour, Peyman T1 - Real time mass spectrometry - From Unravelling Electrochemical Reaction Mechanism to Trace Analysis of Impurities in Hydrogen Gas N2 - Climate change and related energy policies, exacerbated by unforeseen geopolitical developments, pose new challenges for gas analytics, such as the use of hydrogen, hydrogen-containing alternative gaseous fuels (NH3, etc.), the use of alternative methane-based energy gases (LNG, LPG, etc.) or decarbonisation via CCSU. In all topics, the quality, i.e. the actual chemical composition of the gases, naturally plays a decisive role. BAM is meeting this strategic importance with the further development of hydrogen analytics and is continuing to develop the methods used in order to support the German economy and research landscape with traceability, reference materials and analytical procedures as quickly as possible. Mass spectrometry plays an important role for trace analysis in hydrogen matrix. The presentation shows first experimental results from the application of PTR-TOF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry). T2 - 11th International GAS Analysis Symosium & Exhibition CY - Paris, France DA - 17.05.2022 KW - Gas Analysis KW - Hydrogen KW - Metrology KW - Mass Spectrometry KW - Trace Analysis PY - 2022 AN - OPUS4-56589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Characterization of Graphene using HAXPES N2 - Since its discovery, graphene has got growing attention in the industrial and application research due to its unique properties . However, graphene has not been yet implemented into the industrial market, in particularly due to the difficulty of properly characterizing this challenging material. As most of other nanomaterials, graphene’s properties are closely linked to its chemical and structural properties, such as number of layers, flake thickness, degree of functionalisation and C/O ratio. For the commercialization, suitable procedures for the measurement and characterization of the ultrathin flakes, of lateral dimensions in the range from µm to tens of µm, are essential.Surface chemical methods, especially XPS, have an outstanding role of providing chemical information on the composition. Thereby, one well-known problem for surface analytical methods is the influence of contamination on the composition as in the case of adventitious carbon. The differentiation between carbon originated from the contamination or from the graphene sample itself is often not obvious, which can lead to altered results in the determination of the composition. To overcome this problem, Hard Energy X-ray Photoelectron Spectroscopy (HAXPES) offers new possibilities due to its higher information depth. Therefore, XPS measurement obtained with Al Kα radiation (E = 1486. 6 eV) were compared with analyses performed with a Cr Kα (E = 5414. 8 eV) excitation on functionalized graphene samples. Differences are discussed in terms of potential carbon contamination, but also of oxygen on the composition of the samples. Measurements are performed on O-, N- and F-functionalized graphene. Different preparation procedures (powder, pellet, drop cast from liquid suspension) will be also discussed, correlation of the results with the flakes morphology as well as their validation with other independent methods are in progress. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Graphene KW - Functionalized graphene KW - Depth profiling PY - 2022 AN - OPUS4-56814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hallier, Dorothea C. A1 - Hahn, Marc Benjamin A1 - Radnik, Jörg A1 - Seitz, H. T1 - An XPS study on X-ray radiation damage: Chemical changes to Gene-V Protein of Bacteriophage M13 N2 - X-ray photoelectron spectroscopy (XPS) is used to analyze the direct damage of ionizing radiation to a single-stranded DNA binding protein: Gene-V Protein (G5P). T2 - Science Day Uni Potsdam Institut für Biochemie und Biologie CY - Potsdam, Germany DA - 11.10.2022 KW - XPS KW - Radiaton damage KW - G5P GVP KW - Single-stranded DNA-binding protein KW - X-ray KW - DNA PY - 2022 AN - OPUS4-56541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferreira Camoes Liestmann, Zoe T1 - Development of an electrochemiluminescence immunoassay for selected pathogens in wastewater N2 - The outbreak of SARS-CoV-2 in December of 2019, led to a worldwide still on-going pandemic. Since then, several so-called waves of SARS-CoV-2 infections, a time period with a high and fast rising number of new infections, have occurred all over the world. Classic surveillance approaches are hardly applicable, and further, non-detected cases cannot be covered by them. Wastewater-based Epidemiology (WBE) was proven to be a reliable tool for the prediction of new SARS-CoV-2 infection waves, due to the discharge of virus particles in fecal shedding of infectious people. Until now, for the monitoring of SARS-CoV-2 in wastewater, Polymerase Chain Reaction (PCR) is used as analytical tool. Even though PCR is a highly sensitive analytical tool, is presents several disadvantages, such as the need for trained personnel, specific technical equipment, as well as a difficult performance. An analytical tool, to which these disadvantaged do not apply, are immunoassays. In this work, a sandwich Enzyme-Linked Immunosorbent Assay (ELISA), with the immobilization of the capture antibodies on the surface of a Microtiter Plate (MTP), as well as a sandwich Magnetic Bead-Based Assay (MBBA), with immobilization of the capture antibodies on the surface of Magnetic Beads (MBs), targeting the SARS-CoV-2 N-protein, were developed and optimized. Both assay formats were performed with a colorimetric and chemiluminescent detection. The developed assay is composed of the two monoclonal antibodies (mAb) AH2 and DE6 - which was biotinylated in the course of the work - which bind to two different epitops of the antigen N-protein. As tracer, Neutravidin-HRP was used, which binds, through interaction of the Neutravidin with the biotin, to the mAb DE6-Biotin. The assay development and optimization procedure included the investigation of the surface saturation with the mAb AH2, the concentration and dilution of the mAb DE6-Biotin and Neutravidin-HRP, the ideal MBs, the ideal coating as well as dilution buffers, and the colorimetric and chemiluminescent substrates. For the developed and fully optimized colorimetric ELISA, a test midpoint x0 of 388 μg/L, for the chemiluminsecent ELISA of 371 μg/L, for the colorimetric MBBA of 251 μg/L and for the chemiluminescent MBBA of 243 μg/L was obtained. Validation of the colorimetric MBBA was done by measurement of three wastewater samples collected at the Wastewater Treatment Plant (WWTP) Potsdam. Whilst no N-protein could be detected in the samples, by spiking of the wastewater samples with certain concentrations of the N-protein, 10- to 18-times lower concentrations could be back-calculated, which can be attributed to matrix-effects of the wastewater sample. Next to the matrix-effects, also several other reason exist, why no N-protein could be determined in the samples. Because of that, further investigation of the handling, and the measurement of the wastewater samples, as well as the improvement of the assay sensitivity through further optimization steps or exchange of the antibodies, is still necessary. KW - SARS-CoV-2 KW - ELISA KW - Antibody KW - N-capsid PY - 2022 SP - 1 EP - 102 PB - Technischen Universität München CY - München AN - OPUS4-57744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - He, Y. A1 - Zhu, R. A1 - Cai, Y. A1 - Zhang, Y. A1 - Zhang, Y. A1 - Pan, S. A1 - Zhang, Y. T1 - Transcriptomics and protein biomarkers reveal the detoxifying mechanisms of UV radiation for nebivolol toward zebrafish (Danio rerio) embryos/larvae N2 - Nebivolol (NEB), a β-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems. KW - Biomarker KW - Pharmazeutika KW - Toxikologie KW - UV Bestrahlung KW - Zebrafisch KW - Transformationsprodukte PY - 2022 DO - https://doi.org/10.1016/j.aquatox.2022.106241 SN - 0166-445X VL - 249 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-55559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagic, Anera A1 - Russo, Francesco A1 - Vogl, Jochen A1 - Sturm, Patrick A1 - Stephan, D. A1 - Gluth, Gregor ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Development of a sample preparation procedure for Sr isotope analysis of Portland cements N2 - The 87Sr/86Sr isotope ratio can, in principle, be used for provenancing of cement. However, while commercial cements consist of multiple components, no detailed investigation into their individual 87Sr/86Sr isotope ratios or their influence on the integral 87Sr/86Sr isotope ratio of the resulting cement was conducted previously. Therefore, the present study aimed at determining and comparing the conventional 87Sr/86Sr isotope ratios of a diverse set of Portland cements and their corresponding Portland clinkers, the major component of these cements. Two approaches to remove the additives from the cements, i.e. to measure the conventional 87Sr/86Sr isotopic fingerprint of the clinker only, were tested, namely, treatment with a potassium hydroxide/sucrose solution and sieving on a 11-µm sieve. Dissolution in concentrated hydrochloric acid/nitric acid and in diluted nitric acid was employed to determine the 87Sr/86Sr isotope ratios of the cements and the individual clinkers. The aim was to find the most appropriate sample preparation procedure for cement provenancing, and the selection was realised by comparing the 87Sr/86Sr isotope ratios of differently treated cements with those of the corresponding clinkers. None of the methods to separate the clinkers from the cements proved to be satisfactory. However, it was found that the 87Sr/86Sr isotope ratios of clinker and cement generally corresponded, meaning that the latter can be used as a proxy for the clinker 87Sr/86Sr isotope ratio. Finally, the concentrated hydrochloric acid/nitric acid dissolution method was found to be the most suitable sample preparation method for the cements; it is thus recommended for 87Sr/86Sr isotope analyses for cement provenancing. KW - Cement KW - Provenancing KW - Sr isotopes KW - Portland clinker KW - Dissolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542239 DO - https://doi.org/10.1007/s00216-021-03821-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - 15 (Topical collection: Analytical methods and applications in the materials and life sciences) SP - 4379 EP - 4389 PB - Springer CY - Berlin AN - OPUS4-54223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546833 DO - https://doi.org/10.3389/fchem.2022.840758 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan T1 - VAMAS ILC of functionalized Graphene by XPS and Graphene Oxide by SEM N2 - The ideas of the planned VAMAS interlaboratory comparisons of functionalized graphene and graphene oxide are presented. T2 - Stakeholder Advisory Board ISO-G-Scope CY - Online meeting DA - 12.01.2022 KW - Graphene KW - XPS KW - SEM PY - 2022 AN - OPUS4-54375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Kipphardt, Heinrich A1 - Tuma, Dirk A1 - Khanipour, Peyman T1 - Sensors, Analytics and Certified Reference Materials safeguarding the quality infrastructure in the hydrogen economy N2 - The prerequisites for a successful energy transition and the economic use of hydrogen as a clean green energy carrier and for H2 readiness are a rapid market ramp-up and the establishment of the required value chains. Reliable quality and safety standards for innovative technologies are the prerequisite for ensuring supply security, for environmental compatibility and sustainable climate protection, for building trust in these technologies and thus enable product and process innovations. With the Competence Centre "H2Safety@BAM", BAM is creating the safety-related prere-quisites for the successful implementation of hydrogen technologies at national as well as European level. BAM uses decades of experience in dealing with hydrogen technologies to develop the necessary quality and safety standards. The presentation will draw a bow from the typical basic tasks of BAM in the field of competence "Sensors, analytics and certified reference materials", such as maintenance and dissemination of the national gas composition standards for calorific value determination as Designated Institute for Metrology in Chemistry within the framework of the Metre Convention, to the further development of measurement and sensor technology for these tasks. For the certification of reference materials, a mostly slow and time-consuming but solid reference analysis is common. With hydrogen and its special properties, completely new requirements are added. In addition, fast and simple online analysis is required for process control, for example to register quality changes, e.g., during load changes or refuelling processes. T2 - Indo-German International Conference on Metrology for the Deployment of Green Hydrogen and Renewable Fuels in India CY - Online meeting DA - 04.04.2022 KW - Quality Infrastructure KW - Gas Reference Material KW - Hydrogen KW - Energy Gases KW - Sensors KW - Hydrogen Storage Materials PY - 2022 UR - https://www.imeko-gh2fuels.ptb.de/ AN - OPUS4-54596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jungnickel, R. A1 - Mirabella, Francesca A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Balasubramanian, K. T1 - Graphene‑on‑gold surface plasmon resonance sensors resilient to high‑temperature annealing N2 - Gold films coated with a graphene sheet are being widely used as sensors for the detection of label-free binding interactions using surface plasmon resonance (SPR). During the preparation of such sensors, it is often essential to subject the sensor chips to a high-temperature treatment in order to ensure a clean graphene surface. However, sensor chips used currently, which often use chromium as an adhesion promoter, cannot be subjected to temperatures above 250 °C, because under such conditions, chromium is found to reorganize and diffuse to the surface, where it is easily oxidized, impairing the quality of SPR spectra. Here we present an optimized preparation strategy involving a three-cycle tempering coupled with chromium (oxide) etching, which allows the graphene-coated SPR chips to be annealed up to 500 °C with little deterioration of the surface morphology. In addition, the treatment delivers a surface that shows a clear enhancement in spectral response together with a good refractive index sensitivity. We demonstrate the applicability of our sensors by studying the kinetics of avidin–biotin binding at different pH repeatedly on the same chip. The possibility to anneal can be exploited to recover the original surface after sensing trials, which allowed us to reuse the sensor for at least six cycles of biomolecule adsorption. KW - Surface plasmon resonance KW - Graphene KW - Sensing KW - Surface regeneration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564585 DO - https://doi.org/10.1007/s00216-022-04450-4 SN - 1618-2642 SP - 1 EP - 7 PB - Springer AN - OPUS4-56458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Baloh, P. A1 - Bauer, L. A1 - Bendová, A. A1 - Čermák, P. A1 - Fellner, K. A1 - Ghanathe, M. A1 - Hernández Alvarez, O. E. A1 - Hricov, Š. A1 - Jochum, J. K. A1 - Kotvytska, L. A1 - Kumar, S. A1 - Labh, A. A1 - Machovec, P. A1 - Pauw, Brian Richard A1 - Ramszová, K. A1 - Walz, E. A1 - Wild, P. T1 - An exercise in open data: Triple axis data on Si single crystal N2 - Efforts are rising in opening up science by making data more transparent and more easily available, including the data reduction and evaluation procedures and code. A strong foundation for this is the F.A.I.R. principle, building on Findability, Accessibility, Interoperability, and Reuse of digital assets, complemented by the letter T for trustworthyness of the data. Here, we have used data, which was made available by the Institute Laue-Langevin and can be identified using a DOI, to follow the F.A.I.R.+T. principle in extracting, evaluating and publishing triple axis data, recorded at IN3. KW - Open data KW - Neutron diffraction KW - Analysis KW - Open science PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562257 DO - https://doi.org/10.48550/arXiv.2010.12086 SN - 2331-8422 SP - 1 EP - 4 PB - Cornell University CY - Ithaca, NY AN - OPUS4-56225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Kästner, L. A1 - Hauffen, Jan Christian A1 - Jung, P. A1 - Ziegler, Mathias T1 - Photothermal-SR-Net: A customized deep unfolding neural network for photothermal super resolution imaging N2 - This article presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super-resolution (SR) imaging. The photothermal SR approach is a well-known technique to overcome the spatial resolution limitation in photothermal imaging by extracting high-frequency spatial components based on the deconvolution with the thermal point spread function (PSF). However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, handcrafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, this article proposes Photothermal-SR-Net, which performs deconvolution by deep unfolding considering the underlying physics. Since defects appear sparsely in materials, our approach includes trained block-sparsity thresholding in each convolutional layer. This enables to super-resolve 2-D thermal images for nondestructive testing (NDT) with a substantially improved convergence rate compared to classic approaches. The performance of the proposed approach is evaluated on various deep unfolding and thresholding approaches. Furthermore, we explored how to increase the reconstruction quality and the computational performance. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. KW - Deep unfolding KW - Defect reconstruction KW - Elastic net KW - Inverse problems KW - Iterative shrinkage thresholding KW - Neural network KW - Nondestructive testing (NDT) KW - Photothermal imaging KW - Super resolution (SR) KW - Thermography PY - 2022 DO - https://doi.org/10.1109/tim.2022.3154803 SN - 1557-9662 VL - 71 SP - 1 EP - 9 PB - IEEE AN - OPUS4-54678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -