TY - JOUR A1 - Brozowski, E. A1 - Colini, C. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Ayo, Charles K. T1 - Scientific investigations on paper and writing materials of Mali: A pilot study N2 - The investigation of physical properties and chemical composition generates data important for answering cultural-historical questions that cannot be solved by historical and philological methods alone. Due to technological developments, technical diagnostics in art and culture are in ever-greater demand in such fields of transdisciplinary research. Natural sciences play auxiliary role in the studies of manuscripts. The success of their contribution depends strongly on the formulation of the question, the choice of the methods to obtain the requested answer, and appropriate reference databases. First, report was given on the measurements performed on local raw materials, such as, plants, minerals and animals, which constitute the reference session. Then, the first results of the scientific analysis of several fragments from the Malian manuscript collections were present. KW - Manuscripts KW - Inks KW - Colorants KW - Non-destructive testing PY - 2019 DO - https://doi.org/10.5897/JASD2017.0453 SN - 2141-2189 VL - 11 IS - 3 SP - 28 EP - 50 PB - Academic Journals CY - Nairobi, Kenya AN - OPUS4-48100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Phase composition and burning history of high-fired medieval gypsum mortars studied by Raman microspectroscopy N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Not hydrated clusters of firing products preserved in the binder matrix are a typical feature of such mortars. A novel Raman microspectroscopic approach, providing access to the burning history of individual anhydrite grains, was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for tracing and visualising pyrometamorphic reactions in natural impurities of the kiln run. In the discussed examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 to periclase MgO and lime CaO yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Hydration of periclase in the mixed gypsum paste containing sulphate ions also resulted in magnesium sulphate hydrates, here identified in the form of hexahydrite MgSO4·6H2O. Lower burning temperatures left the accessory minerals in their pristine form, but can be traced by measuring the spectra of individual anhydrite crystals in grains of firing products and evaluating Raman band widths. Throughout the present study, calcination temperatures ranging from approx. 600°C to 900°C were determined. KW - High-fired gypsum mortar KW - Anhydrite KW - Dolomite KW - Forsterite KW - Raman microspectroscopy PY - 2019 DO - https://doi.org/10.1016/j.matchar.2019.03.013 VL - 151 SP - 292 EP - 301 PB - Elsevier Inc. AN - OPUS4-48102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) Cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481061 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501, 1 EP - 11 PB - Springer Nature AN - OPUS4-48106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Kraus, Werner A1 - Köppen, Robert T1 - Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway. N2 - In this study the direct and indirect photolysis of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in an organic solvent mixture (60:30:10, ACN:MeOH:THF) under UV-(C) and simulated sunlight irradiation was investigated, and the formed photo-transformation products were identified for the first time. TTBP-TAZ was almost completely degraded within 10 min under UV-(C) irradiation. Due to the fast degradation no specific kinetic order could be observed. In comparison, the reaction under simulated sunlight irradiation was much slower and thus, the kinetic first-order could be determined. The observed photolysis rate constant k as well as the half-life time t1/2 were estimated to be k = (0.0163 ± 0.0002) h-1 and t1/2 = 42.3 h, respectively. The addition of 2-propanol and hydrogen peroxide to investigate the influence of indirect photolysis under UV-(C) irradiation causes no influence on the degradation of TTBP-TAZ. Nevertheless, the removal of TTBP-TAZ under UV-(C) and simulated sunlight without additional chemicals (except solvent) indicates that the direct photolysis plays a significant role in the degradation mechanism of TTBP-TAZ. In both irradiation experiments, TTBP-TAZ was quantitatively degraded that involve the formation of previously unknown PTPs. Overall, two main PTPs were determined when irradiated with UV-(C) and eight sequential debromination products were observed when irradiated by simulated sunlight. These were determined by HPLC-DAD and - MS/(MS), respectively. Based on the chosen experimental conditions the consecutive debromination as well as photo-Fries rearrangement was confirmed as the main degradation pathway by high resolution mass spectrometry and X-ray diffraction. KW - XRD KW - Direct/indirect photolysis KW - HRMS KW - Photo-transformation products KW - TTBP-TAZ PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.184 SN - 0045-6535 SN - 1879-1298 VL - 229 SP - 77 EP - 85 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowalke, J. A1 - Arnold, C. A1 - Ponomarev, I. A1 - Jäger, Christian A1 - Kroll, P. A1 - Brendler, E. A1 - Kroke, E. T1 - Structural Insight into Layered Silicon Hydrogen Phosphates Containing [SiO6] Octahedra Prepared by Different Reaction Routes N2 - The layered silicophosphate Si(HPO4)(2) was prepared via a novel synthesis approach using silicon nanopowder and ortho-phosphoric acid at 150 degrees C providing a polycrystalline product. Silicophosphate compounds with sixfold coordinated silicon atoms obtained from pyrophosphoric acid H4P2O7 and tetraalkoxysilanes via a sol-gel route exhibit the same short-range order. The solid products were analyzed with XRD, elemental analysis (ICP-AES), and detailed NMR spectroscopic studies, including H-1, C-13, Si-29, and P-31 MAS-, P-31-Si-29-REDOR, HETCOR, and CP-RFDR experiments. DFT calculations support the structure of Si(HPO4)(2) consisting of layers of [SiO6] octahedra linked by [O3P(OH)] tetrahedra. The OH groups point to the neighboring layers and may be substituted by ethoxy or other groups. KW - Silicon KW - Phosphorus KW - Sol-gel processes KW - NMR spectroscopy KW - Computational chemistry PY - 2019 DO - https://doi.org/10.1002/ejic.201801321 IS - 6 SP - 828 EP - 836 PB - ChemPubSoc AN - OPUS4-48058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Bogula, A1 - Boitano, A1 - Carla, A1 - Pithan, A1 - Schafer, A1 - Wilming, A1 - Zykov, A1 - Pithan, T1 - A novel 3D printed radial collimator for x-ray diffraction N2 - We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall Signal to background ratio of up to 100 and a suppression of more than a factor 3⋅10⁵ for undesirable Bragg reflections generated by the X-ray “transparent” windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector’s dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer. KW - 3D printing PY - 2019 DO - https://doi.org/10.1063/1.5063520 SN - 0034-6748 VL - 90 IS - 3 SP - 035102, 1 EP - 8 PB - AIP AN - OPUS4-48171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Lehnik-Habrink, Petra A1 - Bandow, Nicole A1 - Sauer, Andreas T1 - Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil N2 - Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardization project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalize some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health. Approach: Appropriate test materials (< 2mm particle size) were prepared and homogenized from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material. Results: The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35 %. The variation coefficients of repeatability (within-lab standard deviations) range between 3 % and 8 % and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAHs, which were between 26 and 35 %, depending on the matrix, whereas 7-17 % reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB. Conclusions: Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. KW - Standardization KW - Analytical methods KW - Organic contaminants KW - Validation trial KW - Interlaboratory comparison PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479914 DO - https://doi.org/10.1186/s12302-019-0211-3 SN - 2190-4715 VL - 31 SP - 29, 1 EP - 10 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roloff, Alexander A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores N2 - Aldehyde moieties on 2D-supports or microand nanoparticles can function as anchor groups for the attachment of biomolecules or as reversible binding sites for proteins on cell surfaces. The use of aldehyde-based materials in bioanalytical and medical settings calls for reliable methods to detect and quantify this functionality. We report here on a versatile concept to quantify the accessible aldehyde moieties on particle surfaces through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and nonfluorescent chromophores utilizing acylhydrazone formation as a reversible covalent labeling strategy. This is representatively demonstrated for a set of polymer microparticles with different aldehyde labeling densities. Excess reporter molecules can be easily removed by washing, eliminating inaccuracies caused by unspecific adsorption to hydrophobic surfaces. Cleavage of hydrazones at acidic pH assisted by a carbonyl trap releases the fluorescent reporters rapidly and quasi-quantitatively and allows for their fluorometric detection at low concentration. Importantly, this strategy separates the signal-generating molecules from the bead surface. This circumvents common issues associated with light scattering and signal distortions that are caused by binding-induced changes in reporter fluorescence as well as quenching dye− dye interactions on crowded particle surfaces. In addition, we demonstrate that the release of a nonfluorescent chromophore via disulfide cleavage and subsequent quantification by absorption spectroscopy gives comparable results, verifying that both assays are capable of rapid and sensitive quantification of aldehydes on microbead surfaces. These strategies enable a quantitative comparison of bead batches with different functionalization densities, and a qualitative prediction of their coupling efficiencies in bioconjugations, as demonstrated in reductive amination reactions with Streptavidin. KW - Fluorescent label KW - Surface group quantification KW - Polymer particle KW - Cleavable linker KW - Catch and release assay PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05515 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 14 SP - 8827 EP - 8834 PB - ACS Publications AN - OPUS4-48284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Schäferling, M. T1 - Surface modifications for photon-upconversion-based energy-transfer nanoprobes N2 - An emerging class of inorganic optical reporters are nearinfrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the Surface functionalization of UCNPs, the analysis and quantification of Surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core−shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - FRET KW - Surface chemistry PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b00238 SN - 0743-7463 VL - 35 IS - 15 SP - 5093 EP - 5113 PB - ACS AN - OPUS4-47975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, H. A1 - Ertel, Jens-Peter A1 - Kourmpetis, M. A1 - Kanfoud, J. A1 - Niederleithinger, Ernst A1 - Gan, T.-H. T1 - Integrity testing of cast in situ concrete piles based on an impulse response function method using sine‑sweep excitation by a shaker N2 - In this study, an Impulse Response Function analysis of pile response to sine-sweep excitation by a low cost, portable Shaker was used to identify defects in piles. In straightforward impact-echo methods, echoes from the pile toe and defects are visible in the time domain measurements. However, these echoes are not present in the time domain records of piles subjected to sine-sweep excitations, due to interactions between the input and output signals. For this reason, the impulse response function in the time domain has been calculated and is able to identify the echoes from pile impedance changes. The proposed methodology has been evaluated both numerically and experimentally. A one-dimensional pile-soil interaction system was developed, and a finite difference method used to calculate the pile response to sine-sweep excitation. The numerical simulations indicate that impulse response measurements with a synthesized logarithmic, sine-sweep excitation could be an effective tool for detecting defects in piles. The methodology was further tested with field trials on 6 cast in situ concrete test piles including 1 intact pile and 5 defective piles subjected to sine-sweep excitations by a shaker. In 5 of the 6 cases the echoes from the pile toe could be identified in the deconvoluted waveforms—the impulse Response functions. Damage detection is more difficult and dependent on the selection of the optimal regularization parameter. Further research and optimization of the deconvolution process is needed to evaluate the effectiveness compared to standard pile integrity testing methods. KW - Pile testing KW - Shaker KW - Deconvolution PY - 2019 DO - https://doi.org/10.1007/s10921-019-0595-4 SN - 0195-9298 SN - 1573-4862 VL - 38 IS - 2 SP - 55, 1 EP - 18 PB - Springer CY - Cham, Switzerland AN - OPUS4-48185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geilert, Sonja A1 - Vogl, Jochen A1 - Rosner, M. A1 - Eichert, T. T1 - Boron isotope variability related to boron speciation (change during uptake and transport) in bell pepper plants and SI traceable n(11B)/n(10B) ratios for plant reference materials N2 - Rationale: Boron (B) is an essential micronutrient in plants and its isotope variations are used to gain insights into plant metabolism, which is important for crop plant cultivation. B isotope variations were used to trace intra‐plant fractionation mechanisms in response to the B concentration in the irrigation water spanning the range from B depletion to toxic levels. Methods: A fully validated analytical procedure based on multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS), sample decomposition and B Matrix separation was applied to study B isotope fractionation. The Validation was accomplished by establishing a complete uncertainty budget and by applying reference materials, yielding expanded measurement uncertainties of 0.8‰ for pure boric acid solutions and ≤1.5‰ for processed samples. With this validated procedure SI traceable B isotope amount ratios were determined in plant reference materials for the first time. Results: The B isotope compositions of Irrigation water and bell pepper samples suggest passive diffusion of the heavy 11B isotope into the roots during low to high B concentrations while uptake of the light 10B isotope was promoted during B depletion, probably by active processes. A systematic enrichment of the heavy 11B isotope in higher located plant parts was observed (average Δ11Bleaf‐roots = 20.3 ± 2.8‰ (1 SD)), possibly by a facilitated transport of the heavy 11B isotope to growing Meristems by B transporters. Conclusions: The B isotopes can be used to identify plant metabolism in Response to the B concentration in the irrigation water and during intra‐plant B transfer. The large B isotope fractionation within the plants demonstrates the importance of biological B cycling for the global B cycle. KW - isotope fractionation KW - boron KW - delta value KW - metabolism KW - bell pepper KW - SI traceability KW - measurement uncertainty PY - 2019 DO - https://doi.org/10.1002/rcm.8455 SN - 1097-0231 SN - 0951-4198 VL - 33 IS - 13 SP - 1137 EP - 1147 PB - John Wiley & Sons Ltd. AN - OPUS4-48213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Amsalem, P. A1 - Lee, K.-S. A1 - Koch, N. A1 - Doublet, M.-L. A1 - Pinna, N. T1 - Zn0.35Co0.65O – A Stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure N2 - To arrive to sustainable hydrogen-based energy solutions, the understanding of water-splitting catalysts plays the most crucial role. Herein, state-of-the-art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth-abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwaveassisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ-Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic Performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today’s literature, clear structureactivity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER. KW - Oxygen Evolution Catalyst KW - XAFS KW - Oxygen evolution reaction (OER) KW - Cobalt and zinc oxides PY - 2019 DO - https://doi.org/10.1002/aenm.201900328 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 20 SP - 1900328,1 EP - 10 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caetano, D. M. A1 - Rabuske, T. A1 - Fernandes, J. A1 - Pelkner, Matthias A1 - Fermon, C. A1 - Cardoso, S. A1 - Ribes, B. A1 - Franco, F. A1 - Paul, J. A1 - Piedade, M. A1 - Freitas, P. P. T1 - High-Resolution Nondestructive Test Probes Based on Magnetoresistive N2 - This paper discloses two high-sensitivity probes for Eddy Current Nondestructive Test (NDT) of buried and surface defects. These probes incorporate eight and 32 magnetoresistive sensors, respectively, which are optimized for high sensitivity and spatial resolution. The signal processing and interfacing are carried out by a full-custom application-specific integrated circuit (ASIC). The ASIC signal chain performs with a thermal input-referred noise of 30 nV/√Hz at 1 kHz, with 66 mW of power consumption, in a die with 3.7 × 3.4 mm 2 . NDT results are presented, showing that there is an increase in spatial resolution of surface defects when contrasted to prior art, enabling the probes to resolve defects with diameters of 0.44 mm, pitches of 0.6 mm, and minimum edge distance as low as 0.16 mm. The results also show that the probe for buried defects is a good all-round tool for detection of defects under cladding and multiple-plate flat junctions. KW - ASIC KW - Magnetoresistive sensor KW - Nondestructive testing KW - Eddy current testing KW - High resolution PY - 2019 DO - https://doi.org/10.1109/TIE.2018.2879306 VL - 66 IS - 9 SP - 7326 EP - 7337 PB - IEEE AN - OPUS4-48239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Modena, Mario M. A1 - Rühle, Bastian A1 - Burg, Thomas P. A1 - Wuttke, Steffan T1 - Nanoparticle characterization: What to measure? N2 - What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure–function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real‐world applications. KW - Nanoparticle characterization KW - Nanoparticles KW - Porosity KW - Shape KW - Size PY - 2019 DO - https://doi.org/10.1002/adma.201901556 SN - 0935-9648 SN - 1521-4095 VL - 31 IS - 32 SP - 1901556, 1 EP - 26 PB - Wiley AN - OPUS4-49129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaal, Mate A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Vössing, Konrad A1 - Kupnik, M. T1 - Air-coupled ultrasonic ferroelectret receiver with additional bias voltage N2 - High sensitivity is an important requirement for air-coupled ultrasonic sensors applied to materials testing. With a lower acoustic impedance than any piezoelectric material, charged cellular polypropylene (PP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric properties of charged cellular PP originate from their polarization, creating permanent internal voltage. The sensitivity of the sensor can be increased by applying additional dc bias voltage, as it has been done already for transmitters. This work presents the first ultrasonic sensor based on charged cellular PP including a high-voltage module providing dc bias voltage up to 2 kV. This bias voltage led to an increase in the signal-to-noise ratio of up to 15 ± 1 dB. The measurement of the received signal depending on the applied bias voltage is proposed as a new method of determining the internal voltage of ferroelectrets. The sensor combined with a cellular PP transmitter was applied to nondestructive testing of a rotor blade segment and glued-laminated timber, enabling imaging of the internal structure of these specimens with a thickness around 4 cm. KW - Acoustic sensors KW - Ferroelectret KW - Nondestructive testing KW - Ultrasonic imaging KW - Ultrasonic transducers PY - 2019 DO - https://doi.org/10.1109/TUFFC.2019.2925666 SN - 0885-3010 SN - 1525-8955 VL - 66 IS - 10 SP - 1600 EP - 1605 PB - IEEE AN - OPUS4-49131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -