TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst ED - Gabrijel, Ivan ED - Grosse, Christian ED - Skazlić, Marijan T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 SN - 978-2-35158-227-5 SP - 1 EP - 11 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic rail inspection with array probes N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 VL - 2019 SP - 1 EP - 3 AN - OPUS4-49680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic Rail inspection with array Probes N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 AN - OPUS4-49681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang A1 - Riedel, Jens A1 - Gornushkin, Igor B. A1 - Zheng, Ronger A1 - You, Yi T1 - Ultrasound-Assisted Underwater Laser-induced Breakdown Spectroscopy with HighRepetition-Rate μJ-DPSS laser N2 - The elemental analysis of seawater is often critical to the understanding of marinechemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdownspectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a greatpotential for in-situ elemental analysis of seawater. In practice, it is crucial to create acompact, low cost and power saving instrument for the long-term deep-sea observation. Arecently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidateas it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHzcan provide a considerable throughput for LIBS analysis. However, the DPSS lasers operateat moderate pulse energies, usually less than one mJ, which cannot sustain stablebreakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such aμJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. Thephase interface and mass flow generated by the near-field ultrasound can greatly reduce thebreakdown threshold and enhance element-specific emissions. Meanwhile, the highrepetition-rate pulses can also improve the breakdown probability and generate uniqueemission lines originated from the water molecule. We further demonstrate that the highrepetition-rate DPSS laser combined with the Echelle spectrometer can provide effectivequantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Underwater LIBS PY - 2019 AN - OPUS4-49769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Procop, Mathias T1 - Uncertainties in Secondary Fluorescence Correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA, as discussed once more in two recent papers. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons and enables the determination of specimen composition. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. This can be performed in a straightforward way. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - EPMA KW - Secondary fluorescence KW - Uncertainties KW - X-ray spectrometry KW - Fluorescence correction PY - 2019 AN - OPUS4-48673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, S. A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface techno-logy: step height, layer thickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Weise, Matthias T1 - Uncertainty budgets in surface technology: stepheigt, layerthickness, indentation hardness, adehesive strength N2 - The object (sample) and the measurement/testing procedure may always have unknown degrees of freedom, i.e. instead of 𝐯 ≥ n – 1 in many cases 𝐯 ≫ n - 1 may apply, in particular in the micro- and nano-world! T2 - 10. VDI-Fachtagung, Messunsicherheit und Prüfprozesse CY - Erfurt, Germany DA - 10.11.2021 KW - Methodology in metrology KW - Methodology in testing KW - Spectroscopic Ellipsometry KW - Instrumented Indentation Testing (IIT) KW - Centrifugal Adhesion Testing (CAT) PY - 2021 AN - OPUS4-53986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Subaric-Leitis, Andreas A1 - Bartholmai, Matthias T1 - Uncertainty of Elastoplastic Material Parameters Calculated from the Spherical Indentation in the Macro Range N2 - The applicability of three methods developed by finite element analysis (FEM) and proposed in the literature are studied on steel S355. Instrumented indentation tests using spherical indenters of radius 200 and 500 μ m are performed in the macro range at depths of more than 6 μ m. The results of the selected methods are compared with the tensile test. To evaluate the partially strongly varying results, the uncertainties of the calculated strain hardening exponent, n, and yield stress, Y, are estimated. Recommendations for an appropriated procedure of the indentation test are given. The machine compliance and the determination of the zero point of Depth play an essential role. If the certain conditions are considered, the instrumented indentation Tests can be used, in particular for investigations of specimens with inhomogeneous elastoplasticity. KW - Indentation KW - Elastoplastic material parameters KW - Uncertainty PY - 2021 DO - https://doi.org/10.1520/JTE20200683 SN - 0090-3973 VL - 49 IS - 6 SP - 4576 EP - 4592 PB - ASTM International AN - OPUS4-52416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Benner, Philipp T1 - Uncertainty quantification for a sparse machine learning (ML) data set in non-destructive testing in civil engineering (NDT-CE) N2 - ML has been successfully applied to solve many NDT-CE tasks. This is usually demonstrated with performance metrics that evaluate the model as a whole based on a given set of data. However, since in most cases the creation of reference data is extremely expensive, the data used is generally much sparser than in other areas, such as e-commerce. As a result, performance indicators often do not reflect the practical applicability of the ML model. Estimates that quantify transferability from one case to another are necessary to meet this challenge and pave the way for real world applications. In this contribution we invetigate the uncertainty of ML in new NDT-CE scenarios. For this purpose, we have extended an existing training data set for the classification of corrosion damage by a new case study. Our data set includes half-cell potential mapping and ground-penetrating radar measurements. The measurements were performed on large-area concrete samples with built-in chloride-induced corrosion of reinforcement. The experiment simulated the entire life cycle of chloride induced exposed concrete components in the laboratory. The unique ability to monitor deterioration and initiate targeted corrosion initiation allowed the data to be labelled - which is crucial to ML. To investigate transferability, we extend our data by including new design features of the test specimen and environmental conditions. This allows to express the change of these features in new scenarios as uncertainties using statistical methods. We compare different sampling and statistical distribution-based approaches and show how these methods can be used to close knowledge gaps of ML models in NDT. T2 - EGU General Assembly 2021 CY - Online meeting DA - 19.04.2021 KW - Data fusion KW - Non-destructive testing PY - 2021 DO - https://doi.org/10.5194/egusphere-egu21-8798 AN - OPUS4-54125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yablokov, A. A1 - Lugovtsova, Yevgeniya A1 - Serdyukov, A. T1 - Uncertainty quantification of multimodal surface wave inversion using artificial neural networks N2 - An inversion of surface waves dispersion curves is a non-unique and ill-conditioned problem. The inversion result has a probabilistic nature, which becomes apparent when simultaneously restoring the shear wave (S-wave) velocity and layer thickness. Therefore, the problem of uncertainty quantification is relevant. Existing methods through deterministic or global optimization approaches of uncertainty quantification via posterior probability density (PPD) of the model parameters are not computationally efficient since they demand multiple solutions of the inverse problem. We present an alternative method based on a multi-layer fully connected artificial neural network (ANN). We improve the current uni-modal approach, which is known from publications, to multi-modal inversion. The learned ANN maps the phase velocity dispersion curves to values of the S-wave velocity and layers thickness. To estimate the uncertainties, we adapt the Monte-Carlo simulation strategy and project onto the resulting velocity model both frequency-dependent data noise and inverse operator errors, which are evaluated by the prediction of the training data set. The proposed combination of surface waves data processing methods, configured with each other, provides a novel surface waves multi-modal dispersion data inversion and uncertainty quantification approach. We first test our approach on synthetic experiments for various velocity models: a positive velocity gradient, a low-velocity layer and a high-velocity layer. This is done considering uni-modal inversion at first and then compared to the multi-modal inversion. Afterwards, we apply our approach to field data and compare resulting models with the body S-wave processing by the generalized reciprocal method (GRM). The experiments show high-potential results – using ANN yields the possibility to accurately estimate PPD of restored model parameters without a significant computational effort. The PPD-based comparison demonstrates advantages of a multi-modal inversion over uni-modal inversion. The trained ANN provides reasonable model parameters predictions and related uncertainties in real-time. KW - Multi-layers KW - Multichannel analysis of surface waves (MASW) KW - Characterisation of soil sites KW - Monte Carlo simulation KW - Field data PY - 2023 DO - https://doi.org/10.1190/geo2022-0261.1 SN - 0016-8033 VL - 88 IS - 2 SP - 1 EP - 43 PB - Society of Exploration Geophysicists CY - Tulsa, Okla. AN - OPUS4-56624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Under Investigation: Novel Approach towards the Synthesis of Deuterium-labelled Alternariol- and Alternariol monomethylether-Standards for the HPLC-MS/MS-Analysis in Food & Feed N2 - Alternariol (AOH) and Alternariol monomethylether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labelled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation4 as the key step. T2 - 13th International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds CY - Prague, Czech Republic DA - 03.06.2018 KW - Mycotoxins KW - Mass Spectrometry PY - 2018 AN - OPUS4-45268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Kruschwitz, Sabine T1 - Understanding distributed data – a semantic web approach for data based analysis of NDT data in civil engineering N2 - In the field of non-destructive testing (NDT) in civil engineering, a large number of measurement data are collected. Although they serve as a basis for scientific analyses, there is still no uniform representation of the data. An analysis of various distributed data sets across different test objects is therefore only possible with high manual effort. We present a system architecture for an integrated data management of distributed data sets based on Semantic Web technologies. The approach is essentially based on a mathematical model - the so-called ontology - which represents the knowledge of our domain NDT. The ontology developed by us is linked to data sources and thus describes the semantic meaning of the data. Furthermore, the ontology acts as a central concept for database access. Non-domain data sources can be easily integrated by linking them to the NDT construction ontology and are directly available for generic use in the sense of digitization. Based on an extensive literature research, we outline the possibilities that this offers for NDT in civil engineering, such as computer-aided sorting, analysis, recognition and explanation of relationships (explainable AI) for several million measurement data. The expected benefits of this approach of knowledge representation and data access for the NDT community are an expansion of knowledge through data exchange in research (interoperability), the scientific exploitation of large existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis, material characterization) and finally a simplified exchange of NDT data with engineering models and thus with the construction industry. Ontologies are already the core of numerous intelligent systems such as building information modeling or research databases. This contribution gives an overview of the range of tools we are currently creating to communicate with them. T2 - EGU General Assembly 2020 CY - Online meeting DA - 04.05.2020 KW - Ontology KW - NDT KW - Concrete KW - Onotology KW - Semantic Data Management KW - Reproducible Science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518076 DO - https://doi.org/10.5194/egusphere-egu2020-19332 AN - OPUS4-51807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Steger, Simon A1 - Bonnerot, Olivier A1 - Hahn, Oliver A1 - Buzi, P. A1 - Rabin, Ira T1 - Understanding the technological evolution of writing materials. Scientific systematic study of inks from Coptic manuscripts N2 - While studying the socio-geographic history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques: XRF, FTIR, and Raman. In most cases, we can obtain satisfactory results using a non-invasive protocol. However, mixed inks that contain no metals evade such a protocol. These inks constitute a heterogeneous group of media used especially in the Middle East and the Islamicate world since at least the 10th century; they are characterized by blending carbon ink and tannins, with or without the addition of vitriol. Our own research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo). During many years of study, we concluded that the continuous production of Coptic manuscripts from late Antiquity to the Middle Ages offers a unique opportunity for historical study of the ink in a large geographic area. Thanks to the collaboration with the ERC project “PAThs” (www.paths.uniroma1.it), based at the University of Rome La Sapienza, and within the activities of a PhD research dedicated to this topic, we therefore created a new branch of our project focused entirely on the analysis of Coptic inks, pigments, and dyes. This pioneering systematic study of writing materials coming from a specific area and time frame (5th-10th century) aims not only at a better understanding of the complex Coptic multicultural and plurilingual society, but also and mainly at clarifying the links among the Coptic and other societies between the ancient and medieval eras. Finally, it will cast light on the history of the technological development of inks in the eastern world, from Antiquity to the middle ages. T2 - Konferenz: Scientific Methods in Cultural Heritage Research, Gordon Research Conference CY - Castelldefels, Spain DA - 22.07.2018 KW - Coptic KW - Ink KW - Manuscript PY - 2018 AN - OPUS4-46024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565276 DO - https://doi.org/10.1021/acs.cgd.2c01227 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -