TY - CONF A1 - Lisec, Jan T1 - When drowning in data - start swimming N2 - A presentation on the subject of Automatic Data Processing Skills in Chemistry to Enhance Scientific Research. T2 - 7th PhD Seminar of the German Working Group for Analytical Spectroscopy (DAAS) in the GDCh Division of Analytical Chemistry CY - Berlin, Germany DA - 15.11.2023 KW - Data KW - Automation KW - Programming PY - 2023 AN - OPUS4-58902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alekseychuk, V. O. A1 - Kupsch, Andreas A1 - Plotzki, D. A1 - Bellon, Carsten A1 - Bruno, Giovanni T1 - Simulation-Assisted Augmentation of Missing Wedge and Region-of-Interest Computed Tomography Data N2 - This study reports a strategy to use sophisticated, realistic X-ray Computed Tomography (CT) simulations to reduce Missing Wedge (MW) and Region-of-Interest (RoI) artifacts in FBP (Filtered Back-Projection) reconstructions. A 3D model of the object is used to simulate the projections that include the missing information inside the MW and outside the RoI. Such information augments the experimental projections, thereby drastically improving the reconstruction results. An X-ray CT dataset of a selected object is modified to mimic various degrees of RoI and MW problems. The results are evaluated in comparison to a standard FBP reconstruction of the complete dataset. In all cases, the reconstruction quality is significantly improved. Small inclusions present in the scanned object are better localized and quantified. The proposed method has the potential to improve the results of any CT reconstruction algorithm. KW - Computed tomography KW - Missing wedge KW - Region of interest KW - Augmented data KW - CT simulation KW - aRTist PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593799 UR - https://www.mdpi.com/2313-433X/10/1/11 DO - https://doi.org/10.3390/jimaging10010011 SN - 2313-433X VL - 10 IS - 1 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-59379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zia, Ghezal Ahmad Jan A1 - Hanke, Thomas A1 - Skrotzki, Birgit A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Enhancing Reproducibility in Precipitate Analysis: A FAIR Approach with Automated Dark-Field Transmission Electron Microscope Image Processing N2 - AbstractHigh-strength aluminum alloys used in aerospace and automotive applications obtain their strength through precipitation hardening. Achieving the desired mechanical properties requires precise control over the nanometer-sized precipitates. However, the microstructure of these alloys changes over time due to aging, leading to a deterioration in strength. Typically, the size, number, and distribution of precipitates for a quantitative assessment of microstructural changes are determined by manual analysis, which is subjective and time-consuming. In our work, we introduce a progressive and automatable approach that enables a more efficient, objective, and reproducible analysis of precipitates. The method involves several sequential steps using an image repository containing dark-field transmission electron microscopy (DF-TEM) images depicting various aging states of an aluminum alloy. During the process, precipitation contours are generated and quantitatively evaluated, and the results are comprehensibly transferred into semantic data structures. The use and deployment of Jupyter Notebooks, along with the beneficial implementation of Semantic Web technologies, significantly enhances the reproducibility and comparability of the findings. This work serves as an exemplar of FAIR image and research data management. KW - Industrial and Manufacturing Engineering KW - General Materials Science KW - Automated image analysis KW - FAIR research data management KW - Reproducibility KW - microstructural changes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593905 DO - https://doi.org/10.1007/s40192-023-00331-5 SN - 2193-9772 SP - 1 EP - 15 PB - Springer Science and Business Media LLC CY - Heidelberg AN - OPUS4-59390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser-Induced Plasma for Spectroscopy and More N2 - An overview of personal experience with laser-induced plasma (LIP) will be given. The combination of LIP with laser-induced fluorescence, atomic absorption, Raman spectroscopy and spatial heterodyne spectroscopy for elemental and isotopic analysis will be discussed. Unusual applications of LIP will be covered, such as LIP-based lasers and LIP-based chemical reactors. T2 - 2024 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 15.01.2024 KW - Laser induced plasma KW - Laser ablation KW - LIP-LIF KW - LIP-AAS PY - 2024 AN - OPUS4-59431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taylor, Tristen L. A1 - Tukhmetova, Dariya A1 - Duong, Thi Phuong Thanh A1 - Böwe, Anna-Maria A1 - Meermann, Björn A1 - Gundlach-Graham, Alexander T1 - Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS N2 - Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements. KW - Speciation analysis KW - Analytical chemistry KW - Surface water PY - 2024 DO - https://doi.org/10.1007/s00216-024-05162-7 SN - 1618-2650 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-59472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaytsev, D. A1 - Funk, Alexander T1 - On the crack evolutional in human dentin under uniaxial compression imaged by high resolution tomography N2 - An observation of the fracture process in front of the crack tip inside a dentin sample by means of ex-situ X-ray computed tomography after uniaxial compression at different deformation values was carried out in this work. This ex-situ approach allowed the microstructure and fracturing process of human dentin to be observed during loading. No cracks are observed up to the middle part of the irreversible deformation in the samples at least visible at 0.4μm resolution. First cracks appeared before the mechanical stress reached the compression strength. The growth of the cracks is realized by connecting the main cracks with satellite cracks that lie ahead of the main crack tip and parallel its trajectory. When under the stress load the deformation in the sample exceeds the deformation at the compression strength of dentin, an appearance of micro-cracks in front of the main cracks is observed. The micro-cracks are inclined (~60°) to the trajectory of the main cracks. The further growth of the main cracks is not realized due to the junction with the micro-cracks; we assume that the micro-cracks dissipate the energy of the main crack and suppressed its growth. These micro-cracks serve as additional stress accommodations, therefore the samples do not break apart after the compression test, as it is usually observed under bending and tension tests. KW - Dentin KW - Crack evolution KW - Compression strength KW - Mechanical properties KW - Microstructure KW - Ex-situ X-ray computed tomography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594810 DO - https://doi.org/10.18149/MPM.5152023_5 SN - 1605-8119 VL - 51 IS - 5 SP - 38 EP - 51 PB - Advanced Study Center CY - St. Petersburg AN - OPUS4-59481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertovic, Marija A1 - Given, Joseph A1 - Rentala, V K A1 - Wall, M A1 - Kanzler, D A1 - Lehleitner, Johannes A1 - Heckel, Thomas A1 - Tkachenko, Viktoriya T1 - Methods for quantification and integration of human factors into probability of detection assessments N2 - Human factors (HFs) are a frequently mentioned topic when talking about the reliability of non-destructive testing (NDT). However, probability of detection (POD), the commonly used measure of NDT reliability, only looks at the technical capability of an NDT system to detect a defect. After several decades of research on the influence of HFs on NDT reliability, there is still no commonly accepted approach to rendering HFs visible in reliability assessment. This paper provides an overview of possible quantitative and qualitative methods for integrating HFs into the reliability assessment. It is concluded that reliability assessment is best carried out using both quantifiable and non-quantifiable approaches to HFs. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - Non-Destructive Testing (NDT) KW - Human factors KW - Detection Assessments PY - 2023 DO - https://doi.org/10.1784/insi.2023.65.7.364 SN - 1354-2575 VL - 65 IS - 7 SP - 364 EP - 372 PB - British Institute of Non-Destructive Testing (BINDT) AN - OPUS4-59173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - O'Connor, Daniel A1 - Evans, Alexander A1 - Balsamo, Alessandro A1 - Favres, Georges A1 - Przyklenk, Anita A1 - Bosse, Harald A1 - Phillips, Dishi T1 - European Metrology Network (EMN) for Advanced Manufacturing ─ Development of the Strategic Research Agenda (SRA) N2 - The European Commission has identified Advanced Manufacturing and Advanced Materials as two of six Key Enabling Technologies (KETs). It is considered that Metrology is a key enabler for the advancement of these KETs. Consequently, EURAMET, the association of metrology institutes in Europe, has strengthened the role of Metrology for these KETs by enabling the creation of a European Metrology Network (EMN) for Advanced Manufacturing. The EMN is comprised of National Metrology Institutes (NMIs) and Designated Institutes (DIs) from across Europe and was formally established in October 2021. The aim of the EMN is to provide a high-level coordination of European metrology activities for the Advanced Manufacturing community. The EMN itself is organized in three sections representing the major stages of the manufacturing chain: 1) Advanced Materials, 2) Smart Manufacturing Systems, and 3) Manufactured Components & Products. The EMN for Advanced Manufacturing is engaging with stakeholders in the field of Advanced Manufacturing (large companies & SMEs, industry organisations, existing networks, and academia), as well as the wider Metrology community, including Technical Committees, to provide input for the Strategic Research Agenda (SRA) on Metrology for Advanced Manufacturing. This contribution will give an overview about the first version of the SRA prepared by the EMN for Advanced Manufacturing T2 - Euspen, 23rd International Conference & Exhibitio CY - Copenhagen, Danmark DA - 12.06.2023 KW - European Metrology Network (EMN) KW - Advanced Manufacturing KW - Metrology KW - Strategic Research Agenda (SRA) PY - 2023 SP - 363 EP - 364 AN - OPUS4-59196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Waitelonis, Jörg A1 - Mädler, Lutz A1 - Sack, Harald T1 - PMD Core Ontology: Achieving semantic interoperability in materials science N2 - Knowledge representation in the Materials Science and Engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant (consistent) and variant (context-specific) knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this paper, an approach how to maintain a comprehensive MSE-centric terminology composing a mid-level ontology–the Platform MaterialDigital Core Ontology (PMDco)–via MSE community-based curation procedures is presented. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics. Additionally, it demonstrates how the PMDco lowers development and integration thresholds. Moreover, the research highlights how to fuel it with real-world data sources ranging from manually conducted experiments and simulations with continuously automated industrial applications. KW - Ontology KW - Materials science and engineering KW - Knowledge representation KW - Reproducibility KW - Semantic interoperability KW - Semantic data integration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592948 DO - https://doi.org/10.1016/j.matdes.2023.112603 SN - 0264-1275 VL - 237 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-59294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Boccaccini, A. R. T1 - Sintering and crystallization kinetics of bioactive glass 13-93 N2 - This study investigates the sintering and crystallization behavior and kinetic of the bioactive glass (BG) 13–93 with nominal composition (in mol%): 54.6 SiO2 - 1.7 P2O3 - 22.1 CaO - 6.0 Na2O - 7.9 K2O - 7.7 MgO. Sintering and crystallization were investigated non-isothermally for various particle size fractions smaller than 315 μm as well as for bulk samples. Densification was not hindered by the presence of crystalline phases across all particle size fractions. Afterwards, wollastonite was found as the dominant crystal phase at higher temperature which resorb primary surface precipitation-like quartz crystallites. The growth direction shifts into volume when the sample surface is nearly covered. The crystal growth rate of wollastonite was calculated from the crystalline surface layer thickness measured during heating. The findings of this study are relevant for the high temperature processing of BG 13–93. KW - Bioactive glass KW - Sintering KW - Crystallization PY - 2024 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122790 SN - 0022-3093 VL - 627 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-59337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Monavari, Mehran A1 - Prellwitz, Matthias A1 - Muth, Thilo A1 - Eichstädt, Sascha A1 - Koch, Claudia T1 - Quality-X: A Federated Digital Ecosystem for the Future Quality Infrastructure N2 - Harmonized and interoperable national Quality Infrastructure (QI) systems are essential for fostering cooperation, promoting mutual trust, and facilitating trade. The true potential of the QI is realized when its elements and actors are seamlessly integrated into a cohesive digital QI ecosystem. Recent developments towards industrial international data spaces enable such an ecosystem but require the integration of QI principles. Recognizing the lack of such a platform, Quality-X aims at setting the stage for the implementation of a QI ecosystem in international data spaces (IDS), GAIA-X and related German and European projects dedicated to secure data sharing. Quality-X is not about the construction of a platform; it is the creation of an inclusive QI ecosystem with harmonized interfaces. Instead of imposing rigid data structures, it prioritizes interoperability. Through the utilization of Decentralized Identifiers (DIDs), Verifiable Credentials, and Identity Hubs, Quality-X seeks seamless interactions across diverse service provider systems. This white paper introduces the concept and vision of Quality-X and discusses the general prerequisites for integrating QI processes within data spaces. Further on, we introduce existing testbeds, which will serve as an experimental proving ground for exploring various use cases related to the implementation of the vision of a QI-Digital. +++ Harmonisierte und interoperable nationale Qualitätsinfrastrukturen (QI) sind für die Förderung der Zusammenarbeit, des gegenseitigen Vertrauens und der Erleichterung des Handels unerlässlich. Das wahre Potenzial der QI kommt zum Tragen, wenn ihre Elemente und Akteure nahtlos in ein kohärentes digitales QI-Ökosystem integriert werden. Die jüngsten Entwicklungen hin zu industriellen internationalen Datenräumen ermöglichen ein solches Ökosystem, erfordern jedoch die Integration von QI-Prinzipien. Angesichts des Fehlens einer solchen Plattform zielt Quality-X darauf ab, die Voraussetzungen für die Umsetzung eines QI-Ökosystems in internationalen Datenräumen (IDS), GAIA-X und verwandten deutschen und europäischen Projekten zum sicheren Datenaustausch zu schaffen. Bei Quality-X geht es nicht um den Aufbau einer Plattform, sondern um die Schaffung eines umfassenden QI-Ökosystems mit harmonisierten Schnittstellen. Anstatt starre Datenstrukturen aufzuerlegen, steht die Interoperabilität im Vordergrund. Durch die Verwendung von dezentralen Identifikatoren (DIDs), überprüfbaren Berechtigungsnachweisen und Identitäts-Hubs strebt Quality-X eine nahtlose Interaktion zwischen verschiedenen Systemen von Dienstleistern an. Dieses Whitepaper stellt das Konzept und die Vision von Quality-X vor und erörtert die allgemeinen Voraussetzungen für die Integration von QI-Prozessen in Datenräumen. Darüber hinaus stellen wir bestehende Testbeds vor, die als experimentelles Versuchsfeld für die Erforschung verschiedener Anwendungsfälle im Zusammenhang mit der Umsetzung der Vision einer QI-Digital dienen sollen. KW - Quality Assurance KW - Quality Infrastructure KW - Data Spaces KW - Digitalization KW - Quality Management KW - Interoperability KW - Verification KW - Identification KW - Certificate KW - Datenräume KW - Qualitätsinfrastruktur KW - Gaia-X KW - Manufacturing-X KW - Catena-X KW - Datenökosystem KW - Qualitätssicherung KW - Qualitätsmanagement PY - 2023 UR - https://www.qi-digital.de/fileadmin/user_upload/website/publikationen/1022_Brosch%C3%BCre_Quality-X_v4.pdf SP - 1 CY - Berlin AN - OPUS4-59354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herter, Sven-Oliver A1 - Koch, Matthias A1 - Haase, Hajo T1 - Synthesis and application of isotopic labelled ergot alkaloids N2 - Ergot alkaloids form a toxicologically relevant group of mould toxins (mycotoxins) that are among the most common contaminants of foodstuff and animal feed worldwide. Reliable controls are essential to minimise health risks and economic damage. Due to their toxicological relevance, EU limit values for 12 priority ergot alkaloids have been introduced for the first time in 2022 and range from 500 μg/kg in rye milling products down to 20 ug/kg Processed cereal-based foods for infants and young children[1]. High-performance liquid chromatography - mass spectrometry is used to quantify low concentrations of ergots in food, however the European standard analytical procedure cannot be applied due to the lack of isotopically labelled reference standards. The complex structure of the ergot alkaloids makes a total synthesis extremely challenging, expensive and time-consuming. Therefore, we are focusing on different semi-preparative methods (electrochemistry, organic synthesis, heterogeneous catalysis) to specifically N-demethylate the C8 carbon atom of the lysergic acid moiety. The norergot alkaloid formed is then isotopically labelled using an electrophilic methyl source, i.e. iodomethane or dimethyl sulphate to obtain the specific isotopic labelled ergot alkaloid. Initial experiments have shown that N-demethylation of the ergot alkaloid ergotamine is possible by both electrochemical and wet-chemical organic synthesis. The next step is to improve the previously determined reaction conditions to enable the synthesis of norergotamine on a mg scale for further reactions. T2 - ISEAC-41 CY - Amsterdam, Netherlands DA - 20.11.2023 KW - Reference Material KW - Isotope KW - Standards KW - Mykotoxine KW - HPLC-MS PY - 2023 AN - OPUS4-59315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Lei A1 - Magdysyuk, Oxana V. A1 - Jiang, Fuqing A1 - Wang, Yiqiang A1 - Evans, Alexander A1 - Kabra, Saurabh A1 - Cai, Biao T1 - Mechanical performance and deformation mechanisms at cryogenic temperatures of 316L stainless steel processed by laser powder bed fusion: In situ neutron diffraction N2 - Manufacturing austenitic stainless steels (ASSs) using additive manufacturing is of great interest for cryogenic applications. Here, the mechanical and microstructural responses of a 316L ASS built by laser powder bed fusion were revealed by performing in situ neutron diffraction tensile tests at the low-temperature range (from 373 to 10 K). The stacking fault energy almost linearly decreased from 29.2 ± 3.1 mJm⁻² at 373 K to 7.5 ± 1.7 mJm⁻² at 10 K, with a slope of 0.06 mJm⁻²K⁻¹, leading to the transition of the dominant deformation mechanism from strain-induced twinning to martensite formation. As a result, excellent combinations of strength and ductility were achieved at the low-temperature range. KW - Condensed Matter Physics KW - General Materials Science KW - Mechanics of Materials KW - Metals and Alloys KW - Mechanical Engineering PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114806 SN - 1359-6462 VL - 218 SP - 1 EP - 7 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Bruno, Giovanni T1 - Micro Non-Destructive Testing and Evaluation N2 - What is meant by ‘Micro Non-Destructive Testing and Evaluation’? This was the central subject of debate in this Special Issue. At present, sub-millimeter-size components or even assemblies are pervading the industrial and scientific world. Classic examples are electronic devices and watches (as well as parts thereof), but recent examples encompass additively manufactured lattice structures, stents, or other microparts. Moreover, most assemblies contain micro-components. Testing such components or their miniaturized parts would fit well within the topic of micro non-destructive testing and evaluation. In all cases, performance and integrity testing, quality control, and dimensional tolerances need to be measured at the sub-millimeter level (ideally with a spatial resolution of about a micron); most of the time, such features and components are embedded in much larger assemblies, which also need to be taken into account. The solution to this dilemma (i.e. measuring large parts with high resolution) depends on the part and on the problem under consideration. Another possible definition of micro non-destructive testing and evaluation can relate to the characterization of micro-features (e.g., the microstructure) in much larger specimens, such as damage in concrete cores or porosity in additively manufactured components. A further aspect is the use of microscopic probes to evaluate macroscopic properties. This is the case, for instance but not at all exclusively, in the use of diffraction techniques to determine macroscopic stress. The splits between testing and characterization at the micro-level (or of micro parts) from one side and handling of macroscopic assemblies on the other represent a great challenge for many fields of materials characterization. On top of that, including the use of microscopic methods to test integrity would add a further level of complexity. Imaging, mechanical testing, non-destructive testing, measurement of properties, structural health monitoring, and dimensional metrology all need to be re-defined if we want to cope with the multi-faceted topic of micro non-destructive testing and evaluation. The challenge has already been accepted by the scientific and engineering communities for a while but is still far from being universally tackled. This Special Issue yields an interesting answer to the questions posed above. It presents the progress made and the different aspects of the challenge as well as at indicates the paths for the future of NDT&E. KW - Neutron Diffraction KW - Ultrasound KW - Eddy Currents KW - X-ray Computed Tomography KW - Mechanical Properties KW - Residual Stress KW - Defects PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570321 SN - 978-3-0365-6180-6 DO - https://doi.org/10.3390/books978-3-0365-6180-6 SN - 1996-1944 SP - 1 EP - 304 PB - MDPI CY - Basel AN - OPUS4-57032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Klewe, Tim T1 - Non-destructive classification of moisture deterioration in layered building floors using ground penetrating radar N2 - In the event of moisture deterioration, rapid detection and localization is particularly important to prevent further deterioration and costs. For building floors, the layered structure poses a challenging obstacle for most moisture measurement methods. But especially here, layer-specific information on the depth of the water is crucial for efficient and effective repairs. Ground Penetrating Radar (GPR) shows the potential to generate such depth information. Therefore, the present work investigates the suitability of GPR in combination with machine learning methods for the automated classification of the typical deterioration cases (i) dry, (ii) wet insulation, and (iii) wet screed. First, a literature review was conducted to identify the most common methods for detecting moisture in building materials using GPR. Here, it especially became clear that all publications only investigated individual time-, amplitude- or frequency features separately, without combining them. This was seen as a potential aspect for innovation, as the multivariate application of several signal features can help to overcome individual weaknesses and limitations. Preliminary investigations carried out on drying screed samples confirmed the profitable use of multivariate evaluations. In addition to the general suitability and dependencies of various features, first limitations due to possible interference between the direct wave and the reflection wave could be identified. This is particularly evident with thin or dry materials, for which the two-way travel times of the reflected radar signals become shorter. An extensive laboratory experiment was carried out, for which a modular test specimen was designed to enable the variation of the material type and thickness of screed and insulation, as well as the simulation of moisture deteriorations. The data collected revealed clear differences between dry and deteriored structures within measured B-scans. These deviations were to be detected with the newly introduced B-scan features, which evaluate the statistical deviation of A-scan features within a survey line. In this way, deteriorations to unknown floor structures are recognized, regardless of the material parameters present. In a subsequent training and cross-validation process of different classifiers, accuracies of over 88 \% of the 504 recorded measurements (252 different experimental setups) were achieved. For that, the combination of amplitude and frequency features, which covered all relevant reflections of the radar signals, was particularly beneficial. Furthermore, the data set showed only small differences between dry floors and deteriored screeds for the B-scan features, which could be attributed to a homogeneous distribution of the added water in the screeds. The successfully separation of these similar feature distributions raised the suspicion of overfitting, which was examined in more detail by means of a validation with on-site data. For this purpose, investigations were carried out at five different locations in Germany, using the identical measurement method like in the laboratory. By extracting drilling cores, it was possible to determine the deterioration case for each measurement point and thus generate a corresponding reference. However, numerous data had to be sorted out before classification, since disturbances due to underfloor heating, screed reinforcements, steel beams or missing insulation prevented comparability with the laboratory experiments. Validation of the remaining data (72 B-scans) achieved only low accuracy with 53 \% correctly classified deterioration cases. Here, the previously suspected overfitting of the small decision boundary between dry setups and deteriored screeds within the laboratory proved to be a problem. The generally larger deviations within (also dry) on-site B-scans were thus frequently misclassified as screed deterioration. In addition, there were sometimes strongly varying layer thicknesses or changing cases of deterioration within a survey line, which caused additional errors due to the local limitation of the drilling core reference. Nevertheless, individual on-site examples also showed the promising potential of the applied signal features and the GPR method in general, which partly allowed a profound interpretation of the measurements. However, this interpretation still requires the experience of trained personnel and could not be automated using machine learning with the available database. Nevertheless, such experience and knowledge can be enriched by the findings of this work, which provide the basis for further research. Future work should aim at building an open GPR data base of on-site moisture measurements on floors to provide a meaningful basis for applying machine learning. Here, referencing is a crucial point, whose limitations with respect to the moisture present and its distribution can easily reduce the potential of such efforts. The combination of several reference methods might help to overcome such limitations. Similarly, a focus on monitoring approaches can also help to reduce numerous unknown variables in moisture measurements and increase confidence in the detection of different deterioration cases. KW - NDT KW - Moisture measurement KW - Ground penetrating radar KW - Building floor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591044 DO - https://doi.org/10.14279/depositonce-19306 SP - 1 EP - 146 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-59104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tsamos, Athanasios T1 - CNN Architectures for Image Processing. N2 - Deep Convolutional Neural Networks (DCNNs) and their applications in (XCT) data conditioning and automatic segmentation. A case study in Al-Si MMCs with synthetic training data. T2 - EUROLAB-D Tagung: KI im Prüflabor: Chancen und Herausforderungen von Künstlicher Intelligenz für akkreditierte Stellen CY - Berlin, Germany DA - 14.11.2023 KW - Automatic Segmentation KW - XCT KW - Artificial Intelligence KW - Synthetic Training Data PY - 2023 AN - OPUS4-59093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tsamos, Athanasios T1 - Denoising, Deblurring and Automatic Segmentation of XCT Data with Deep Learning and Synthetic XCT Training Data. A Case Study on Al-Si MMCs. N2 - We employ in-house generated synthetic Al-Si matrix composite XCT data for training deep convolutional neural networks for XCT data conditioning and automatic segmentation. We propose an in-house multilevel deep conditioning framework capable of rectifying noise and blur in corrupted XCT data sequentially. Furthermore, for automatic segmentation, we utilize a special in-house network coupled with a novel iterative segmentation algorithm capable of generalized learning from synthetic data. We report a consistent SSIM efficiency of 92%, 99%, and 95% for the combined denoising/deblurring, standalone denoising, and standalone deblurring, respectively. The overall segmentation precision was over 85% according to the Dice coefficient. We used experimental XCT data from various scans of Al-Si matrix composites reinforced with ceramic particles and fibers. T2 - 12th International Conference on Industrial Computed Tomography (iCT2023) CY - Fürth, Germany DA - 27.02.2023 KW - Automatic Segmentation KW - Denoising Deblurring Sharpening KW - Artificial Intelligence KW - DCNNs KW - Synthetic Training Data KW - XCT PY - 2023 AN - OPUS4-59095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten T1 - Virtual CT with aRTist N2 - The software aRTist is a simulation tool for the generation of realistic radiographs of virtual radiographic superstructures. With radiographic simulations, virtual component models can be scanned as in a computer tomograph. Industrial X-ray computed tomography (CT) enables the non-destructive detection of internal and external surfaces as well as inhomogeneities of technical objects. Virtual CT offers new possibilities for the investigation of parameter influences of this complex testing and measuring technique. In addition to the option of switching physical effects on and off, scanning movements can also be tested before their technical realization. The virtual CT generates projection images from different directions for the subsequent reconstruction of a volume model of the examined object. The reconstruction of the simulated scans is carried out with the algorithms and programs for real scans. Tomographic scans consist of a large number of projections, which practically cannot be generated individually by the user of a simulation. The software offers various options for the automated simulation of tomographic scans. These range from standard CT to scans on free trajectories or with individual projection matrices. T2 - 12th Conference on Industrial Computed Tomography (iCT) 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray computed tomography KW - Simulation PY - 2023 AN - OPUS4-58919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reuter, T. A1 - Borges de Oliveira, F. A1 - Abt, Ch. A1 - Ballach, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Dennerlein, F. A1 - Fuchs, P. A1 - Günnewig, O. A1 - Hausotte, T. A1 - Hess, J. A1 - Kasperl, S. A1 - Maass, N. A1 - Kimmig, W. A1 - Schielein, R. A1 - von Schmid, M. A1 - Suppes, A. A1 - Wagner, G. A1 - Watzl, Ch. A1 - Wohlgemuth, F. T1 - Introduction to “Realistic Simulation of real CT systems with a basic-qualified Simulation Software - CTSimU2“ N2 - The lack of traceability to meter of X-ray Computed Tomography (CT) measurements still hinders a more extensive acceptance of CT in coordinate metrology and industry. To ensure traceable, reliable, and accurate measurements, the determination of the task-specific measurement uncertainty is necessary. The German guideline VDI/VDE 2630 part 2.1 describes a procedure to determine the measurement uncertainty for CT experimentally by conducting several repeated measurements with a calibrated test specimen. However, this experimental procedure is cost and effort intensive. Therefore, the simulation of dimensional measurement tasks conducted with X-ray computed tomography can close these drawbacks. Additionally, recent developments towards a resource and cost-efficient production (“smart factory”) motivate the need for a corresponding numerical model of a CT system (“digital twin”) as well. As there is no standardized procedure to determine the measurement uncertainty of a CT system by simulation at the moment, the project series CTSimU was initiated, aiming at this gap. Concretely, the goal is the development of a procedure to determine the measurement uncertainty numerically by radiographic simulation. The first project (2019-2022), "Radiographic Computed Tomography Simulation for Measurement Uncertainty Evaluation - CTSimU" developed a framework to qualify a radiographic simulation software concerning the correct simulation of physical laws and functionalities. The most important outcome was a draft for a new guideline VDI/VDE 2630 part 2.2, which is currently under discussion in the VDI/VDE committee. The follow-up project CTSimU2 "Realistic Simulation of real CT systems with a basic-qualified Simulation Software" will deal with building and characterizing a digital replica of a specific real-world CT system. The two main targets of this project will be a toolbox including methods and procedures to configure a realistic CT system simulation and to develop tests to check if this replica is sufficient enough. The result will be a draft for a follow-up VDI/VDE guideline proposing standardized procedures to determine a CT system's corresponding characteristics and test the simulation (copy) of a real-world CT system which we call a "digital twin". T2 - 12th Conference on Industrial Computed Tomography (iCT) 2023 CY - Fürth, Germany DA - 27.02.2023 KW - dXCT KW - X-ray computed tomography KW - Simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589204 DO - https://doi.org/10.58286/27715 VL - 28 IS - 3 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-58920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Bartscher, M. A1 - Borges de Oliveira, F. A1 - Hausotte, T. A1 - Kasperl, S. A1 - Reuter, T. A1 - Schielein, R. T1 - Realistic Simulation of CT Systems - An Introduction to The CTSimU2 Project N2 - The project series CTSimU was initiated with the goal to develop a set of procedures to enable the determination of the task-specific measurement uncertainty of a CT system numerically by radiographic simulation. The first project (2019-2022) “Radiographic Computed Tomography Simulation for Measurement Uncertainty Evaluation - CTSimU” was focused on the sufficient physical correctness of the radiographic simulation and created as a result a test framework for simulation softwares and a draft of a VDI standard in the series VDI/VDE 2630 for this application. However, for the realistic simulation of a CT system in a simulation software (i.e. a digital twin), not only the correctness of the simulation software itself is crucial, but also the quality of the parameterization of the CT system in the simulation software - this represents the starting point of the 2nd project “Realistic Simulation of real CT systems with a basic-qualified Simulation Software - CTSimU2” (2022-2024). The parameterization of a CT system in a simulation software can be divided into four steps: after the data acquisition at the real CT system (step 1) follows the evaluation of the acquired data for the generation of general parameter specifications (step 2). It follows the transfer of the parameters into the specific simulation software (step 3) and the validation of the resulting simulation parameters by a suitable test (step 4). The intended result of the project CTSimU2 is a draft VDI standard (for VDI/VDE 2630) for this test, which contains an informative annex on the state of the art regarding the possibilities for parameter determination. T2 - 13th European Conference on Non-Destructive Testing (ECNDT) CY - Lisbon, Portugal DA - 03.07.2023 KW - X-ray computed tomography KW - dXCT KW - Simulation PY - 2023 AN - OPUS4-58923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -