TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Approach to the development of a model to quantify the quality of tendon localization in concrete using ultrasound N2 - Each engineering decision is based on a number of more or less accurate information. In assessment of existing structures, additional relevant information collected with on-site inspections facilitate better decisions. However, observed data basically represents the physical characteristic of interest with an uncertainty. This uncertainty is a measure of the inspection quality and can be quantified by expressing the measurement uncertainty. The internationally accepted rules for calculating measurement uncertainty are well established and can be applied straightforwardly in many practical cases. Nevertheless, the calculations require the occasionally time-consuming development of an individually suitable measurement model. This contribution attempts to emphasize proposals for modelling the non-destructive depth measurement of tendons in concrete using the ultrasonic echo technique. The proposed model can serve as guideline for the determination of the quality of the measured information in future comparable inspection scenarios. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Kapstadt, South Africa DA - 03.10.2022 KW - Reliability KW - Measurement Uncertainty KW - Non-Destructive Testing KW - Existing Concrete Structures PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559927 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-236X VL - 364 SP - 1 EP - 8 PB - EDP Sciences CY - Les Ulis, France AN - OPUS4-55992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture distribution in amorphous porous materials N2 - Mesopores dominate the material moisture and influence the gas diffusion through materials such as concrete or sandstone T2 - Nano@bam Round Table Nano Materials CY - Berlin, Germany DA - 14.10.2022 KW - Physisorption KW - Mesopores KW - Amorphous materials PY - 2022 AN - OPUS4-55998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 AN - OPUS4-55999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Epple, Niklas A1 - Liao, Chun-Man T1 - Recent advances in (ultra)sonic active and passive monitoring of reinforced and prestressed concrete structures N2 - In addition to already established structural monitoring methods such as deformation, inclination or strain gauges or acoustic emission sensors, sonic or ultrasonic monitoring might provide valuable information about the condition or alteration of a structure. Sensors such as geophones, recording ambient noise in the sonic and subsonic frequency range can provide information beyond modal analysis by using interferometric methods. Wave velocities determined by this method are related to the elastic properties and stiffness of material and structure and can be converted into damage indicators. Embedded active ultrasonic transducer networks can provide more detailed insight about deterioration or damages again, using interferometric technologies. This approach is extremely sensible, detecting relative change in velocity on down to 10-5. These methods, including benefits and remaining challenges, are demonstrated using data from a test structure at BAM’s test site demonstrating the case of prestress loss, and data from an actual bridge still under traffic. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Monitoring KW - Ultrasonic KW - Non-destructive testing KW - Coda wave KW - Bridge PY - 2022 AN - OPUS4-56000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha A1 - Abele, M. A1 - Falkenstein, S. T1 - Modular process control with compact NMR spectroscopy – From field integration to automated data analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. T2 - GIDRM Day (Gruppo Italiano Discussione Risonanze Magnetiche) - Data analysis and NMR: from fundamental aspects to health and material applications CY - Online meeting DA - 14.10.2022 KW - Process Control KW - Online NMR Spectroscopy KW - Industry 4.0 KW - Process Analytical Technology KW - Data Analysis KW - Machine-Assisted Workflows PY - 2022 DO - https://doi.org/http://www.gidrm.org/index.php/activities/workshops/2022-workshops/gidrm-day-data-analysis-and-nmr-from-fundamental-aspects-to-health-and-material-applications AN - OPUS4-56002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Multifaceted laser induced plasma: spectroscopy and beyond N2 - In this presentation, I will give a brief overview of my personal experience with laser induced plasma (LIP). I will start from my and colleagues’ early works, where we used LIP as an atomic reservoir for laser induced fluorescence (LIP). We applied LIP-LIF for a sensitive detection of trace elements in various materials and demonstrated that under certain conditions the technique can even be used for isotope analysis. Next, I will discuss the application of LIP spectroscopy, i.e., LIBS, to material identification that nowadays constitutes one of the best applications of this technique. In those early days, we used correlation analysis for spectra processing; it is now replaced by more powerful chemometric methods. Further, I will stop on our efforts in modeling LIP that we first intended for the improved quality of spectroscopic analysis and later extended to non-spectroscopic fields such as chemical vapor deposition and surface structuring. We developed a version of calibration-free LIBS, in which we iterated model-generated spectra until a close match was achieved between experimental and synthetic spectra to determine concentrations. Next, I will briefly overview our recent developments in plasma modeling that include plasma chemistry. This was important in view of widening application of LIBS as a molecular technique. I will also address several plasma diagnostics, e.g., Radon transform tomography that we developed to get more insight about LIP that was helpful for both analytic spectroscopy and modeling. Finally, I will mention several exotic applications of LIP such as LIP-based lasers and chemical reactors to illustrate a real multifaceted character of laser induced plasma and usefulness of its study for many science fields. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Emission spectroscopy KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-55968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. A1 - Karlagina, J. A1 - Samokhvalov, A. A1 - Polyakov, D. T1 - Back Deposition of Titanium Oxides under Laser Ablation of Titanium: Simulation and Experiment N2 - Titanium is widely used in medicine for implants and prostheses, thanks to its high biocompatibility, good mechanical properties, and high corrosion resistance. Pure titanium, however, has low wear resistance and may release metallic titanium into surrounding tissues. Structuring and coating its surface with oxide layers are necessary for high wear resistance and improved biocompatibility. In this work, a combination of theoretical and experimental methods was used to study processes responsible for deposition of titanium oxides during ablation of titanium in air. The deposition process was modeled via the Navier-Stokes equations that accounted for the material removal and accumulation of the deposit on the ablation surface. The chemical part was based on the equilibrium model embedded into the hydrodynamic code. Simulations showed that the most active zone of production of condensed titanium oxides were at plasma periphery whereas a zone of strong condensation of titanium metal was above the molten pool. In experiment, a pulsed Yb fiber laser was scanned across a titanium surface. The temperature and composition of the plasma were inferred from plasma emission spectra. The post-ablation surface was analyzed by SEM, TEM, STEM, AFM, and XRD. The developed model well reproduced the main features of experimental data. It was concluded that the deposition of condensed metal oxides from the plasma is a principal mechanism of formation of nanoporous oxide layer on the metal surface. The method of surface structuring and modification by nanosecond laser ablation can be developed into a useful technology that may find applications in medicine, photonics, and other areas. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Surface coating KW - Laser ablation KW - Plasma modeling PY - 2022 AN - OPUS4-55969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Wander, L. A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Modular production involving benchtop NMR Current Application Examples Driven by Digitalization N2 - The demand for increasing product diversity in the chemical and pharmaceutical industry calls for new production processes that enable greater flexibility. Therefore, plants are needed which can be adapted to new processes in a fast manner and be scaled up and down easily to volatile market demands. Modular production techniques in combination with advanced process analytical technology (PAT) are considered as a promising solution able to fulfil these requirements. The success and acceptance of modular concepts in both new and existing plants is dependent of its reliability, easy applicability, and standardization. In recent past, enormous efforts were made to overcome existing barriers in a superordinate level, e.g. DEXPI, ENPRO, or MTP naming just a few. Here, we’d like to present a few, more hands-on, application examples which are shown in Figure 1 aiming to increase process flexibility and applicability. T2 - Achema 2022 CY - Frankfurt a.M., Germany DA - 22.08.2022 KW - Process analytical technology KW - NMR spectroscopy KW - Digitization PY - 2022 AN - OPUS4-55974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray scattering Datasets of gold and silver nanoparticle composites, relating to the publication "Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup" N2 - Wide-range X-ray scattering datasets and analyses for all samples described in the 2020 publication "Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup". These datasets are composed by combining multiple small-angle x-ray scattering and wide-angle x-ray scattering curves into a single dataset. They have been analyzed using McSAS to extract polydispersities and volume fractions. They have been collected using the MOUSE project (instrument and methodology). KW - X-ray scattering KW - MOUSE KW - Saxs KW - Waxs KW - Analyses KW - Datasets PY - 2022 DO - https://doi.org/10.5281/zenodo.7193859 PB - Zenodo CY - Geneva AN - OPUS4-55979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Digitalization in conformity assessment in Spain - A QI-FoKuS study N2 - This report summarizes findings from the first comprehensive study on digitalization in conformity assessment in Spain. The reults are based on data from a survey among conformity assessment bodies (CABs) conducted in 2022. It highlights the digital maturity of the organizations, the motives, benefits and obstacles of digital transformation as well as the actual technology trends. The study on Spanish CABs is part of a global project that covers various other countries (see www.qi-fokus.de). KW - COVID-19 KW - Calibration KW - Certification KW - Conformity assessment KW - Conformity assessment body KW - Digital transformation KW - Digitalization KW - Laboratory KW - Quality infrastructure KW - TIC KW - Testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558465 UR - https://www.qi-fokus.de SP - 1 EP - 44 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Ludwig, S. A1 - Roesch, Philipp A1 - Vigelahn, L. A1 - Wittwer, Philipp A1 - Birke, V. A1 - Simon, Franz-Georg T1 - Mechanochemical Remediation of Per- and Polyfluoroalkyl Substanzes (PFAS) in Soils N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of anionic, cationic, or zwitterionic organofluorine surfactants used in the formulations of thousands of products and consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment. Because PFAS have been extensively used in a variety of AFFF products they can be found in soils from industrial and military installations. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GCMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Mechanochemical treatment KW - XANES spectroscopy PY - 2022 AN - OPUS4-55742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman microspectroscopy elucidates Early Medieval art technology: high-fired gypsum mortar and Egyptian blue from the church St. Peter above Gratsch (South Tyrol, Northern Italy) N2 - Raman microspectroscopy enables imaging of the distributions of mineral phases as well as physical properties of materials, such as crystal orientations and crystallinities, with down to sub-micrometre resolution. In a combination with other spectroscopic and microscopic techniques, this approach was applied to the analysis and elucidation of ancient production technologies of stucco fragments made of high-fired gypsum mortar and Egyptian blue pigment discovered on a monochrome wall painting fragment originating from the Early Medieval (5th/6th century AD) construction phase of the church St. Peter above Gratsch in South Tyrol (Northern Italy). T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - Raman microspectroscopy KW - Gypsum KW - Pigments PY - 2022 AN - OPUS4-55896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ToF-SIMS at advanced materials - from nano to energy N2 - The basic principles of ToF-SIMS will be explained. Examples of the use of ToF-SIMS for the investigation of titania and core-shell nanoplastic will be given. Furhtermore, 3d reconstruction is explained for nanoparticle research and energy-related materials. T2 - BUA Summer School Mass Spectrometry CY - Berlin, Germany DA - 04.10.2022 KW - ToF-SIMS KW - Nanomaterials KW - Imaging PY - 2022 AN - OPUS4-55897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559028 DO - https://doi.org/10.1038/s41598-022-19923-w SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sechi, R. A1 - Fackeldey, K. A1 - Chewle, Surahit A1 - Weber, M. T1 - SepFree NMF: A toolbox for analyzing the kinetics of sequential spectroscopic data N2 - This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension “measured times” versus “measured wavenumbers” and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M = WH, with W representing the components’ fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra. KW - Kinetics from experiments KW - Separability assumption KW - Sequential spectroscopic data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559046 DO - https://doi.org/10.3390/a15090297 SN - 1999-4893 VL - 15 IS - 9 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Marc Benjamin T1 - BioSAXS models for TOPAS/Geant4 N2 - Models for TOPAS/Geant4 to estimate the microscopic dose received by biomolecules during bioSAXS experiments. The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). KW - TOPAS KW - TOPAS-nBio KW - Geant4 KW - Geant4-DNA KW - MCS KW - Microdosimetry KW - Protein KW - Proteins KW - Particle scattering KW - G5P KW - GV5 KW - SAXS KW - Monte-Carlo simulation KW - Dosimetry KW - Micorscopic dose-damage relation PY - 2022 UR - https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry DO - https://doi.org/10.26272/opus4-55751 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray scattering for nanostructure quantification, and the quest for the perfect experiment N2 - Measuring an X-ray scattering pattern is relatively easy, but measuring a steady stream of high-quality, useful patterns requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). With the MOUSE, we have combined a comprehensive and highly automated laboratory workflow with a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. This talk will briefly introduce the foundations of X-ray scattering, present the MOUSE project, and will highlight the proven utility of the methodology for materials science. Upgrades to the methodology will also be discussed, as well as possible avenues for transferring this holistic methodology to other instruments T2 - SNI 2022 CY - Berlin, Germany DA - 05.09.2022 KW - Methodology KW - X-ray scattering KW - Laboratory management KW - Instrumentation utilization KW - MOUSE KW - SAXS KW - WAXS KW - Automation PY - 2022 AN - OPUS4-55760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -