TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project z02 at the CSMC: material science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the Centre for the Study of Manuscript Cultures (CSMC). In collaboration with the other two service projects, Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the centre. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out. T2 - International Medieval Conference CY - Leeds, United Kingdom DA - 01.07.2019 KW - Manuscript KW - Ink KW - Pigment PY - 2019 AN - OPUS4-48465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duwe, M. A1 - Fischer, Daniel A1 - Quast, J.-H. A1 - Schneider, S. A1 - Beck, Uwe T1 - Curved-surface metrology by imaging Mueller-matrix ellipsometry N2 - Outline - maging ellipsometry: oncept and setup - Basic theory: ellipsometry on tilted/curved surfaces - Geometric considerations - Tilt-induced cross-polarization - Application: coating analysis on microlensarray - Mueller-Matrix Imaging - Conversion to Delta-Psi Image - Layer-thickness of ITO coating T2 - 8th International conference on spectroscopic CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroscopic Imaging KW - Mueller-Matrix Ellipsometry KW - Curved surfaces PY - 2019 AN - OPUS4-48366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Fantastic guided modes and how to find them N2 - Ultrasonic guided waves (UGW) have been shown to be suitable for non-destructive testing (NDT) and structural health monitoring (SHM) of many engineering structures. Development of a technique based on UGWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to their dispersion and multimodal character. This presentation will provide insights into the Scaled Boundary Finite Element Method and its applicability for tackling wave propagation problems. Features and limitations of the SBFEM will be presented on an example of a multi-layered plate structure consisting of isotropic and anisotropic materials bonded together. You will be guided through the process of picking up the wave modes for your application. Starting from the calculation of dispersion curves and mode shapes to the analysis of wave propagation and mode-damage interaction. The main highlight of the presentation lies in the ability to detect damage in a certain layer depending on the mode used. The resulting deeper understanding of the wave propagation in multi-layered structures is the key to further developments of NDT and SHM for engineering structures consisting of multiple layers. T2 - Von CEA Eingeladener Vortrag CY - Saclay, France DA - 07.06.2019 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites KW - Scaled Boundary Finite Element Method PY - 2019 AN - OPUS4-48375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulletti, A. A1 - Capineri, L. A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Charachterization of piezopolymer interdigital transducer's vibrational modes N2 - Lamb waves are widely used for monitoring the health of structures made of laminated materials (metals, composites). Piezoelectric ultrasonic transducers transmit and receive acoustic guided waves that interact with the elastic properties and the defects of the material under test. In recent years, DINFO developed piezopolymer Interdigital Transducers (IDTs) proven to be suitable to build SHM systems for aerospace applications. Their base material is a Cr/Au-coated PVDF-TrFE copolymer sheet, having a thickness of 100μm and a metallization of 0.1μm on both sides. IDTs are attractive for SHM systems for their capability to select specific Lamb wave modes when designed with appropriate electrode pattern. For a reliable application, it is crucial to characterize the in-plane and out-of-plane displacement of the transducer and to correlate the ultrasonic propagating signal with the Lamb waves dispersion curves in laminates. For example, for a 2 mm aluminum plate A0 mode has dominant out-of-plane displacement, whereas S0 mode has dominant in-plane displacement at the plate's surface. In collaboration with BAM the characterization of free vibrational modes using a 3D laser doppler vibrometer was performed. The analysis in the frequency domain was performed using the following parameters: a chirp excitation with frequencies 50-500 kHz and 0.5-1 MHz with 195 Hz and 390 Hz frequency resolution respectively at 100 Vpp for a total of 90 averaged measurements per point. Also propagating modes were characterized by bonding the IDT on a 2 mm aluminum plate and analyzing the in-plane and the out-of-plane components. A0-mode was successfully excited having the main lobe aligned with the main axis of the IDT, confirming the dominant presence of this propagating mode. The results could be used as a basis for design and optimization of the IDTs in terms of directivity and mode selection, and to facilitate interpretation of the ultrasonic guided waves propagating in laminated structures. T2 - 51th Annual Meeting of the Associazione Societa Italiana Di Elettronica CY - Rome, Italy DA - 26.06.2019 KW - Structural Health Monitoring KW - Interdigital Transducer KW - PVDF KW - Ultrasonic guided waves KW - Lamb waves PY - 2019 AN - OPUS4-48382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Schaupp, Thomas A1 - Mente, Tobias T1 - Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components N2 - Hydrogen was once called “the versatile embrittler” [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of “digital” experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 T2 - 20. Tagung Festkörperanalyse - FKA20 CY - Vienna, Austria DA - 01.07.2019 KW - Hydrogen KW - Welding KW - Gas analytic PY - 2019 AN - OPUS4-48402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten T1 - Virtual CT with Complex scanning trajectories in aRTist N2 - The simulator aRTist combines analytical and Monte Carlo methods to efficiently model the radiographic process of industrial radiology. In this contribution we focus on virtual computer tomography, the simulation of tomographic scans. The possibilities to simulate complex scanning trajectories are shown in combination with the tomographic reconstruction using individual projection matrices. T2 - The 4th Annual Advances in X-Ray Imaging Workshop CY - Diamond Light Source, Didcot, UK DA - 11.06.2019 KW - X-ray Computer-tomography simulation PY - 2019 AN - OPUS4-48297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Vahlsing, Thorsten A1 - Raum, Hanne A1 - Casperson, Ralf A1 - Pohl, Rainer A1 - Heckel, Thomas A1 - Beilken, D. A1 - Dilz, K. A1 - Rühe, S. T1 - FE-simulation of eddy current signals produced from basic model cracks for running surface rail defects N2 - Non-destructive testing for surface crack detection and head check depth quantification at the gauge corner of railway tracks can be achieved using eddy current methods. With the extension of the tested zone to the running surface, rail defect signal types other than head checks can be measured. Due to their mostly irregular shape, a quantitation based on a calibration against regular test cracks of varying depth may not be linear. Estimates of the expected influence of more complex crack patterns may be obtained by a finite element simulation of sufficiently simple limiting cases, like two displaced or intersecting cracks or a simply branched or flexed crack. As a first step, a 3D finite element model of the HC10 eddy current probe distributed by Prüftechnik Linke und Rühe (PLR), Germany was built and verified against measured results from an (easily fabricated) reference block with isolated long cracks. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - Finite element analysis KW - Eddy current testing KW - Rail inspection PY - 2019 AN - OPUS4-48530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Daniel A1 - Beck, Uwe A1 - Duwe, M. A1 - Schneider, S. T1 - Mueller-matrix imaging ellipsometry of structural anomalies and inhomogenities N2 - In the last years, the implementation of imaging ellipsometry in the variety of optical characterization techniques has shown tremendous potential to analyze the topology of surfaces in the lateral dimension. In the later studies, this contrast-rich surface images were affiliated with changes of the refraction indices, Absorption bands or layer thicknesses. However, it was realized that additional factors like curvature or scattering can have a great Impact on the ellipsometric readout of the analyzed system. In this study, we focus on the systematic evaluation of structural anomalies and inhomogenities of several Basic systems. This includes spherical particles as a model for microscopic curved surfaces in a range of 0.25 to 25 μm in diameter. In the macroscopic regime several conventional convex lenses were analyzed. Additional affords were made to generate microscopic concave model systems by applying nanoindentation with a spherical indentation unit. With this method calottes with a depth of 0.04 to 2 μm and radius of 2.5 μm were made. The macroscopic counterpart is delivered by conventional concave lens systems. For all systems, a variety of different bulk materials was investigated. This includes metal oxides, metals and polymers as well as combinations of each by applying coatings on the bulk materials with different layer thicknesses. To analyze these structural anomalies and inhomogenities properly, Mueller-Matrix imaging ellipsometry is the method of choice to address cross- and depolarization effects that occur due to the curved surfaces. Supplementary methods were used for an independent characterization of the topological properties of all structural anomalies and inhomogenities. This includes AFM and SEM for the microscopic samples (microparticles and nanoindented holes) and white light interferometry for the macroscopic lenses. This study results in a systematic screening of different coated and uncoated material systems with a topology that does not fit into conventional ellipsometry and thus is analyzed by Muller-Matrix imaging ellipsometry. This will help in quality control and is a contribution to the understanding of the polarizing effects of non-ideal Systems analyzed by ellipsometry. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 AN - OPUS4-48347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens T1 - Acoustic-structure interaction in the scaled boundary finite element method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Acoustic-structure interaction PY - 2019 AN - OPUS4-48846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Introduction meeting PCA - Analysis of the operation of accreditation bodies in Europe N2 - The long-term goal of the benchmarking project for European accreditation bodies is twofold: First of all, the project is supposed to help the European accreditation attending bodies to improve their processes by identifying best practices and by learning from others. Possibly Secondly, the results of the analysis can be used by the European Cooperation for Accreditation (EA) to identify differences in the operation of the European accreditation bodies and based on this knowledge to promote harmonization of accreditation activities in Europe. T2 - Kick-off at PCA, Warsawa CY - Warsawa, Poland DA - 11.06.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-48678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Introduction meeting NAH - Analysis of the operation of accreditation bodies in Europe N2 - The long-term goal of the benchmarking project for European accreditation bodies is twofold: First of all, the project is supposed to help the European accreditation attending bodies to improve their processes by identifying best practices and by learning from others. Possibly Secondly, the results of the analysis can be used by the European Cooperation for Accreditation (EA) to identify differences in the operation of the European accreditation bodies and based on this knowledge to promote harmonization of accreditation activities in Europe. T2 - Kick-off at NAH, Budapest CY - Budapest, Hungary DA - 19.06.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-48679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Introduction meeting DANAK - Analysis of the operation of accreditation bodies in Europe N2 - The long-term goal of the benchmarking project for European accreditation bodies is twofold: First of all, the project is supposed to help the European accreditation attending bodies to improve their processes by identifying best practices and by learning from others. Possibly Secondly, the results of the analysis can be used by the European Cooperation for Accreditation (EA) to identify differences in the operation of the European accreditation bodies and based on this knowledge to promote harmonization of accreditation activities in Europe. T2 - Kick-off at DANAK, Copenhagen CY - Copenhagen, Denmark DA - 27.06.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-48680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Introduction meeting CAI - Analysis of the operation of accreditation bodies in Europe N2 - The long-term goal of the benchmarking project for European accreditation bodies is twofold: First of all, the project is supposed to help the European accreditation attending bodies to improve their processes by identifying best practices and by learning from others. Possibly Secondly, the results of the analysis can be used by the European Cooperation for Accreditation (EA) to identify differences in the operation of the European accreditation bodies and based on this knowledge to promote harmonization of accreditation activities in Europe. T2 - Kick-off at CAI, Prag CY - Prag, Czech Republic DA - 07.07.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-48681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Preparation meeting at the EA General AssemblyI - Analysis of the operation of accreditation bodies in Europe N2 - The 2nd benchmarking round of the project “Analysis of the operation of accreditation bodies in Europe” is envisaged for 2019. In contrast to the 1st round, the BAM will conduct this benchmarking solely without the DAkkS as partner. The 2nd round will make use of the Process Maturity Benchmarking Tool PMBT, the management tool which was developed for and applied in the 1st round. The PMBT will be optimized in advance based on the suggestions and experiences gathered in the benchmarking conducted in 2016. To discuss this adjustment a preparation meeting was conducted in the course of the EA GA in Rome. T2 - General Assembly of the Europeam Co-operation for Accreditation (EA) CY - Rome, Italy DA - 21.05.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-48682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Abraham, O. A1 - Larose, E. T1 - A review on ultrasonic monitoring of concrete: coda wave interferometry and beyond N2 - The propagation of ultrasonic waves in concrete is affected by its micro- and macro-structure, geometry and properties as well as external influences as stress, temperature or moisture. In addition, age and degradation have a strong influence. Therefore, Ultrasound has been used to monitor concrete samples and structures since decades. However, early applications using conventional techniques as time-of flight or changes in amplitudes have been limited to detect changes in a late stage close to serviceability or ultimate load states. Around 2000, several new, more sensitive techniques adopted from geophysics or other field of material sciences have been introduced to research in ultrasonic monitoring of concrete. The most discussed methodologies are coda wave interferometry, a technique which allows to detect very subtle changes from repeated ultrasonic measurements. Nonlinear acoustic techniques help to identify e. g. cracks even in an inhomogeneous background. Both techniques can be combined. This paper reviews methods and results achieved so far on the laboratory scale and with full scale models the directions for future research and application is given as well. T2 - QNDE 2019 CY - Portland, OR, USA DA - 14.07.2019 KW - Ultrasound KW - Coda wave interferometry KW - Concrete KW - Nonlinear KW - Monitoring PY - 2019 AN - OPUS4-48688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Johannesmann, S. A1 - Henning, B. A1 - Prager, Jens T1 - Analysis of Lamb wave mode repulsion and its implications to the characterisation of adhesive bonding strength N2 - Lamb waves are widely used for non-destructive evaluation of material parameters as well as for detection of defects. Another application of Lamb waves is quality control of adhesive joints. Researchers are currently investigating shear horizontal and zero-group velocity modes for characterisation of the adhesive bonding strength. In a new approach, Lamb wave mode repulsion is used to obtain the coupling strength between different layers to characterise the adhesive bonding strength. The modes of the individual layers become coupled in the multilayered systems forming particular regions, the so-called mode repulsion regions. This study investigates these modes and their interaction in two-layered plate-like structures with varying coupling strength both numerically, with the Scaled Boundary FEM, and experimentally. T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Lamb waves KW - Multi-layered system KW - Adhesive joint KW - Mechanical strength KW - Scaled Boundary FEM PY - 2019 AN - OPUS4-48910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Brunner, A. J. T1 - Towards predictor development for assessing structural integrity of components made from wood materials using Acoustic Emission monitoring and signal analysis N2 - Against the background of sustainable resource management and efficiency, wood-based materials are currently experiencing a revival and, among others, plywood, Laminated Veneer Lumber and glued laminated timber are becoming increasingly more important in the building sector. Even though these materials are so-called engineered products, the element wood is naturally grown with intrinsic variability in mechanical properties and requires professional handling on-site. Otherwise, load-bearing structures made of wood materials may entail certain risks. Critical situations can, in principle, be avoided by implementing a structural health monitoring system into components or structures made from wood material. The aim is to indicate accumulation of mechanical damage and to eliminate or at least significantly reduce the risk of unexpected failure. Toward this purpose, the failure behavior of several layered wood materials under quasi-static tension was investigated in laboratory-scale experiments by means of acoustic emission (AE) measurement. Based on spectral analysis and pattern recognition, two classes of AE signals are identified for each investigated lay-up that are characterized by either low or high frequency contents in the respective power spectra. AE activity and intensity of both signal classes are analyzed, striving for predictors appropriate for AE monitoring concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wood materials KW - Acoustic Emission KW - Structural integrity PY - 2019 AN - OPUS4-48802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska T1 - Materials research with synchrotron radiation N2 - Synchrotron radiation sources with their unique properties in terms of intensity, polarization and adjustability offer a wide range of possibilities in materials research. A basic introduction about the creation and special properties of synchrotron radiation will be given. Examples of current work at BAMline, the high-energy measuring facility of the Federal Institute for Materials Research and Testing at the synchrotron BESSY, are used to illustrate the possibilities and limitations of existing measuring methods. It will be shown how the formation of corrosion layers can be tracked, how the abrasion of implants leads to the introduction of heavy metals into the surrounding bone matrix and how the detection of smallest impurities in gold is possible by optimizing the measuring conditions. Finally, an outlook at the hardware and software developments to be expected in the coming years is given. T2 - INCT-FNA Symposium 2019 CY - Niteroi, Brazil DA - 27.05.2019 KW - Synchrotron KW - XRF KW - XANES KW - EXAFS KW - TXRF KW - Color X-ray Camera PY - 2019 AN - OPUS4-48897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Machine learning for direct quantification of XRF measurements N2 - In X-ray fluorescence (XRF), a sample is excited with X-rays, and the resulting characteristic radiation is detected to detect elements quantitatively and qualitatively. Quantification is traditionally done in several steps: 1. Normalization of the data 2. Determination of the existing elements 3. Fit of the measured spectrum 4. Calculation of concentrations with fundamental parameters / MC simulations / standard based The problem with standard based procedures is the availability of corresponding standards. The problem with the calculations is that the measured intensities for XRF measurements are matrix-dependent. Calculations must, therefore, be performed iteratively (= time consuming) in order to determine the chemical composition. First experiments with gold samples have shown the feasibility of machine learning based quantification in principle. A large number of compositions were simulated (> 10000) and analyzed with a deep learning network. For first experiments, an ANN (Artificial Neural Network) with 3 hidden layers and 33x33x33 neurons was used. This network learned the mapping of spectra to concentrations using supervised learning by multidimensional regression. The input layer was formed by the normalized spectrum, and the output layer directly yielded the searched values. The applicability for real samples was shown by measurements on certified reference materials. T2 - Denver X-ray Conference CY - Lombard, IL, USA DA - 05.08.2019 KW - Machine learning KW - Artificial intelligence KW - Neural network KW - XRF KW - Synchrotron PY - 2019 AN - OPUS4-48903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -