TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Koos, R. A1 - Requena, G. A1 - Garces, G. T1 - Explaining Deviatoric Residual Stresses and Load Transfer in Aluminum Alloys and Composites with Complex Microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Konferenz 2022 CY - Lenggries, Germany DA - 31.05.2022 KW - Residual Stresses KW - Aluminium Alloys KW - Microstructures PY - 2022 AN - OPUS4-55020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Anja T1 - Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology N2 - Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. In the paper from 2019 nanoparticle shell thicknesses are extracted from the elastic-peak intensities in an XPS spectrum based on an ideal particle morphology. This happens for a series of CSNP samples comprising a poly(tetrafluoroethylene) (PTFE) core and either a poly(methyl methacrylate) (PMMA) or polystyrene (PS) shell. The same paper as well as the paper from 2020 demonstrate for the first time, that the analysis of the inelastic background in an XPS spectrum of CSNPs can identify and quantify the heterogeneity of the shell and the incomplete encapsulation of the core. The result from an XPS experiment is always an average across a large nanoparticle ensemble. Deviations from an ideal morphology within a single particle of the sample cannot be assessed separately. As opposed to that, a spatial resolution of 35 nm enables STXM to visualize the interior of single CSNPs which exhibit a sufficient X-ray absorption contrast between core and shell material. In the paper from 2018 a STXM analysis is demonstrated based on the example of the PTFE-PS CSNP samples already mentioned in the previous paragraph. In the publication from 2021 (Ca/Sr)F₂ core-shell like nanoparticle ensembles for the practical use in, among others, antireflective coatings are investigated. These nanoparticles do not possess a sharp interface between core and shell material, which is why a shell thickness determination as described in the second paragraph is inappropriate. Instead, in-depth profiles of the chemical composition are obtained by XPS experiments based on synchrotron radiation with variable X-ray photon energy to elucidate the internal morphology of the particles. Additionally, theoretical in-depth profiles of Ca and Sr XPS peak intensities are simulated, in order to facilitate the interpretation of the experiments. Thus, an enrichment of CaF₂ at the particle surface was determined, which could hardly have been assessed by any other analytical technique. Because this kind of non-destructive depth profiling by XPS is very demanding, more than usual effort is spent on gapless documentation of the experiments to ensure full reproducibility. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the papers in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis. N2 - Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Im Artikel von 2019 werden Schalendicken von Nanopartikeln aus den elastischen Peakintensitäten im XPS-Spektrum unter Annahme einer idealen Partikelmorphologie abgeleitet. Dies geschieht für eine Reihe von CSNP-Proben, welche aus einem Polytetrafluoroethylen- (PTFE) Kern und entweder einer Polymethylmethacrylat- (PMMA) oder Polystyrol- (PS) Schale bestehen. Sowohl dieser Artikel als auch der von 2020 zeigen erstmals, dass die Auswertung des inelastischen Untergrunds eines CSNP-XPS-Spektrums in der Lage ist, die Heterogenität der Schale und die unvollständige Ummantelung des Kerns zu identifizieren und zu quantifizieren. Das Ergebnis eines XPS-Experiments ist immer ein Mittelwert über ein großes Nanopartikelensemble. Inwiefern ein einzelner Partikel innerhalb der Probe von einer idealen Morphologie abweicht, kann nicht gesondert erfasst werden. Im Gegensatz dazu kann STXM mit einer räumlichen Auflösung von 35 nm das Innere einzelner CSNPs visualisieren, sofern sie genügend Röntgenabsorptionskontrast zwischen Kern- und Schalenmaterial aufweisen. Im Artikel von 2018 wird am Beispiel der bereits im vorherigen Abschnitt genannt PTFE-PS-CSNPProben eine solche STXM-Untersuchung demonstriert. In der Veröffentlichung von 2021 werden Kern-Schale-artige (Ca/Sr)F₂-Nanopartikel für den praktischen Einsatz in unter anderem entspiegelnden Beschichtungen untersucht. Da hier keine scharfe Grenzfläche zwischen Kern- und Schalenmaterial vorliegt, ist eine Schalendickenbestimmung, wie sie im zweiten Abschnitt diskutiert wird, nicht sinnvoll. Stattdessen werden mit Hilfe von XPS, angeregt mit Synchrotronstrahlung bei variabler Röntgenphotonenenergie, Tiefenprofile der chemischen Zusammensetzung generiert, um die innere Morphologie der Partikel aufzuklären. Zusätzlich werden theoretische Tiefenprofile der Ca- und Sr-XPS-Peakintensitäten simuliert, um die Interpretation der Experimente zu erleichtern. So wurde eine CaF₂-Anreicherung an der Oberfläche der Partikel festgestellt, die kaum mit einer anderen analytischen Methode hätte entdeckt werden können. Da diese zerstörungsfreie Bestimmung von XPS-Tiefenprofilen sehr anspruchsvoll ist, wird noch mehr als üblich auf die lückenlose Dokumentation des Experiments geachtet, um vollständige Reproduzierbarkeit zu gewährleisten. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. KW - Core-shell nanoparticle (CSNP) KW - X-ray photoelectron spectroscopy (XPS) KW - Scanning transmission X-ray microscopy (STXM) PY - 2022 DO - https://doi.org/10.18452/24312 SP - i EP - 243 PB - Humboldt-Universität CY - Berlin AN - OPUS4-54991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549836 DO - https://doi.org/10.1364/oe.448932 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella T1 - Engineered Nanomaterials- Novel Approaches for Risk Assessment and Safe-by-Design N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls not only for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials, but also for standardized and validated methods for surface analysis. 4,5 The analysis and quantification of surface chemistry is hence in the focus of an increasing number of standardization organizations and interlaboratory comparisons with different analytical methods are being done.5 For the monitoring of nanomaterial synthesis and the fast assessment of the number of functional groups such as carboxyl and amino functionalities, which are very commonly used functionalities in the life sciences, simple and validated methods are needed that can be performed with common laboratory instrumentation. 5,6 Here we provide a brief overview of the ongoing research in division Biophotonics employing quantitative NMR (qNMR), conductometry, and colorimetric and fluorometric optical assays for the determination of the total and the accessible number of carboxyl and amino groups on differently sized polymer and silica nano- and microparticles.5-7 T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Standardization KW - Quality assurance KW - Validation KW - qNMR KW - Silica KW - Polymer KW - Fluorescence KW - Assay KW - Conductometry KW - Method comparison KW - Analytical sciences PY - 2022 AN - OPUS4-54999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, R. A1 - Lyamkin, V. A1 - Cabeza, S. A1 - Evsevleev, S. A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and Bulk Residual Stress Analysis of S235JRC + C Steel TIG Weld by Diffraction and Magnetic Stray Field Measurements N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - Residual stress KW - Magnetic stray field KW - Synchrotron X-ray diffraction KW - Neutron diffraction KW - TIG welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547419 DO - https://doi.org/10.1007/s11340-022-00841-x VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer AN - OPUS4-54741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira ED - Capasso, M. ED - Davoli, P. ED - Pellé, N. T1 - XRF Ink Analysis of Selected Fragments from the Herculaneum Collection of the Biblioteca Nazionale di Napoli N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). KW - XRF KW - ink KW - Herculaneum KW - papyrus PY - 2022 UR - http://siba-ese.unisalento.it/index.php/29th_ICP/issue/view/1881 SN - 978-88-8305-177-7 DO - https://doi.org/10.1285/i99788883051760 SP - 200 EP - 213 PB - Centro di Studi Papirologici dell’Università del Salento CY - Lecce AN - OPUS4-54756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, T. A1 - Giese, S. A1 - Wang, S. A1 - Muth, Thilo A1 - Renard, B.Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides N2 - Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. KW - Mass spectrometry KW - Machine learning KW - Deep learning KW - Peptide identification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547580 DO - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 SP - 378 EP - 388 PB - Springer Nature CY - London AN - OPUS4-54758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirschberg, L. A1 - Bake, Friedrich A1 - Knobloch, K. A1 - Hulshoff, S. A1 - Hirschberg, A. T1 - Experimental investigations of indirect noise due to modulation of axial vorticity and entropy upstream of a choked nozzle N2 - An experimental cold-gas study of the response of a choked convergent–divergent nozzle to swirl perturbations is presented. The perturbations were obtained by means of upstream unsteady tangential injections into initially steady flows with different values of steady background swirl. The swirl perturbations induced changes in the axial mass-flow rate, due to either their ingestion or evacuation by the nozzle. This in turn caused a downstream acoustic response. For low-intensity background swirl the responses were found to be similar to those obtained without steady background swirl. Perturbations of a high-intensity background swirl led to different effects. For long injection times, the negative mass-flow rate modulation occurred in two stages. The first stage was similar to that of the background-swirl free case. The second stage occurred after a short time delay, and induced a much stronger negative acoustic response. This unexpected behavior suggests that a significant part of the tangentially injected fluid flows upstream inducing an accumulation of swirl, which is – after tangential injection is ceased – suddenly cleared out through the nozzle. A scaling rule for the amplitudes of these acoustic responses is reported. Furthermore, quasi-steady models, based on steady-state measurements are proposed. These models predict the downstream acoustic response amplitude within a factor two. Additionally, preliminary empirical evidence of the effect of swirl on the downstream acoustic response due to the interaction of entropy patches with a choked nozzle is reported. This was obtained by comparison of sound produced by abrupt radial or tangential sonic injection, upstream from the choked nozzle, of air from a reservoir at room temperature to that from a reservoir with a higher stagnation temperature. Because the mass flow through the nozzle does not increase instantaneously, the injected higher-enthalpy air accumulates upstream of the injection-port position in the main flow. This eventually induces a large downstream acoustic pulse when tangential injection is interrupted. The magnitude of the resulting sound pulse can reach that of a quasi-steady response of the nozzle to a large air patch with a uniform stagnation temperature equal to that of the upstream-injected heated air. This hypothesis is consistent with the fact that the initial indirect-sound pulse is identical to one obtained with unheated air injection. The authors posit that – given all of the insight gleaned from them in this case – acoustic measurements of indirect sound appear to be a potentially useful diagnostic tool. KW - Aeroacoustics KW - Indirect combustion noise KW - Vorticity noise KW - Entropy noise KW - Swirl PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548331 DO - https://doi.org/10.1016/j.jsv.2022.116989 SN - 0022-460X VL - 532 SP - 1 EP - 22 PB - Elsevier Ltd. AN - OPUS4-54833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieu, D.T. A1 - Kosslick, H. A1 - Riaz, M. A1 - Schulz, A. A1 - Springer, A. A1 - Frank, M. A1 - Jäger, Christian A1 - Minh Thu, N.T. A1 - Son, L.T. T1 - Acidity and Stability of Bronsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol N2 - Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 ◦C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 ◦C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 ◦C. Although a part of the clinoptilolite framework is maintained up to 600 ◦C, a loss of crystallinity is already observed starting from 450 ◦C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 ◦C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 ◦C. A part of the Brønsted sites is lost after calcination specifically at 500 ◦C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1 -C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 ◦C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 ◦C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. KW - Etherification KW - Glycerol KW - Zeolite KW - Clinoptilolite KW - Bronsted acidity KW - Dehydroxylation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546982 DO - https://doi.org/10.3390/catal12030253 VL - 12 IS - 3 SP - 1 EP - 24 PB - MDPI AN - OPUS4-54698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hufschläger, Daniel A1 - Gaal, Mate T1 - Sending and receiving acoustic waves using atmospheric pressure plasmas N2 - Atmospheric pressure plasmas interact in various physical ways with their surroundings. They release heat and generate charge carriers, which leads to two effects. The first effect is the generation of acoustic waves due to heat release, known as the thermoacoustic effect, and the second effect is the perturbation of the resting fluid provoked by the release of charge carriers, called “ionic wind”. The direct connection between the charge carrier production of the discharge arrangement and the surroundings also allows the detection of acoustic waves by tracking the electrical current of the arrangement. This contribution introduces a multi-fluid model approach to describe the acoustic interaction of atmospheric plasmas. In addition, we present experimental results on commercially available and in-house fabricated discharge arrangements for either emitting or receiving acoustic waves. T2 - DAGA 2022 - 48. Jahrestagung für Akustik CY - Stuttgart, Germany DA - 21.03.2022 KW - Plasma acoustics KW - Atmospheric pressure discharges KW - Ait-coupled ultrasound PY - 2022 SN - 978-3-939296-20-1 VL - 48 SP - 923 EP - 926 CY - Berlin AN - OPUS4-54681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -