TY - JOUR A1 - Eckel, S. A1 - Huthwaite, P. A1 - Zscherpel, Uwe A1 - Schumm, A. A1 - Paul, N. T1 - Realistic film noise generation based on experimental noise spectra N2 - Generating 2D noise with local, space-varying spectral characteristics is vital where random noise fields with spatially heterogeneous statistical properties are observed and need to be simulated. A realistic, non-stationary noise generator relying on experimental data is presented. That generator is desired in areas such as photography and radiography. For example, before performing actual X-ray imaging in practice, output images are simulated to assess and improve setups. For that purpose, realistic film noise modelling is crucial because noise downgrades the detectability of visual signals. The presented film noise synthesiser improves the realism and value of radiographic simulations significantly, allowing more realistic assessments of radiographic test setups. The method respects space-varying spectral characteristics and probability distributions, locally simulating noise with realistic granularity and contrast. The benefits of this approach are to respect the correlation between noise and image as well as internal correlation, the fast generation of any number of unique noise samples, the exploitation of real experimental data, and its statistical non-stationarity. The combination of these benefits is not available in existing work. Validation of the new technique was undertaken in the field of industrial radiography. While applied to that field here, the technique is general and can also be utilised in any other field where the generation of 2D noise with local, space-varying statistical properties is necessary. KW - Nondestructive testing KW - Image quality KW - Noise simulation KW - Radiography PY - 2020 DO - https://doi.org/10.1109/TIP.2019.2955284 SN - 1057-7149 VL - 29 SP - 2987 EP - 2998 PB - IEEE Xplore CY - Washington, D.C. AN - OPUS4-50518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon T1 - Spectroscopic analysis of colourants and binders of Chinese reverse glass paintings tracing a cultural dialogue N2 - Scientific analysis based on spectroscopic methods provide essential information on the composition of colourants and binders in paintings. These results can be set in a historical context and help to confirm art historical interpretations. Proofs of certain pigments can be used for dating purposes and may reveal if the artist used not only local but also imported materials. A pilot study of two Chinese reverse glass paintings from the late 19th (Yingying and Hongniang) and early 20th centuries (The Archer) was performed using a multi-analytical approach including X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Raman spectroscopy. This approach allowed the identification of the pigments and the classification of the binding media. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The proof of limewash (calcite and small amounts of portlandite) as a backing layer in “Yingying and Hongniang” indicates that clamshell white was also used for reverse glass paintings. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. T2 - China and the West Reconsidering Chinese Reverse Glass Painting CY - Romont, Switzerland DA - 14.02.2020 KW - Reverse glass painting KW - DRIFTS KW - Raman spectroscopy PY - 2020 AN - OPUS4-50445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Faßbender, Sebastian T1 - On-line hyphenation of CE with multicollector-ICP-MS for species-specific isotopic analysis of sulfur N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared with data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was high enough to distinguish the rivers from one another by the isotopic signature of the river water sulfate. Next to environmental applications, a future field could be species-specific isotopic analysis of biomolecules, as sulfur is the only covalently bound constituent of proteins which can be analyzed by MC-ICP-MS. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - Capillary electrophoresis KW - Hyphenated techniques KW - Isotopic analysis KW - Multicollector-ICP-MS KW - Speciation analysis PY - 2020 AN - OPUS4-50501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus T1 - HR-CS-GF-MAS as a new screening method for emerging pollutants - per- and polyfluorinated substances in the environment N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. The main benefits of fluorinated pharmaceuticals are: (i) enhanced fat solubility; (ii) enhanced interaction of catalytic-center of enzymes with fluorine-drugs; (iii) a delayed metabolism within the human body. Highly fluorinated organic substances are also used in technical applications (e.g. coatings, fire-extinguishing agents). Due to the broad variety of fluorinated substances and increasing production volumes numerous and up to date unknown fluorine-species are most likely to be present in the (aquatic) environment. Analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed and up to now only combustion ion chromatography based method is available, which is relatively laborious. Since a few years’ high resolution-continuum source-graphite furnace atomic absorption spectrometers (HR-CS-GFAAS) are commercially available from Analytik Jena. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled. Thus, fluoride is detectable upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF). Just recently, we applied this technique for total fluorine (mainly dissolved fluoride) analysis in river water samples. In the present work a HR-CS-GFMAS method for extractable organically bound fluorine (EOF) analysis in surface water samples was developed by us. The method is based on SPE extraction of organically bound fluorine even in the presence of high fluoride concentrations followed by HR-CS-GFMAS analysis upon elution. Due to high enrichment factors, LODs in the low ng/L range were achieved. We successfully applied our SPE HR-CS-GFMAS method to Rhine water samples and EOF in the range of about 50-300 ng/L was detectable. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - SPE HR-CS GF MAS PY - 2020 AN - OPUS4-50503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus T1 - HR-CS-GF-MAS as a new screening method for emerging pollutants - per- and polyfluorinated substances in the environment N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. The main benefits of fluorinated pharmaceuticals are: (i) enhanced fat solubility; (ii) enhanced interaction of catalytic-center of enzymes with fluorine-drugs; (iii) a delayed metabolism within the human body. Highly fluorinated organic substances are also used in technical applications (e.g. coatings, fire-extinguishing agents). Due to the broad variety of fluorinated substances and increasing production volumes numerous and up to date unknown fluorine-species are most likely to be present in the (aquatic) environment. Analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed and up to now only combustion ion chromatography based method is available, which is relatively laborious. Since a few years’ high resolution-continuum source-graphite furnace atomic absorption spectrometers (HR-CS-GFAAS) are commercially available from Analytik Jena. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled. Thus, fluoride is detectable upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF). Just recently, we applied this technique for total fluorine (mainly dissolved fluoride) analysis in river water samples. In the present work a HR-CS-GFMAS method for extractable organically bound fluorine (EOF) analysis in surface water samples was developed by us. The method is based on SPE extraction of organically bound fluorine even in the presence of high fluoride concentrations followed by HR-CS-GFMAS analysis upon elution. Due to high enrichment factors, LODs in the low ng/L range were achieved. We successfully applied our SPE HR-CS-GFMAS method to Rhine water samples and EOF in the range of about 50-300 ng/L was detectable. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - SPE HR-CS GF MAS PY - 2020 AN - OPUS4-50504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemke, Nora T1 - Sulfur isotope dilution ICP MS for traceable protein quantification N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful method for the matrix-independent quantitative analysis of target elements. Developed for the use in inorganic trace analysis, ICP-MS is nowadays a valuable tool for bioanalytical questions. Especially the use of ICP-MS for quantitative proteomics by measuring heteroatoms has gained recognition in the last decade, considering that established quantification methods like organic mass spectrometry depend on labelling of the target protein or the existence of matched protein and peptide standards. The need for reliable quantification of proteins is continuously growing, but only a limited number of well-characterized and quantified protein standards are available so far. Accurately quantified, traceable protein standards are necessary to ensure comparability of measurements between laboratories, not only in basic research but also in a clinical context. One example of this is the Alzheimer’s disease biomarker tau protein. However, existing tau standards lack comparability, emphasizing the need for a well-quantified protein standard. Therefore, we developed a method for the quantification of pure proteins via sulfur isotope dilution ICP-MS (IDMS). As sulfur is present in two amino acids, cysteine and methionine, it exists in nearly all proteins and can be used for the quantification of proteins of known stoichiometry. We employed simple offline strategies for the separation of non-protein bound sulfur species. Quantification of these contaminations by IDMS allows for correction of the protein content and enables reliable protein quantification. We report the protein mass fractions of a standard reference material and commercially available proteins determined by sulfur IDMS, including the expanded uncertainties. The developed method can be applied for the reliable and traceable quantification of pure proteins for use as in-house standards. Here, we successfully used this method for the quantification of the tau protein. T2 - 53rd annual conference of the DGMS including 27th ICP-MS User's Meeting CY - Münster, Germany DA - 01.03.2020 KW - ICP-MS KW - Isotope dilution KW - Protein KW - Quantification KW - Tau protein PY - 2020 AN - OPUS4-50510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2073-4468 VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, Julien T1 - Investigating the morphology of nanostructured mixed metal oxides (Ir/TiOx) and its impact on the electrocatalytic OER-activity N2 - The electrocatalytic conversion of water into molecular hydrogen and oxygen under the utilization of excess renewable energies, such as wind power, photovoltaics and hydroelectric power is one possible pathway to establish a sustainable hydrogen economy. The obtained hydrogen is either stored and used in a fuel cell or consumed on-site in industrial applications. Water electrolysis systems (WES) are based on two half cell reactions, such as oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) which both proceed simultaneously. The OER suffers from slow reaction kinetics and thus limits the overall performance. The most promising compounds in acidic electrolysis are IrO2 and RuO2. Due to their rare abundance and extremely high price a wide use of acidic WES was prevented. Lowering the catalysts noble metal content by mixing iridium with titanium reduces the production costs. Thin films are produced by dip coating a solution of metal oxide precursors alongside with a polymer template dissolved in ethanol. The obtained samples are subsequently calcined to the remove the template and adjust crystallinity. Finally, an additional iridium deposition step was performed on the outer surface plane area. Understanding the influence of structural and morphological aspects on the OER-activity is beneficial to further optimize WES. The current presentation will thus give detailed insights to structural aspects obtained by Raman spectroscopy, small- and wide-angle X-ray scattering which are then combined with electrochemical parameters to deduce structure-activity relationships. T2 - Joint Polish-German Crystallographic Meeting 2020 CY - Wrocław, Poland DA - 24.02.2020 KW - nanostructured KW - electrocatalysis PY - 2020 AN - OPUS4-50664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brinker, U. A1 - Bērziņš, V. A1 - Ceriņa, A. A1 - Gerhards, G. A1 - Kalniņš, M. A1 - Schmölcke, U. A1 - Meinel, Dietmar A1 - Luebke, H. T1 - Two burials in a unique freshwater shell midden: insights into transformations of Stone Age hunter-fisher daily life in Latvia N2 - The Stone Age site Riņņukalns, Latvia, is the only well-stratified shell midden in the Eastern Baltic. In this paper, we present new interdisciplinary results concerning its dating, stratigraphy, features, and finds to shed light on the daily life of a fisher population prior to the introduction of domesticated animals. The undisturbed part of the midden consists of alternating layers of unburnt mussel shell, burnt mussel shell and fish bone, containing artefacts, some mammal and bird bones, and human burials. Two of them, an adult man and a baby, are discovered recently and date to the calibration plateau between 3350 and 3100 cal BC, and to the later 4th millennium, respectively. Stable isotopes suggest a diet based heavily on freshwater fish, and this is supported not only by ten thousands of identified fish remains, but also by a fish bone concentration nearby the skull of the man, which is interpreted as remain of a grave gift (possible fish soup). Of special interest are the baby’s stable isotope values. It shows that the mother’s diet was atypical (perhaps because she was non-local), and/or that dietary stress during pregnancy increased fractionation between the mother’s diet and her bloodstream KW - Baltic Stone Age KW - Palaeoanthropology PY - 2020 DO - https://doi.org/10.1007/s12520-020-01049-7 VL - 12 IS - 5 SP - Article number: 97 PB - Springer-Verlag GmbH CY - Germany AN - OPUS4-50653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - ELISA KW - Immunoassay PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506590 DO - https://doi.org/10.20944/preprints202002.0207.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Häusler, I. A1 - Hertwig, Andreas A1 - Kraffert, K. A1 - Nissen, J. A1 - Kraehnert, R. T1 - Colloidal bimetallic platinum–ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction N2 - Hydrogen features a very high specific energy density and is therefore a promising candidate for clean fuel from renewable resources. Water electrolysis can convert electrical energy into storable and transportable hydrogen gas. Under acidic conditions, platinum is the most active and stable monometallic catalyst for the hydrogen evolution reaction (HER). Yet, platinum is rare and needs to be used efficiently. Here, we report a synthesis concept for colloidal bimetallic platinum–ruthenium and rhodium–ruthenium nanoparticles (PtRuNP, RhRuNP) and their incorporation into ordered mesoporous carbon (OMC) films. The films exhibit high surface area, good electrical conductivity and well-dispersed nanoparticles inside the mesopores. The nanoparticles retain their size, crystallinity and composition during carbonization. In the hydrogen evolution reaction (HER), PtRuNP/OMC catalyst films show up to five times higher activity per Pt than Pt/C/Nafion® and PtRu/C/Nafion® reference catalysts. KW - Ordered mesoporous carbon KW - Bimetallic noble metal nanoparticles KW - Platinum-ruthenium colloid KW - Electrolysis KW - Hydrogen evolution reaction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506868 DO - https://doi.org/10.1039/C9CY02285F SN - 2044-4753 VL - 10 IS - 7 SP - 2057 EP - 2068 PB - Royal Society of Chemistry AN - OPUS4-50686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506946 DO - https://doi.org/10.1038/s41598-020-63481-y VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zimmermann, T. A1 - von der Au, Marcus A1 - Reese, A. A1 - Klein, O. A1 - Hildebrandt, L. A1 - Pröfrock, D. T1 - Substituting HF by HBF4 – an optimized digestion method for multi-elemental sediment analysis via ICP-MS/MS N2 - Determination of elemental mass fractions in sediments plays a major role in evaluating the environmental status of aquatic ecosystems. Herewith, the optimization of a new total digestion protocol and the subsequent analysis of 48 elements in different sediment reference materials (NIST SRM 2702, GBW 07313, GBW 07311 and JMC-2) based on ICP-MS/MS detection is presented. The developed method applies microwave acid digestion and utilizes HBF4 as fluoride source for silicate decomposition. Similar to established protocols based on HF, HBF4 ensures the dissolution of the silicate matrix, as well as other refractory oxides. As HBF4 is not acutely toxic; no special precautions have to be made and digests can be directly measured via ICP-MS without specific sample inlet systems, evaporation steps or the addition of e.g. H3BO3, in order to mask excess HF. Different acid mixtures with and without HBF4 were evaluated in terms of digestion efficiency based on the trace metal recovery. The optimized protocol (5 mL HNO3, 2 mL HCL, 1 mL HBF4) allows a complete dissolution of the analyzed reference materials, as well as quantitative recoveries for a wide variety of certified analytes. Low recoveries for e.g. Sr, Ba and rare earth elements due to fluoride precipitation of HF-based digestions protocols, can be avoided by the usage of HBF4 instead. Based on the usage of high purity HBF4 all relevant trace, as well as matrix elements can be analyzed with sufficiently low LOQs (0.002 μg L−1 for U up to 6.7 μg L−1 for Al). In total, 34 elements were within a recovery range of 80%–120% for all three analyzed reference materials GBW 07313, GBW 07311 and JMC-2. 14 elements were outside a recovery range of 80%–120% for at least one of the analyzed reference materials. KW - Reference Materials KW - Sediment KW - HF free Digestion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510480 DO - https://doi.org/10.1039/D0AY01049A SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-51048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raschpichler, C. A1 - Goroncy, C. A1 - Langer, B. A1 - Antonsson, E. A1 - Wassermann, B. A1 - Graf, C. A1 - Klack, Patrick A1 - Lischke, T. A1 - Rühl, E. T1 - Surface Properties and Porosity of Silica Particles Studied by Wide-Angle Soft X-ray Scattering N2 - Wide-angle soft X-ray scattering on free silica particles of different porosity prepared in a beam is reported. The explored q region is mostly dominated by features due to surface roughness and bulk porosity. A comprehensive experimental and theoretical analysis of silica particles of different porosity is presented for various incident photon energies. A correlation analysis, based on the theory of Porod, is used to test the validity of exact Mie theory in different pore density limits. The ability of the discrete dipole scattering model (DDSCAT) to resolve local effects, caused by various pore distributions, is discussed. Characteristic differences between the soft X-ray scattering patterns of the particle samples of different surface properties and porosity are detected. For all mentioned cases, it was confirmed that the effective radius concept of the Guinier model can be successfully extended to Mie theory and DDSCAT in describing the additive contributions of the primary particles, including a thin inhomogeneous solvent-rich surface shell and empty bulk pores. Close agreement, within ±15%, between the calculated and observed pore sizes and porosity values is reached. The influence of pores is alternatively described either in terms of secondary Mie scattering, which is modulated by the local internal electrical field within the particles, or by an independent Mie scattering process induced by the incident field on isolated pores. It is found that for the typical pore/particle size ratios the latter approach presents the best choice. KW - Wide-Angle Soft X‑ray Scattering KW - Silica KW - Porosity PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c04308 SN - 1932-7447 SN - 1932-7455 VL - 124 SP - 16663 EP - 16674 AN - OPUS4-51089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medeiros, V.L. A1 - Goulart de Araujo, L. A1 - Ratero, D.R. A1 - Paula, A.S. A1 - Ferreira Molina, E. A1 - Jaeger, Christian A1 - Takehiro Marumo, J. T1 - Synthesis and physicochemical characterization of a novel adsorbent based on yttrium silicate: A potential material for removal of lead and cadmium from aqueous media N2 - A new metallosilicate based on yttrium was synthesized and characterized by XRD, FT-IR, 29Si MAS-NMR, and 89Y MAS-NMR. The mixed framework of the material was confirmed by the detection of distinct chemical shift groups using 29Si MAS-NMR (at -82 to -87 ppm, -91 to -94 ppm, -96 to -102 ppm, and -105 to -108 ppm), as well as four distinct chemical shifts in the 89Y MAS-NMR spectrum (at -89, -142, -160, and -220 ppm). Adsorption and kinetic analyses indicated the potential of the new material for the removal of lead and cadmium from aqueous media. The adsorption results for lead indicated that dynamic equilibrium was reached after five hours, with total lead removal of around 94 %, while for cadmium it was reached in the first hour, with total Cadmium removal of around 74 %. The adsorptions of lead and cadmium were modeled using pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models. Although both models provided high R2 values (0.9903 and 0.9980, respectively), the PSO model presented a much lower χ2 red value (4.41×10−4), compared to the PFO model (2.12×10−3), which indicated that the rate-limiting step was probably due to the chemisorption of lead from the solution onto the yttrium-based metallosilicate. KW - Yttrium silicates KW - 29Si KW - 89Y MAS-NMR KW - Adsorption KW - Chemisorption KW - Cadmium and lead remediation PY - 2020 DO - https://doi.org/10.1016/j.jece.2020.103922 VL - 8 SP - 103922 PB - Elsevier Ltd. AN - OPUS4-51292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiffmann, J. A1 - Emmerling, Franziska A1 - Martins, Ines A1 - Van Wüllen, L. T1 - In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR N2 - We present an approach towards the in situ solid state NMR monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. MAS NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions in situ, such as Raman spectroscopy or X-ray diffraction. KW - Mechanochemistry KW - Solid state NMR KW - NMR probe Development PY - 2020 DO - https://doi.org/10.1016/j.ssnmr.2020.101687 VL - 109 SP - 101687 PB - Elsevier Inc. AN - OPUS4-51283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias T1 - Characterization of Surface Topometry and Determination of Layer Thickness by Scanning White Light Interference Microscopy N2 - 3D coherence scanning interferometry (CSI) is an optical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. Based on this operational principle, white light interference microscopy (WLIM) provides three-dimensional surface topometry data up to a resolution of 0.4 μm lateral and 0.1 nm vertical. Three operating modi, i.e. surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness of transparent coatings. The determination of layer thickness by WLIM requires the knowledge of optical constants, i.e.the refractive index n and the extinction coefficient k. For technical surfaces, data base values - if available at all - have to be determined or validated by spectroscopic ellipsometry (SE). From this oblique incidence technique both optical constants and layer thickness can be derived based on a model for at least semi-transparent coatings. For different layer thicknesses, a comparison is made between WLIM and SE. Measurement uncertainty is discussed for both topometric features and layer thickness for different use cases. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - 17th International Conference on Plasma Surface Engineering (PSE) CY - Erfurt, Germany DA - 07.09.2020 KW - Rroughness and step heights KW - Lateral surface pattern KW - Layer thickness of transparent coatings KW - Scanning white light interferometry KW - Spectroscopic ellipsometry PY - 2020 AN - OPUS4-51301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - EA-HHC - Analysis of the operation of accreditation bodies - Results of the 2nd round N2 - In 2019 the German federal institute Bundesanstalt für Materialforschung und –prüfung (BAM) conducted a benchmarking to compare the operations of European accreditation bodies and to identify best practices, with the aim of improving key processes in accreditation. Ten European accreditation bodies attended the comparison, four of which had already taken part in the pilot phase of the benchmarking project, which was conducted in 2017 by the German accreditation body Deutsche Akkreditierungsstelle GmbH (DAkkS) and the BAM. The study, designed to examine and compare the operation of accreditation bodies in Europe, used a management tool called Process Maturity Benchmarking Tool, which was especially elaborated and validated for this purpose in the pilot phase, in order to determine the values of indicators, thus enabling a comparison of the accreditation bodies despite different operational processes and organizational forms. The management tool is based on the analysis of selected processes with high relevance for the operation of accreditation bodies. The processes are derived from a process map designed for accreditation bodies in a universally applicable way. The indicators used to characterize the processes come from two sources: The first source relates to data already available from internal databases, reports, financial audits, and others. The second source is derived from the self-evaluation of process maturity performed by the accreditation bodies. The criteria for evaluating process maturities were designed by applying the criteria of the EFQM excellence model 2013 of the European Foundation for Quality Management (EFQM) to the processes identified in the process map. The results of the analysis were presented to and discussed with representatives of the ten accreditation bodies at a Results-Workshop that took place at BAM on 21/22 January 2020. In this presentation a wrap-up of the results was given to the HHC of EA T2 - Tagung des HHC (horizontal harmonization committee) der EA (European co-operation for accreditation) (virtuelles Meeting per MS-Teams, ca. 55 Teilnehmer) CY - Online meeting DA - 15.09.2020 KW - Accreditation KW - Benchmarking PY - 2020 AN - OPUS4-51251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 DO - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland T1 - Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? N2 - In recent years numerous reports have highlighted the options of chemical breath analysis with regard to noninvasive cancer detection. Certain volatile organic compounds (VOC) supposedly present in higher amounts or in characteristic patterns have been suggested as potential biomarkers. However, so far no clinical application based on a specific set of compounds appears to exist. Numerous reports on the capability of sniffer dogs and sensor arrays or electronic noses to distinguish breath of cancer patients and healthy controls supports the concept of genuine cancer-related volatile profiles. However, the actual compounds responsible for the scent are completely unknown and there is no correlation with the potential biomarkers suggested on basis of chemical trace analysis. It is outlined that specific features connected with the VOC analysis in breath – namely small concentrations of volatiles, interfering background concentrations, considerable sampling effort and sample instability, impracticability regarding routine application - stand in the way of substantial progress. The underlying chemicalanalytical challenge can only be met considering the severe susceptibility of VOC determination to these adverse conditions. Therefore, the attention is drawn to the needs for appropriate quality assurance/quality control as the most important feature for the reliable quantification of volatiles present in trace concentration. Consequently, the advantages of urine as an alternative matrix for volatile biomarker search in the context of diagnosing lung and other cancers are outlined with specific focus on quality assurance and practicability in clinical chemistry. The headspace over urine samples as the VOC source allows adapting gas chromatographical procedures well-established in water analysis. Foremost, the selection of urine over breath as non-invasive matrix should provide considerably more resilience to adverse effects during sampling and analysis. The most important advantage of urine over breath is seen in the option to partition, dispense, mix, spike, store, and thus to dispatch taylor-made urine samples on demand for quality control measures. Although it is still open at this point if cancer diagnosis supported by non-invasively sampled VOC profiles will ultimately reach clinical application the advantages of urine over breath should significantly facilitate urgently required steps beyond the current proof-of-concept stage and towards standardisation. KW - VOC KW - Breath KW - Urine KW - Lung cancer KW - Volatile organic compounds PY - 2020 DO - https://doi.org/10.1016/j.mehy.2020.110060 VL - 143 SP - 110060 PB - Elsevier Ltd. AN - OPUS4-51066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Gornushkin, Igor B. A1 - Kornev, R. A1 - Nazarov, V. A1 - Polyakov, V. A1 - Shkrunin, V. T1 - Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low‑Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration N2 - The physical plasma parameters, temperature and electron number density, are studied in the RF-IC (RF inductively coupled) discharge at a reduced pressure of 3 Torr in mixtures of MoF6 with Ar, H2 and CH4. The emission spectra of mixtures are investigated. It is shown that in the presence of argon, the concentration of free electrons in plasma and dissociation rate of MoF6 increase. A main role of molecular hydrogen is the generation of atomic hydrogen that binds atomic fuorine and leads to the formation of gaseous and solid products. Exhaust gas mixtures exiting the reactor are analyzed by mass spectrometry. It is shown that for all cases, the conversion of MoF6 into reaction products is close to 100%. A thermodynamic analysis of the equilibrium composition of MoF6 systems with Ar, H2 and CH4 was carried out and the obtained results are in good agreement with experimentally observed composition of the solid and gas phases. Analysis of solid deposits from mixture MoF6/H2/Ar revealed the presence of molybdenum powder and large amount of amorphous MoFx. The deposit obtained from mixtures with methane, MoF6/H2/Ar/CH4, contained crystalline molybdenum carbide, Mo3C2. KW - Molybdenum carbide KW - RF ICP discharge KW - Reduction of MoF6 KW - Thermodynamic KW - Molybdenum PY - 2020 DO - https://doi.org/10.1007/s11090-020-10138-3 SN - 0272-4324 VL - 41 IS - 2 SP - 673 EP - 690 PB - Springer AN - OPUS4-51569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas, K. R. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Rajagopal, P. A1 - Balasubramaniamam, K. T1 - Defect detection in steel bars up to 600 °C using laser line thermography N2 - Crack detection in steel bars at high surface temperatures is a critical problem in any manufacturing industry. Surface breaking cracks are the major problems during the billet casting. Many NDT techniques are proven its capability in crack detection at room temperature. Here, we are demonstrating the possibility of exposure of cracks using laser line thermography at higher surface temperatures (up to 600 °C). A continuous-wave (CW) laser is used to excite the sample kept at higher surface temperatures. The temperature distribution over the sample due to the laser line scanning is captured using a temperature calibrated infrared (IR) thermal camera. The response of the sample temperature in crack detection is investigated using a validated FE model. The impact of the oxide layer in crack detection is investigated by using two types of samples; one without any oxide layer and the second is with the oxide layer. The influence of laser power in the detection of defects at high temperatures is studied. 3D numerical models were developed for the cases; when the sample is with oxide layer and without any oxide layer for a better understanding of physics. The surface temperature rise due to laser heating is higher for the scaled sample compared to the no-scale sample. The presence of the oxide layer above the parent metal will reduce the reflectivity of the surface. Lower reflectivity will lead to increased absorption of incident energy so that the surface temperature rise will be higher than the surface with no scale. Thermal contrast linearly depends on laser power, which means higher laser power will increase the defect detectability even at a higher surface temperature. KW - Laser thermography KW - High temperature KW - Modeling KW - Surface cracks KW - Non-destructive testing PY - 2020 DO - https://doi.org/10.1016/j.infrared.2020.103565 SN - 1350-4495 VL - 111 SP - 103565 PB - Elsevier B.V. AN - OPUS4-51573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Nondestructive determination of moisture damage in layered building floors N2 - In this ongoing research project, we study the influence of moisture damage on Ground Penetrating Radar (GPR) in different floor constructions. For this purpose, a measurement setup with interchangeable layers is developed to vary the screed material (cement or anhydrite) and insulation material (glass wool, perlite, expanded and extruded polystyrene), as well as the respective layer thickness. The evaluation of the 2 GHz common-offset radar measurements is focused on the extraction of distinctive signal features that can be used to classify the underlying case of damage without any further information about the hidden materials or layer thicknesses. In the collected dataset, we analyze the horizontal distribution of A-scan features in corresponding B-scans to detect water in the insulation layer. Furthermore, possible combinations of these features are investigated with the use of multivariate data analysis and machine learning (logistic regression) in order to evaluate the mutual dependencies. In this study, the combination of an amplitude- and frequency-based feature achieved an accuracy of 93.2 % and performed best to detect a damage in floor insulations. T2 - 18th International Conference on Ground Penetrating Radar CY - Meeting was canceled DA - 14.07.2020 KW - Radar KW - Feuchte KW - Moisture KW - Building floors PY - 2020 DO - https://doi.org/10.1190/gpr2020-045.1 SN - 2159-6832 SP - 164 EP - 167 AN - OPUS4-51575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, K. T1 - Diagenetic stability of Ca, Mg, Zn and Sr isotopes in teeth N2 - Stable isotope ratios and trace element concentrations of fossil bones and teeth are important geochemical proxies for the reconstruction of diet and past environment in archaeology and palaeontology. However, since diagenesis can significantly alter in vivo incorporated isotope signatures and elemental compositions, it is important to understand alteration processes. Here, we present the results of in vitro alteration experiments of dental tissues from a modern African elephant molar in aqueous solutions at 30 °C and 90 °C for 4 to 63 days each. Dental cubes with ≈3 mm edge length, comprising both enamel and dentin, were placed into 2 ml of an acidic (HNO3) aqueous solution (pH ≈1) enriched with different isotopes (25Mg, 44Ca, 67Zn, 86Sr). Element and isotope distribution profiles across the different dental cubes were measured with LA-(MC-)ICP-MS and EMPA, while potential changes of the bioapatite crystal structure were characterised by Raman spectroscopy. Isotope ratios measured by LA-(MC-)ICP-MS revealed an alteration of the outer ≈200-300 μm of the enamel in all experiments. Dentin was fully altered after one week (at 90 °C) and the tracer solution started to penetrate through the dentin even into the innermost enamel. However, the central part of the enamel remained unaltered. The Raman spectra suggest a strong recrystallization in the dentin and in the outer ≈40 μm of the enamel and a partial demineralisation of the outer rim of the cubes. Our results indicate that independent of time, temperature or low initial pH, enamel apatite shows a high resistance against the experimental alteration in structure and isotopic composition, in contrast to dentin apatite. T2 - Goldschmidt Conference CY - Online meeting DA - 21.06.2020 KW - Isotope ratio KW - Diagenesis KW - Alteration KW - Bio-apatite PY - 2020 AN - OPUS4-51499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Pramann, A. A1 - Vogl, Jochen A1 - Lee, K.-S. A1 - Yim, Y.-H. A1 - Malinovskiy, D. A1 - Hill, S. A1 - Dunn, P. A1 - Goenaga-Infante, H. A1 - Ren, T. A1 - Wang, J. A1 - Vocke jr., R. D. A1 - Rabb, S: A. A1 - Narukawa, T. A1 - Yang, L. A1 - Mester, Z. A1 - Meija, J. A1 - Aref'ev, D. G. A1 - Marchin, V. A1 - Sharin, A. G. A1 - Bulanov, A. D. A1 - Potapov, A. M. A1 - Otopkova, P. A. A1 - Kessel, R. T1 - The comparability of the determination of the molar mass of silicon highly enriched in 28Si: results of the CCQM-P160 interlaboratory comparison and additional external measurements N2 - An international comparison study on the accurate determination of the molar mass M(Si) of silicon artificially enriched in 28Si (x(28Si) > 0.9999 mol mol−1) has been completed. The measurements were part of the high level CCQM-P160 pilot study assessing the ability of National Metrology Institutes (NMIs) and Designated Institutes (DIs) to make such measurements at the lowest possible levels of measurement uncertainty and to identify possible difficulties when measuring this kind of sample. This study supports the molar mass measurements critical to disseminating the silicon route to realizing the new definitions for the kilogram and the mole. Measurements were also made by one external research institute and an external company. The different institutes were free to choose their experimental (mass spectrometric) set-ups and equipment, thereby enabling also the comparison of different techniques. The investigated material was a chemically pure, polycrystalline silicon material. The subsequent modified single crystalline secondary product of this material was intended for the production of silicon which was used for two additional spheres in the context of the redetermination of the Avogadro constant NA, required for the revision of the International System of Units (SI) via fundamental constants which came into force from May 2019. The CCQM pilot study was organized by Physikalisch-Technische Bundesanstalt (PTB). Aqueous silicon solutions were shipped to all participating institutions. The data analysis as well as the uncertainty modelling and calculation of the results was predefined. The participants were provided with an uncertainty budget as a GUM Workbench® file as well as a free software license for the duration of the comparison. The agreement of the values of the molar mass (M(Si) = 27.976 942 577 g mol−1) was excellent with ten out of 11 results reported within the range of relative uncertainty of 1 × 10−8 required for the revision of the SI. KW - Absolute isotope ratio KW - Molar mass KW - Avogadro constant KW - Revision of the SI PY - 2020 DO - https://doi.org/10.1088/1681-7575/abbdbf VL - 57 IS - 6 SP - 065028 PB - IOP Science CY - Cambridge AN - OPUS4-51500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515351 DO - https://doi.org/10.1007/s00216-020-03010-y SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Microstructure characterization of oligomers by analysis of UPLC / ESI-TOF-MS reconstructed ion chromatograms N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Nowadays a wide range of different analytical separation techniques and multi-detection possibilities are available. The challenge consists in a clever combination of these techniques with a specific approach of data analysis. In this presentation different liquid chromatographic separation modes were combined with Electrospray Time-of-Flight mass spectrometry. The online coupling allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples e.g. the topology elucidation of branched EO-PO copolymers, the possibilities and limitations of this approach were demonstrated. T2 - Analyticon 2020 CY - Online meeting DA - 05.11.2020 KW - Microstructure KW - Copolymer KW - LC-MS PY - 2020 AN - OPUS4-51540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtsch, Mona A1 - Kinne, J. A1 - Blind, K. T1 - Exploring the Adoption of the International Information Security Management System Standard ISO/IEC 27001: A Web Mining-Based Analysis N2 - In the light of digitalization and recent EU policy initiatives, information is an important asset that organizations of all sizes and from all sectors should secure. However, in order to provide common requirements for the implementation of an information security management system, the internationally well-accepted ISO/IEC 27001 standard has not shown the expected growth rate since its publication more than a decade ago.In this article, we apply web mining to explore the adoption of ISO/IEC 27001 through a series of 2664 out of more than 900 000 German firms from the Mannheim Enterprise Panel dataset that refers to this standard on their websites. As a result, we present a “landscape” of ISO/IEC 27001 in Germany, which shows that firms not only seek certifications themselves but often refer on their websites to partners who are certified instead. Consequently, we estimate a probit model and find that larger and more innovative firms are more likely to be certified to ISO/IEC 27001 and that almost half of all certified firms belong to the information and communications technology (ICT) service sector. Based on our findings, we derive implications for policymakers and management and critically assess the suitability of web mining to explore the adoption of management system standards. KW - Adoption KW - Information security KW - Management system standards KW - Standards KW - Web mining PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513284 DO - https://doi.org/10.1109/TEM.2020.2977815 VL - 68 IS - 1 SP - 87 EP - 100 AN - OPUS4-51328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van den Bossche, T. A1 - Verschaffelt, P. A1 - Schallert, K. A1 - Barsnes, H. A1 - Dawyndt, P. A1 - Benndorf, D. A1 - Renard, B. Y. A1 - Mesuere, B. A1 - Martens, L. A1 - Muth, Thilo T1 - Connecting MetaProteomeAnalyzer and PeptideShaker to Unipept for Seamless End-to-End Metaproteomics Data Analysis N2 - Although metaproteomics, the study of the collective proteome of microbial communities, has become increasingly powerful and popular over the past few years, the field has lagged behind on the availability of user-friendly, end-to-end pipelines for data analysis. We therefore describe the Connection from two commonly used metaproteomics data processing tools in the field, MetaProteomeAnalyzer and PeptideShaker, to Unipept for downstream analysis. Through these connections, direct end-to-end pipelines are built from database searching to taxonomic and functional annotation. KW - Metaproteomics KW - Bioinformatics KW - Software KW - Pipelines PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00136 VL - 19 IS - 8 SP - 3562 EP - 3566 PB - ACS Publications AN - OPUS4-51331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiebenhoefer, H. A1 - Schallert, K. A1 - Renard, B. Y. A1 - Trappe, K. A1 - Schmid, E. A1 - Benndorf, D. A1 - Riedel, K. A1 - Muth, Thilo A1 - Fuchs, S. T1 - A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane N2 - Metaproteomics, the study of the collective protein composition of multi-organism systems, provides deep insights into the biodiversity of microbial communities and the complex functional interplay between microbes and their hosts or environment. Thus, metaproteomics has become an indispensable tool in various fields such as microbiology and related medical applications. The computational challenges in the analysis of corresponding datasets differ from those of pure-culture proteomics, e.g., due to the higher complexity of the samples and the larger reference databases demanding specific computing pipelines. Corresponding data analyses usually consist of numerous manual steps that must be closely synchronized. With MetaProteomeAnalyzer and Prophane, we have established two open-source software solutions specifically developed and optimized for metaproteomics. Among other features, peptide-spectrum matching is improved by combining different search engines and, compared to similar tools, metaproteome annotation benefits from the most comprehensive set of available databases (such as NCBI, UniProt, EggNOG, PFAM, and CAZy). The workflow described in this protocol combines both tools and leads the user through the entire data analysis process, including protein database creation, database search, protein grouping and annotation, and results visualization. To the best of our knowledge, this protocol presents the most comprehensive, detailed and flexible guide to metaproteomics data analysis to date. While beginners are provided with robust, easy-to-use, state-of-the-art data analysis in a reasonable time (a few hours, depending on, among other factors, the protein database size and the number of identified peptides and inferred proteins), advanced users benefit from the flexibility and adaptability of the workflow. KW - Bioinformatics KW - Protocol KW - Microbial proteomics KW - Software KW - Mass spectrometry KW - Metaproteomics PY - 2020 DO - https://doi.org/10.1038/s41596-020-0368-7 SN - 1750-2799 VL - 15 IS - 10 SP - 3212 EP - 3239 PB - Nature Publishing Group AN - OPUS4-51335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Raichlin, Y. T1 - Review on recent advances in analytical applications of molecular emission and modelling N2 - The review mainly deals with two topics that became important in applications of laser-induced breakdown spectroscopy (LIBS) in recent years: the emission of halogen- and rare-earth-containing molecules and selective excitation of molecules by molecular laser-induced fluorescence (MLIF). The first topic is related to the emission of alkaline-earth diatomic halides MX, M = Ca, Mg, Ba, Sr and X = F, Cl, Br, and I and rare-earth element (REE) oxides LaO, YO, and ScO. These molecules form in laser-induced plasma (LIP) soon after its ignition and persist for a long time, emitting broad bands in a visible part of the spectrum. They are best detected after relatively long delay times when emission from interfering plasma species (atoms and ions) has already been quenched. Such behavior of molecular spectra allows of using, for their detection, inexpensive CCD detectors equipped with simple electronic or mechanical shutters and low-resolution spectrometers. A main target for analysis by molecular spectroscopy is halogens; these elements are difficult to detect by atomic spectroscopy because their most intense atomic lines lie in the vacuum UV. Therefore, in many situations, emission from CaF and CaCl may provide a substantially more sensitive detection of F and Cl than emission from elemental F and Cl and their ions. This proved to be important in mining and concrete industries and even Mars exploration. A similar situation is observed for REEs; their detection by atomic spectroscopy sometimes fails even despite the abundance of atomic and ionic REEs' lines in the UV-VIS. For example, in minerals and rocks with low concentrations of REEs, emission from major and minor mineral elements hinders the weak emission from REEs. Many REEs do not form molecules that show strong emission bands in LIP but can still be detected with the aid of LIP. All REEs except La, Y, and Sc exhibit long-lived luminescence in solid matrices that is easily excited by LIP. The luminescence can be detected simultaneously with molecular emission of species in LIP within the same time and spectral window. The second topic is related to the combination of MLIF and LIBS, which is a technique that was proved to be efficient for analysis of isotopic molecules in LIP. For example, the characteristic spectral signals from isotopic molecules containing 10B and 11B are easier to detect with MLIF-LIBS than with laser ablation molecular isotopic spectrometry (LAMIS) because MLIF provides strong resonance excitation of only targeted isotopes. The technique is also very efficient in detection of halogen molecules although it requires an additional tunable laser that makes the experimental setup bulky and more expensive. KW - Plasma induced luminescence KW - Molecular emission KW - Laser induced plasma KW - Plasma modeling KW - Molecular analysis KW - LIBS PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105989 VL - 173 SP - 105989 PB - Elsevier B. V. AN - OPUS4-51420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, A. A1 - von Randow, M. A1 - Voigt, A.-L. A1 - von der Au, Marcus A1 - Fischer, E. A1 - Meermann, Björn A1 - Wagner, M. T1 - Ingestion and toxicity of microplastics in the freshwater gastropodLymnaea stagnalis: No microplastic-induced effects alone or incombination with copper N2 - The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6–96 h of exposure to 5–90 μm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h–7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 μm, 6.4–100,000 particles mL−1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics. KW - Lymnaea stagnalis KW - Microplastic-induced effects KW - Mixture toxicity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513551 DO - https://doi.org/10.1016/j.chemosphere.2020.128040 VL - 263 SP - 128040 PB - Elsevier Ltd. AN - OPUS4-51355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Faßbender, Sebastian T1 - On-line Species-specific Isotopic Analysis of Sulfur by Hyphenation of Capillary Electrophoresis with Multicollector-ICP-MS N2 - In many scientific fields, isotopic analysis can offer valuable information. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. Whereas some works hyphenating GC and IC with MC-ICP-MS have already been reported, LC and CE hyphenations are still inadequately represented based on the capabilities of these separation techniques. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species using a multiple-injection approach for instrumental mass bias correction by standard-sample bracketing. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared to data from off-line analysis of the same samples for validation. The repeatability of the results of the on-line measurements was promising regarding the differentiation of the river systems by the isotopic signature of river water sulfate. The great potential of this method is based on the versatility of the applied separation technique, not only in the environmental field but also for, e.g., biomolecules because sulfur is the only covalently bound constituent of proteins that can be analyzed by MC-ICP-MS. T2 - SciX 2020 CY - Online meeting DA - 12.10.2020 KW - Capillary electrophoresis KW - Hyphenated techniques KW - Isotopic analysis KW - Speciation analysis PY - 2020 AN - OPUS4-51402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Determination of readiness for laying based on material moisture, corresponding relative humidity, and water release N2 - The moisture content of the subfloor has to be determined before installation to avoid damages of the floor covering. Only if the readiness for layering is reached, an installation without damages can be expected in all cases. In general, three different approaches exist to measure the residual water content: determination of the moisture content, determination of the water release, or determination of the corresponding relative humidity. All three approaches are tested in laboratory at eight different screed types including two different samples thicknesses in each case. The moisture content and the water release are measured by sample weighing, the corresponding relative humidity is measured by embedded sensors. All three approaches are compared and correlated to each other. The evaluations show only weak correlation and, in several cases, contradicting results. Samples are considered as being ready for layering and not-being ready for layering at the same time, depending on the chosen approach. Due to these contradicting results, a general threshold for the risk of damage cannot be derived based on these measurements. Furthermore, the experiment demonstrates that the measurement of corresponding relative humidity is independent of the considered screed type or screed composition. This makes the humidity measurement to very promising approach for the installation of material moisture monitoring systems in the future. KW - Material moisture KW - Readiness for laying KW - Screed KW - Corresponding relative humidity KW - Partially saturated pores PY - 2020 DO - https://doi.org/10.3139/120.111581 VL - 62 IS - 10 SP - 1033 EP - 1040 PB - Carl Hanser Verlag GmbH & Co. KG CY - München AN - OPUS4-51405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schade, U. A1 - Dawei, C. A1 - Puskar, L. A1 - Ritter, E. A1 - Beckmann, Jörg T1 - Removal of Etalon Features in the Far-Infrared–Terahertz Transmittance Spectra of Thin Polymer Films N2 - Etalon features in infrared spectra of stratified samples, their influence on the interpretation and methods to circumvent their presence in infrared spectra have been in discussion for decades. This paper focuses on the application of a method originally developed to remove interference fringes in the mid-infrared spectra for far-infrared Fourier transform spectroscopy on thin polymer films. We show that the total transmittance-reflectance technique, commonly used for mid-infrared, also works successfully in the far infrared spectral range where other approaches fail. Experimental spectra obtained by such technique are supported by model calculations and reveal the possibility and limits to obtain almost undisturbed far-infrared spectra which are suitable to determine low energy vibrations of ionomer salts under certain sample conditions. KW - Far-infrared spectroscopy KW - Absorption KW - Etalon feature KW - Total transmittance reflectance PY - 2020 DO - https://doi.org/10.1177/0003702820922295 VL - 74 IS - 12 SP - 1530 EP - 1539 PB - Sage journals AN - OPUS4-51367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Kolmangadi, Mohamed Aejaz A1 - Bühlmeyer, A. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Electrical conductivity and multiple glassy dynamics of crow-ether based columnar liquid crystals N2 - The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals (CLCs) bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), columnar liquid crystalline (Colh) and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3 process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS) employing temperature modulated DSC and FSC (TMDSC and TMFSC). The advanced calorimetric investigations revealed that besides the α2 process in agreement with BDS, a second dynamic glass transition (α1-process) is present which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1 , α2 and α3 processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. one order of magnitude at phase transition from the crystalline to the hexagonal phase. KW - Columnar Liquid Crystal PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.0c06854 VL - 124 IS - 39 SP - 8728 EP - 8739 PB - ACS AN - OPUS4-51374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherb, T. A1 - Fantin, Andrea A1 - Checcia, S. A1 - Stephan-Scherb, Christiane A1 - Escolástico, S. A1 - Franz, A. A1 - Seeger, J. A1 - Meulenberg, W. A. A1 - d'Acapito, F. A1 - Serra, J. M. T1 - Unravelling the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d mixed ionic electronic conductors N2 - Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the Oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-yWO12-d, the ionic/electronic transport mechanism in Nd6-yWO12-d is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-d and molybdenum-substituted Nd5.7W0.75Mo0.25O12-d prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replacesWat bothWyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-yWO12-d. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W(W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-yWO12-d is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies. KW - Powder diffraction KW - Mixed conductors KW - X-ray absorption spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514607 DO - https://doi.org/10.1107/S1600576720012698 VL - 53 SP - 1471 EP - 1483 AN - OPUS4-51460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Stockmann, Jörg M. A1 - Senoner, Mathias A1 - Weimann, T. A1 - Bütefisch, S. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Introduction to lateral resolution and analysis area measurements in XPS N2 - Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated. KW - Imaging XPS KW - Lateral resolution KW - Analysis area measurements KW - Small-spot XPS PY - 2020 DO - https://doi.org/10.1116/6.0000398 VL - 38 IS - 5 SP - 053206 AN - OPUS4-51394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Képeš, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J. T1 - Tomography of double-pulse laser-induced plasmas in the orthogonal geometry N2 - The temporal evolution of laser-induced plasmas is studied in the orthogonal double-pulse arrangement. Both the pre-ablation mode (an air spark is induced above the sample surface prior to the ablation pulse) and the re-heating mode (additional energy is delivered into the plasma created by the ablation pulse) is considered. The plasmas are investigated in terms of the temporal evolution of their electron density, temperature, and volume. The plasma volumes are determined using a time-resolved tomography technique based on the Radon transformation. The reconstruction is carried out for both white-light and band-pass filtered emissivities. The white-light reconstruction corresponds to the overall size of the plasmas. On the other hand, the band-pass emissivity reconstruction shows the distribution of the atomic sample species (Cu I). Moreover, through spectrally resolved tomographic reconstruction, the spatial homogeneity of the electron density and temperature of the plasmas is also investigated at various horizontal slices of the plasmas. Our results show that the pre-ablation geometry yields a more temporally stable and spatially uniform plasma, which could be beneficial for calibration-free laser-induced breakdown spectroscopy (LIBS) approaches. On the contrary, the plasma generated in the re-heating geometry exhibits significant variations in electron density and temperature along its vertical axis. Overall, our results shed further light on the mechanisms involved in the LIBS signal enhancement using double-pulse ablation. KW - Laser-induced plasma KW - Laser-induced breakdown spectroscopy KW - Double-pulse laserinduced breakdown spectroscopy KW - Plasma tomography KW - Radon reconstruction PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.06.078 SN - 0003-2670 SN - 0378-4304 VL - 1135 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-51142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Yan A1 - Yu, H. A1 - Gornushkin, Igor B. A1 - Li, J. A1 - Wu, Q. A1 - Zhang, Z. A1 - Li, X. T1 - Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy N2 - Remote and on-line measurement of chromium on structural steel surface in nuclear power plants is critical for protection against fluid accelerated corrosion. To improve the insufficient sensitivity of fiber-optic laser-induced breakdown spectroscopy toward trace element detection, a dual-pulse spectral enhancement system is set up. In an iron matrix, for the purpose of improving sensitivity of trace chromium analysis and reducing the self-absorption of iron, the effects of key parameters are investigated. The optimal values of the parameters are found to be: 450 ns inter-pulse delay, 700 ns gate delay, 30 mJ/6 mJ pulse energy ratio, and 19.8 mm lens-to-sample distance (corresponding to a 799 μm laser focused spot size). Compared to the single-pulse system, the shot number of dual-pulse ablation is limited for reducing surface damage. After the optimization of the dual-pulse system, the signal-to-noise ratio of the trace chromium emission line has been improved by 3.5 times in comparison with the single-pulse system, and the self-absorption coefficient of matrix iron has been significantly reduced with self-reversal eliminated. The number of detectable lines for trace elements has more than doubled thus increasing the input for spectral calibration without significantly increasing the ablation mass. Three calibration methods including internal standardization, partial least squares regression and random forest regression are employed to determine the chromium and manganese concentrations in standard samples of low alloy steel, and the limit of detection is respectively calculated as 36 and 515 ppm. The leave-one-out cross validation method is utilized to evaluate the accuracy of chromium quantification, and the concentration mapping of chromium is performed on the surface of a steel sample (16MND5) with a relative error of 0.02 wt.% KW - Fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) KW - Dual-pulse KW - Parameter optimization KW - Spectral enhancement KW - Self-absorption coefficient KW - Concentration mapping PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2020.147497 SN - 0169-4332 VL - 533 IS - 147497 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam AN - OPUS4-51143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. G. A1 - Kornev, R. A. A1 - Polyakov, V. S. T1 - Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials N2 - The composition of hydrogen and hydrogen-methane plasmas containing ~10% of BX₃, SiX₄, GeX₄ (X = F, Cl), SF₆, MoF₆ and WF₆ is calculated for the temperature range ~300-4000 K using the equilibrium chemical model. The calculations provide valuable information about thermodynamic parameters (pressure, temperature) needed for condensation of pure elements (in H₂ plasma) and their carbides (in H₂ + CH₄ plasma) and about intermediate reaction products. Using volatile fluorides for plasma chemical deposition alleviates obtaining monoisotopic elements and their isotopic compounds because fluorine is monoisotopic. PECVD is promising method for one-step conversion of fluorides to elemental isotopes and their carbides. For fluorides, further insight is needed into properties of plasmas supported by different types of discharges. KW - Plasma chemistry KW - Modeling chemical reactions KW - Plasma enhanced chemical vapor deposition KW - Reduction of volatile chlorides and fluorides by hydrogen PY - 2020 DO - https://doi.org/10.1007/s10967-020-07295-2 VL - 326 IS - 1 SP - 407 EP - 421 PB - Springer CY - Dordrecht AN - OPUS4-51144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511557 DO - https://doi.org/10.1111/ggr.12327 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liaskos, C. A1 - Rhoderick, G. A1 - Hodges, J. A1 - Possolo, A. A1 - Wilke, Olaf T1 - Pilot comparison CCQM-P177 - monoterpenes in nitrogen at 2.5 nmol/mol - final report N2 - Growing awareness of the impact of monoterpenes on climate, atmospheric chemistry, and indoor air quality has necessitated the development of measurement standards to globally monitor and control their emissions. For National Metrology Institutes to develop such standards, it is essential that they demonstrate measurement equivalence for assigned values at the highest levels of accuracy. This report describes the results of a pilot comparison for 4 key monoterpene species: α-pinene, 3-carene, R-limonene and 1,8-cineole, at a nominal amount-of-substance fraction of 2.5 nmol mol-1. The objective of this comparison is to evaluate participant capabilities to measure trace-level monoterpenes using their own calibration techniques. KW - Pilot comparison KW - CCQM KW - Monoterpene KW - Accuracy PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1A/08018 SN - 0026-1394 SN - 1681-7575 VL - 57 IS - 1A SP - 08018-1 EP - 08018-21 PB - IOP Science AN - OPUS4-51111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moskovchenko, A. I. A1 - Vavilov, V. P. A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Chulkov, A. O. T1 - Detecting Delaminations in Semitransparent Glass Fiber Composite by Using Pulsed Infrared Thermography N2 - Thanks to its good strength/mass ratio, a glass fibre reinforced plastic (GFRP) composite is a common material widely used in aviation, power production, automotive and other industries. In its turn, active infrared (IR) nondestructive testing (NDT) is a common inspection technique for detecting and characterizing structural defects in GFRP. Materials to be tested are typically subjected to optical heating which is supposed to occur on the material surface. However, GFRP composite is semitransparent for optical radiation of both visual and IR spectral bands. Correspondingly, the inspection process represents a certain combination of both optical and thermal phenomena. Therefore, the known characterization algorithms based on pure heat diffusion cannot be applied to semi-transparent materials. In this study, the phenomenon of GFRP semi-transparency has been investigated numerically and experimentally in application to thermal NDT. Both Xenon flash tubes and a laser have been used for thermal stimulation of opaque and semi-transparent test objects. It has been shown that the Penetration of optical heating radiation into composite reduces detectability of shallower defects, and the signal-to-noise ratio can be enhanced by applying the technique of thermographic signal reconstruction (TSR). In the inspection of the semi-transparent GFRP composite, the most efficient has been the laser heating followed by the TSR data processing. The perspectives of defect characterization of semi-transparent materials by using laser heating are discussed. A neural network has been used as a candidate tool for evaluating defect depth in composite materials, but its training should be performed in identical with testing conditions. KW - Infrared thermography KW - Thermal testing KW - GFRP KW - Semi-transparent composite KW - Laser heating PY - 2020 DO - https://doi.org/10.1007/s10921-020-00717-x VL - 39 SP - 69 PB - Springer Science+Business Media, LLC, part of Springer Nature 2020 AN - OPUS4-51179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Characterization of a Flexible Piezopolymer-based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves N2 - Structural health monitoring (SHM) is a term that groups together techniques adopted to evaluate in a continued fashion the structural integrity and degradation of technical appliances. SHM is particularly attractive for components that are difficult to access or expensive to take off-line. Among many other techniques, SHM can be performed using ultrasonic guided waves (UGW) which have an advantage of traveling over Long distances. Various guided wave modes exist along with many methods for their generation and sensing, e.g by means of interdigital transducers (IDT). This contribution is dedicated to the design and characterization of a flexible piezopolymerbased IDT which allows for the selective excitation of UGW, resulting in more straightforward data analysis. The designed IDT was characterized using a 3D Laser Doppler Vibrometer (3D LDV) in the air to identify and analyze the IDT’s Vibration modes. Then the transducer was mounted on an aluminum plate, and the generated wavefield was measured with the 3D LDV. According to this investigation, we demonstrate that it is possible to selectively excite desired guided wave mode, namely the A0 mode, suppressing the excitation of the S0 mode. Moreover, the measured wavefield allows for analysis of the directivity of the designed IDT. All in all the results show good correlation between theoretical predictions and measured values, thus allowing to use the current design in terms of selective excitation as it is. T2 - IEEE International Ultrasonics Symposium CY - Online meeting DA - 06.09.2020 KW - Lamb waves KW - Non-Destructive Testing KW - Structural Health Monitoring KW - Polyvinylidene Fluoride (PVDF) PY - 2020 AN - OPUS4-51202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, L. A1 - von der Au, Marcus A1 - Zimmermann, T. A1 - Reese, A. A1 - Ludwig, J. A1 - Pröfrock, D. T1 - A metrologically traceable protocol for the quantification of trace metals in different types of microplastic N2 - The presence of microplastic (MP) particles in aquatic environments raised concern About possible enrichment of organic and inorganic pollutants due to their specific surface and chemical properties. In particular the role of metals within this context is still poorly understood. Therefore, the aim of this work was to develop a fully validated acid digestion protocol for metal analysis in different polymers, which is a prerequisite to study such interactions. The proposed digestion protocol was validated using six different certified reference materials in the microplastic size range consisting of polyethylene, polypropylene, acrylonitrile butadiene styrene and polyvinyl chloride. As ICP-MS/MS enabled time-efficient, sensitive and robust analysis of 56 metals in one measurement, the method was suitable to provide mass fractions for a multitude of other elements beside the certified ones (As, Cd, Cr, Hg, Pb, Sb, Sn and Zn). Three different microwaves, different acid mixtures as well as different temperatures in combination with different hold times were tested for optimization purposes. With the exception of Cr in acrylonitrile butadiene styrene, recovery rates obtained using the optimized protocol for all six certified reference materials fell within a range from 95.9% ± 2.7% to 112% ± 7%. Subsequent optimization further enhanced both precision and recoveries ranging from 103% ± 5% to 107 ± 4% (U; k = 2 (n = 3)) for all certified metals (incl. Cr) in acrylonitrile butadiene styrene. The results clearly show the analytical challenges that come along with metal analysis in chemically resistant plastics. Addressing specific analysis Tools for different sorption scenarios and processes as well as the underlying kinetics was beyond this study’s scope. However, the future application of the two recommended thoroughly validated total acid digestion protocols as a first step in the direction of harmonization of metal analysis in/on MP will enhance the significance and comparability of the generated data. It will contribute to a better understanding of the role of MP as vector for trace metals in the environment. KW - Microplatic KW - Digestion KW - Analytical Chemistry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510727 DO - https://doi.org/10.1371/journal.pone.0236120 VL - 15 IS - 7 SP - e0236120 AN - OPUS4-51072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hielscher-Bofinger, Stefan A1 - Beck, Uwe T1 - Multiple-sample Testing: Adhesive Strength of Coatings and Bonding Strength of Adhesives evaluated by Centrifugal Adhesion Testing (CAT) N2 - The quantitative determination of adhesion and cohesion properties is a key requirement for adhesive-bonded joints and coated components in both R&D and Quality assurance. Because of the huge variety of layer/substrate Systems in terms of materials and large thickness range, adhesion tests display the same diversity as layer/substrate systems. There are only two tensile testing procedures available, that determine adhesive strength in terms of force per area (N/mm²), the single-sample pull-off test in a tensile testing machine and the multiple-sample-test using the Centrifugal Adhesion Testing (CAT) Technology. The CAT Technology is a testing method which uses centrifugal force as tensile testing force in a multiple-sample arrangement within a drum rotor of a Desktop centrifuge. Hence, the adhesive/bonding strength A/B can be determined on a statistical basis under identical testing conditions for up to eight samples. A variety of examples for bonding strength of adhesives, adhesive strength of coatings and compound strength of composite materials is discussed such as metalto-metal and glass-to-metal bonding, sputtered SiO2-layers on CR39 Polymer and carbon fiber reinforced polymer. T2 - Colloquium Department 6. CY - Berlin, BAM, Germany DA - 03.09.2020 KW - Centrifugal Adhesion Testing (CAT) KW - Adhesive strength KW - Bonding strength KW - Composite strength KW - Interlaboratory comparision PY - 2020 AN - OPUS4-51178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irinia A1 - Emmerling, Franziska T1 - Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N0-Dipyridines: Structural diversity with varying ligand flexibility N2 - We studied the influence of coformers flexibility on the supramolecular assembly of 5-substituted resorcinol. Two cocrystals of orcinol (ORL) with two dipyridine molecules, i.e. 1,2-di(4-pyridyl)ethane (ORLeBPE) and 1,2-di(4-pyridyl)ethylene (ORLeBPY), were prepared by mechanochemical synthesis and slow evaporation of solvent. The new crystalline solids were thoroughly characterized by single crystal Xray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier-transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Structural determination reveals that in both cocrystals, the phenolepyridine, i.e. OeH/N(py) heterosynthon takes the main role in the formation of cocrystals. In ORLeBPE, the components form infinite 1D zig-zag chains, which are extended to 2D layer structure by inter-chain CeH/O interactions between BPE hydrogen atoms and hydroxyl oxygen atoms of ORL. In ORLeBPY, the components form a 0D fourcomponent complex. Formation of the discrete assemblies is attributed to the comparative rigid nature of BPY, which restricts the formation of an extended network. KW - Cocrystal KW - Single crystal KW - X-ray diffraction KW - Mechanochemistry PY - 2020 DO - https://doi.org/10.1016/j.molstruc.2020.128303 SN - 0022-2860 VL - 1217 SP - 128303 PB - Elsevier B.V. AN - OPUS4-51023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulletti, A. A1 - Giannelli, P. A1 - Capineri, L. A1 - Prager, Jens T1 - Characterization of a Flexible Piezopolymer-based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves N2 - Structural health monitoring (SHM) is a term that groups together techniques adopted to evaluate in a continued fashion the structural integrity and degradation of technical appliances. SHM is particularly attractive for components that are difficult to access or expensive to take off-line. Among many other techniques, SHM can be performed using ultrasonic guided waves (UGW) which have an advantage of traveling over Long distances. Various guided wave modes exist along with many methods for their generation and sensing, e.g by means of interdigital transducers (IDT). This contribution is dedicated to the design and characterization of a flexible piezopolymerbased IDT which allows for the selective excitation of UGW, resulting in more straightforward data analysis. The designed IDT was characterized using a 3D Laser Doppler Vibrometer (3D LDV) in the air to identify and analyze the IDT’s Vibration modes. Then the transducer was mounted on an aluminum plate, and the generated wavefield was measured with the 3D LDV. According to this investigation, we demonstrate that it is possible to selectively excite desired guided wave mode, namely the A0 mode, suppressing the excitation of the S0 mode. Moreover, the measured wavefield allows for analysis of the directivity of the designed IDT. All in all the results show good correlation between theoretical predictions and measured values, thus allowing to use the current design in terms of selective excitation as it is. T2 - I2020 IEEE International Ultrasonics Symposium (IUS) CY - Online meeting DA - 07.09.2020 KW - Lamb waves KW - Non-Destructive Testing KW - Structural Health Monitoring KW - Polyvinylidene Fluoride (PVDF) PY - 2020 SN - 978-1-7281-5448-0 SP - 1261, 45 AN - OPUS4-51441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaenisch, Gerd-Rüdiger A1 - Ewert, Uwe A1 - Waske, Anja A1 - Funk, Alexander T1 - Radiographic Visibility Limit of Pores in Metal Powder for Additive Manufacturing N2 - The quality of additively manufactured (AM) parts is determined by the applied process parameters used and the properties of the feedstock powder. The influence of inner gas pores in feedstock particles on the final AM product is a phenomenon which is difficult to investigate since very few non-destructive measurement techniques are accurate enough to resolve the micropores. 3D X-ray computed tomography (XCT) is increasingly applied during the process chain of AM parts as a non-destructive monitoring and quality control tool and it is able to detect most of the pores. However, XCT is time-consuming and limited to small amounts of feedstock powder, typically a few milligrams. The aim of the presented approach is to investigate digital radiography of AM feedstock particles as a simple and fast quality check with high throughput. 2D digital radiographs were simulated in order to predict the visibility of pores inside metallic particles for different pore and particle diameters. An experimental validation was performed. It was demonstrated numerically and experimentally that typical gas pores above a certain size (here: 3 to 4.4 µm for the selected X-ray setup), which could be found in metallic microparticles, were reliably detected by digital radiography. KW - Additive manufacturing KW - Feedstock powder KW - Porosity KW - Digital radiography KW - Numerical simulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517880 DO - https://doi.org/10.3390/met10121634 VL - 10 IS - 12 SP - 1634 PB - MDPI AN - OPUS4-51788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Ponader, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg T1 - One-Line Monitoring of the Curing Process of FRP N2 - The knowledge of the cure situation during the production process of thermosetting material is of enormous importance. • Mid- and near- infrared (IR) spectroscopy in attenuated total reflectance (ATR) geometry are promising techniques for curing studies. • An IR/THz sensor system was developed to investigate its suitability for future online monitoring of curing processes in the production line. T2 - BESSY@HZB User Meeting 2020 CY - Online meeting DA - 10.12.2020 KW - Fiber Reinforced Polymers KW - Curing Monitoring KW - Attenuated Total Reflectance PY - 2020 AN - OPUS4-51804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph T1 - Understanding distributed data – a semantic web approach for data based analysis of NDT data in civil engineering N2 - In the field of non-destructive testing (NDT) in civil engineering, a large number of measurement data are collected. Although they serve as a basis for scientific analyses, there is still no uniform representation of the data. An analysis of various distributed data sets across different test objects is therefore only possible with high manual effort. We present a system architecture for an integrated data management of distributed data sets based on Semantic Web technologies. The approach is essentially based on a mathematical model - the so-called ontology - which represents the knowledge of our domain NDT. The ontology developed by us is linked to data sources and thus describes the semantic meaning of the data. Furthermore, the ontology acts as a central concept for database access. Non-domain data sources can be easily integrated by linking them to the NDT construction ontology and are directly available for generic use in the sense of digitization. Based on an extensive literature research, we outline the possibilities that this offers for NDT in civil engineering, such as computer-aided sorting, analysis, recognition and explanation of relationships (explainable AI) for several million measurement data. The expected benefits of this approach of knowledge representation and data access for the NDT community are an expansion of knowledge through data exchange in research (interoperability), the scientific exploitation of large existing data sources with data-based methods (such as image recognition, measurement uncertainty calculations, factor analysis, material characterization) and finally a simplified exchange of NDT data with engineering models and thus with the construction industry. Ontologies are already the core of numerous intelligent systems such as building information modeling or research databases. This contribution gives an overview of the range of tools we are currently creating to communicate with them. T2 - EGU General Assembly 2020 CY - Online meeting DA - 04.05.2020 KW - Ontology KW - NDT KW - Concrete KW - Onotology KW - Semantic Data Management KW - Reproducible Science PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518076 DO - https://doi.org/10.5194/egusphere-egu2020-19332 AN - OPUS4-51807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced gas breakdown in reactive mixtures containing halides of boron and silicon: diagnostics and modeling N2 - We run two pilot LIP experiments in reactive gas mixtures. First, LIP is excited in BCl3 or BF3 plus H2 or CH4 to evaluate the efficiency of deposition of solid boron and boron carbide, materials that are largely used for refractory coatings. Second, we investigate a possibility of synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3) by LIP induced in SiF4+SiCl4 gas mixtures. Using fluorochlorosilanes with different combinations of F and Cl in the SiFxCly molecule may add flexibility in processes of silicon deposition and etching. The gases used and solid deposits are analyzed by optical emission spectroscopy (OES) and IR and mass spectrometry (MS). We also model the laser induced plasma by performing static equilibrium chemistry calculations to see whether desired reaction products are thermodynamically favorable and dynamic calculations of the expanding plasma plume to see how and where the products form. T2 - International Workshop on Laser Induced breakdown Spectroscopy CY - Online meeting DA - 01.12.2020 KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2020 AN - OPUS4-51725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Bohling, Christian A1 - Wilsch, Gerd T1 - New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS) N2 - In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also possible to compare the ingress and transport process of different elements like Cl, Na, K, S, C, and Li simultaneously and evaluate cross-correlations between the different ions. Furthermore, the element mapping allows to visualize the transport along cracks. This work will show the state of the art in terms of hardware and software for an automated LIBS system as well as different application for a concrete analysis 4.0. Focus will be the application of LIBS for a fast concrete analysis. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Damage KW - LIBS KW - Concrete KW - Mapping KW - Chlorine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517282 UR - https://www.ndt.net/?id=24963 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-51728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J T1 - Spatiotemporal spectroscopic characterization of plasmas induced by non-orthogonal laser ablation N2 - Ablation geometry significantly affects the plasma parameters and the consequent spectroscopic observations in laser-induced breakdown spectroscopy. Nevertheless, plasmas induced by laser ablation under inclined incidence angles are studied to a significantly lesser extent compared to plasmas induced by standard orthogonal ablation. However, inclined ablation is prominent in stand-off applications, such as the Curiosity Mars rover, where the orthogonality of the ablation laser pulse cannot be always secured. Thus, in this work, we characterize non-orthogonal ablation plasmas by applying plasma imaging, tomography, and spectral measurements. We confirm earlier observations according to which non-orthogonal ablation leads to a laser-induced plasma that consists of two distinct parts: one expanding primarily along the incident laser pulse and one expanding along the normal of the sample surface. Moreover, we confirm that the former emits mainly continuum radiation, while the latter emits mainly sample-specific characteristic radiation. We further investigate and compare the homogeneity of the plasmas and report that inclined ablation affects principally the ionic emissivity of laser-induced plasmas. Overall, our results imply that the decreased fluence resulting from inclined angle ablation and the resulting inhomogeneities of the plasmas must be considered for quantitative LIBS employing non-orthogonal ablation. KW - Radon transformation KW - Laser induced plasma KW - Plasma tomography PY - 2020 DO - https://doi.org/10.1039/d0an01996h VL - 146 IS - 3 SP - 920 EP - 929 PB - The Royal Society of Chemistry AN - OPUS4-51774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steglich, P. A1 - Mai, C. A1 - Bondarenko, S. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Schrader, S. A1 - Mai, A. T1 - BioPIC - Integration of Biosensors based on Photonic Integrated Circuits by Local-Backside Etching N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. T2 - ATTRACT online Conference CY - Online meeting DA - 22.09.2020 KW - Silicon Photonics KW - Photonic Sensor KW - Photonic Integrated Circuits KW - Point-Of-Care-Diagnostics KW - CMOS KW - Microfluidics KW - Lab-on-a-chip KW - Ring resonator PY - 2020 UR - https://attract-eu.com/showroom/project/integration-of-biosensors-based-on-photonic-integrated-circuits-by-local-backside-etching-biopic/ SP - 1 EP - 5 AN - OPUS4-51735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517360 DO - https://doi.org/10.1038/s41598-020-77624-8 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Boehn, B. A1 - Scholtz, Lena A1 - Imbihl, R. T1 - Reactivity and Stability of Ultrathin VOx Films on Pt(111) in Catalytic Methanol Oxidation N2 - The growth of ultrathin layers of VOx (<12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron difraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium difuses into the Pt subsurface region. Exposure to O2 causes part of the V to difuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar. KW - Vanadium oxide catalysts KW - Pt(111) KW - Supported catalyst KW - Methanol oxidation KW - Stranski–Krastanow growth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517376 DO - https://doi.org/10.1007/s11244-020-01321-z SN - 1022-5528 VL - 63 IS - 15-18 SP - 1545 EP - 1556 PB - Springer AN - OPUS4-51737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - Reliability in NDT and the influence of human factors N2 - This presentation offers a holistic view on the assessment of reliability of NDT including the intrinsic reliability (typically expressed in terms of probability of detection (POD) curves), application, human and organisational factors. In addition to POD, advanced methods such as multiparameter POD, volume POD and POD for combined data are presented. Human and organisational factors in NDT require a systematic approach, i.e. it is not just the individual that determines how the inspections are carried out but also the interactions of individuals with the technology, team, organisation and the extra-organisational environment. Lessons learned from the literature as well as from own studies are presented. T2 - DFG SHM Netzwerk CY - Berlin, Germany DA - 27.01.2020 KW - Human Factors KW - Non-destructive testing (NDT) KW - Reliability PY - 2020 AN - OPUS4-51919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph T1 - Prospects and challenges of data-driven NDT - current work in junior research group 8.K N2 - We have arrived in the data age. But why is it so difficult for the NDT community to achieve real breakthroughs with data-driven science? In this seminar, we will take a brief look at the evolution of mainstream data science to understand why the most exciting times are perhaps just ahead. We will give an overview of our activities in the junior research group 8.K which are aimed at enabling the next generation of data science methods in NDT. The seminar addresses the two main work fields of our group: semantic data management and the handling of limited data resources. The first field addresses the problem that a uniform representation of our data is not yet available. However, knowledge creation in data science - whose main contribution lies in the analysis of distributed resources - requires common data access based on a collective understanding. To achieve this, we present an ontology-based approach. Ontologies are already the core of many intelligent systems such as building information models or research databases. We summarize some of the basic principles of this technology and describe our approach to create an NDT ontology. The second field ties in with the first and addresses the application of data-based methods in engineering practice. Especially in the field of non-destructive testing many successful applications have been published. In most cases, however, the creation of referenced data is extremely expensive and therefore much sparser than in other research areas. As a result, the available data may cover only one scenario, so that common benchmarks often do not reflect the actual performance of the model in practical applications. Estimates that quantify the transferability from one scenario to another are not only necessary to overcome this challenge - they also prove to be a powerful tool for the strategic expansion of what we consider knowledge. T2 - Abteilungsseminar der Abteilung 8 CY - Online meeting DA - 18.11.2020 KW - Machine Learning KW - Small Data KW - Semantic Web KW - Materials Discovery KW - Explainable AI PY - 2020 AN - OPUS4-51811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph T1 - Artificial intelligence in NDT (AI NDT) a networking workshop N2 - Data-driven research is considered the new paradigm in science. In this field, data is the new resource from which knowledge is extracted that is too complex for traditional methods. Several factors such as national funding and advances in information technology, are driving the development. In particular, the creation of databases and the analysis of data with artifical intelligence are playing an important role in establishing the new paradigm. However, there are numerous challenges that must be overcome to realize the full potential of data-driven methods. This talk sets the stage for the upcoming workshop by reviewing some of the historical developments and the current state of data-driven science in NDT and materials science. T2 - Workshop on Artificial Intelligence in NDT (AI-NDT) CY - Online meeting DA - 30.10.2020 KW - Data Science KW - Materials Informatics KW - NDT PY - 2020 AN - OPUS4-51812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanabria, S. J. A1 - Baensch, Franziska A1 - Zauner, M. A1 - Niemz, P. T1 - In‑situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography N2 - Wood-based composites hold the promise of sustainable construction. Understanding the influence on wood cellular microstructure in the macroscopic mechanical behavior is key for engineering highperformance composites. In this work, we report a novel Individual Cell Tracking (ICT) approach for in-situ quantification of nanometer-scale deformations of individual wood cells during mechanical loading of macroscopic millimeter-scale wood samples. Softwood samples containing > 104 cells were subjected to controlled radial tensile and longitudinal compressive load in a synchrotron radiation micro-computed tomography (SRμCT) setup. Tracheid and wood ray cells were automatically segmented, and their geometric variations were tracked during load. Finally, interactions between microstructure deformations (lumen geometry, cell wall thickness), cellular arrangement (annual growth rings, anisotropy, wood ray presence) with the macroscopic deformation response were investigated. The results provide cellular insight into macroscopic relations, such as anisotropic Poisson effects, and allow direct observation of previously suspected wood ray reinforcing effects. The method is also appropriate for investigation of non-linear deformation effects, such as buckling and deformation recovery after failure, and gives insight into less studied aspects, such as changes in lumen diameter and cell wall thickness during uniaxial load. ICT provides an experimental tool for direct validation of hierarchical mechanical models on real biological composites. KW - Wood materials KW - Micro-comuted tomography (µCT) KW - Individual cell tracking KW - Stress-strain behaviour PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518157 DO - https://doi.org/10.1038/S41598-020-78028-4 SN - 2045-2322 VL - 10 SP - 1 EP - 16 PB - Springer nature AN - OPUS4-51815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 DO - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Asta, M. A1 - Fernandez-Martinez, A. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Monitoring a Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. In nature, it serves as a storage material or as a permanent structural element, whose lifetime is regulated by an organic matrix. The relevance of ACC in materials science is primarily related to our understanding of CaCO3 crystallization pathways and CaCO3/(bio)polymer nanocomposites. ACC can be synthesized by liquid–liquid phase separation, and it is typically stabilized with macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. Phosphate “impurities” were added in the form of monetite (CaHPO4) to substitute the carbonate anions, thereby stabilizing ACC by substitutional disorder. The phosphate anions do not simply replace the carbonate anions. They undergo shear-driven acid/base and condensation reactions, where stoichiometric (10%) phosphate contents are required for the amorphization to be complete. The phosphate anions generate a strained network that hinders ACC recrystallization kinetically. The amorphization reaction and the structure of BM-ACC were studied by quantitative Fourier transform infrared spectroscopy and solid state 31P, 13C, and 1H magic angle spinning nuclear magnetic resonance spectroscopy, which are highly sensitive to symmetry changes of the local environment. In the first—and fast—reaction step, the CO32– anions are protonated by the HPO42– groups. The formation of unprecedented hydrogen carbonate (HCO3–) and orthophosphate anions appears to be the driving force of the reaction, because the phosphate group has a higher Coulomb energy and the tetrahedral PO43– unit can fill space more efficiently. In a competing second—and slow—reaction step, pyrophosphate anions are formed in a condensation reaction. No pyrophosphates are formed at higher carbonate contents. High strain leads to such a large energy barrier that any reaction is suppressed. Our findings aid in the understanding of the mechanochemical amorphization of calcium carbonate and emphasize the effect of impurities for the stabilization of the amorphous phases in general. Our approach allowed the synthesis of new amorphous alkaline earth defect variants containing the unique HCO3– anion. Our approach outlines a general strategy to obtain new amorphous solids for a variety of carbonate/phosphate systems that offer promise as biomaterials for bone regeneration. KW - Crystallization KW - Mechanochemistry KW - PDF PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00912 VL - 20 IS - 10 SP - 6831 EP - 6846 PB - American Chemical Society AN - OPUS4-51819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Szymoniak, Paulina T1 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite" N2 - Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite", by Paulina Szymoniak, Brian R. Pauw, Xintong Qu, and Andreas Schönhals. Datasets are in three-column ascii (processed and azimuthally averaged data) from a Xenocs NanoInXider SW instrument. Monte-Carlo analyses were performed using McSAS 1.3.1, other analyses are in the Python 3.7 worksheet. Graphics and result tables are output by the worksheet. KW - Small angle scattering KW - X-ray scattering KW - Nanocomposite KW - Polymer nanocomposite KW - Boehmite KW - Analysis KW - SAXS/WAXS PY - 2020 DO - https://doi.org/10.5281/zenodo.4321087 PB - Zenodo CY - Geneva AN - OPUS4-51829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dittmann, Daniel T1 - Experimental raw data for "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" N2 - This is the repository of all experimental raw data used in the Scientific Reports publication "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" by Daniel Dittmann, Paul Eisentraut, Caroline Goedecke, Yosri Wiesner, Martin Jekel, Aki Sebastian Ruhl, and Ulrike Braun. It includes - overview_measurements.xlsx and overview_measurements.ods containing a list of all TGA experiments (TGA, TGA-FTIR, TED-GC-MS, and ramp-kinetics) - TED-GC-MS.zip containing gas chromatography-mass spectrometry experimtent files for the Chemstation and OpenChrom - TGA.zip containing thermogravimetric analyses raw data on evolved gas analyses experiments (TGA-FTIR and TED-GC-MS) - TGA_kinetics.zip containing thermogravimetric analyses raw data on decomposition kinetic experiments (ramp-kinetics) - TGA-FTIR.zip containing Fourier-transform infrared spectroscopy series files for OMNIC - XRF.zip containing x-ray flourescence data on elemental composition KW - Adsorption KW - Aktivkohle KW - TED-GC/MS KW - Thermoanalytik PY - 2020 DO - https://doi.org/10.5281/zenodo.3716316 PB - Zenodo CY - Geneva AN - OPUS4-51902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray Non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. T2 - Ruhr Universität Bochum - Seminar materials science and technology CY - Online meeting DA - 12.11.2020 KW - X-ray imaging KW - Non-destructuve testing KW - Functional materials PY - 2020 AN - OPUS4-51905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David T1 - From W. C. Röntgen to modern Tomography N2 - A not complete review of X-Ray related milestones from 1895 to the 21st century. T2 - ITN GW4SHM, First Training Event CY - Online Meeting DA - 23.11.2020 KW - X-Ray KW - Computed Tomography KW - Laminography KW - Digital Detector Arrays KW - Wilhelm Conrad Röntgen PY - 2020 AN - OPUS4-51881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super resolution KW - Photothermal KW - Imaging KW - Compressed sensing KW - Internal defects KW - Nondestructive testing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518866 DO - https://doi.org/10.48550/arXiv.2007.03341 SN - 2331-8422 SP - 1 EP - 9 PB - Cornell University CY - Ithaca, NY AN - OPUS4-51886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias T1 - Non-Destructive Testing - Electromagnetic Methods N2 - This presentation contains a short summary about the basics of eddy current testing and magnetic flux leakage testing. In addition, the main focus of the talk lies on the application of point-like sensors like GMR for NDT. T2 - 1st Training Event - ITN project GW4SHM CY - Online meeting DA - 23.11.2020 KW - GMR KW - Magnetic flux leakage testing KW - Eddy current testing PY - 2020 AN - OPUS4-51889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Léonard, Fabien T1 - Overview of XCT data processing workflow for ammonium nitrate prills quantitative analysis N2 - This video presents the data processing workflow that was developed to perform the quantitative structural and morphological analysis of ammonium nitrate prills by x-ray computed tomography. KW - ANFO KW - Data processing KW - Explosives KW - Porosity KW - Surface area KW - XCT PY - 2020 DO - https://doi.org/10.5281/zenodo.3611339 PB - Zenodo CY - Geneva AN - OPUS4-51897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grossegesse, M. A1 - Hartkopf, F. A1 - Nitsche, A. A1 - Schaade, L. A1 - Doellinger, J. A1 - Muth, Thilo T1 - Perspective on Proteomics for Virus Detection in Clinical Samples N2 - One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted. KW - COVID-19 KW - Mass spectrometry KW - Virus diagnostics KW - Virus detection KW - Targeted mass spectrometry KW - Proteomics PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00674 SN - 1535-3907 VL - 19 IS - 11 SP - 4380 EP - 4388 PB - ACS AN - OPUS4-51633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sajulga, R. A1 - Easterly, C. A1 - Riffle, M. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Mehta, S. A1 - Kumar, P. A1 - Johnson, J. A1 - Gruening, B. A1 - Schiebenhoefer, H. A1 - Kolmeder, C. A1 - Fuchs, S. A1 - Nunn, B. A1 - Rudney, J. A1 - Griffin, T. A1 - Jagtap, P. T1 - Survey of metaproteomics software tools for functional microbiome analysis N2 - To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform. KW - Bioinformatics KW - Metaproteomics KW - Mass spectrometry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516358 DO - https://doi.org/10.1371/journal.pone.0241503 SP - e0241503 AN - OPUS4-51635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichel, V. E. A1 - Matuszak, J. A1 - Bente, Klaas A1 - Heil, T. A1 - Kraupner, A. A1 - Dutz, S. A1 - Cicha, I. A1 - Faivre, D. T1 - Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool N2 - Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity. KW - Iron oxide KW - Nanoparticle KW - Theranostics KW - MRI KW - Hyperthermia PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515993 DO - https://doi.org/10.3390/nano10102014 VL - 10 IS - 10 SP - 2014 PB - MDPI AN - OPUS4-51599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg T1 - Novel Technique for On-Line Monitoring of the Curing Process of Fiber Reinforced Polymer Composites N2 - A specially designed experimental set up has been integrated into a commercially available FT IR Spectrometer for ATR experiments on Epoxy Systems. Representative data of far infrared spectra measured during the curing process at different temperatures of an epoxy system will be presented in dependency of the curing situation. The experiments and the selected set up are discussed to demonstrate its potential for future monitoring and ageing control applications during a manufacturing process of polymer composites. T2 - 45. International Confercene on infrared, milimeter and terahertz waves CY - Online meeting DA - 08.11.2020 KW - Far-infrared spectroscopy KW - Curing Monitoring PY - 2020 UR - https://live-irmmwthz.pantheonsite.io/technical-program AN - OPUS4-51649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine T1 - Evaluation of Advanced NDT-Methods for Measurement of Fibre Orientation in Concrete N2 - Integration of fibre reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel fibre reinforced concrete (FRC) is the deceleration of crack growth and hence it’s improved sustainability due to e.g. decrease of permeability of concrete by aggressive substances. Additional benefits are associated with the structural properties of FRC, where fibres can significantly increase the ductility and the tensile strength of concrete. In some applications, such as tunnel linings or industrial slabs, it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fibre reinforcement can, however, have critical disadvantages and even hinder the performance of concrete, since it can induce an anisotropic material behaviour of the mixture if the fibres are not appropriately oriented. For a safe use of FRC in the future, reliable non-destructive methods need to be identified to assess the fibres’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computer tomography have been investigated for this purpose using specially produced samples with biased or random fibre orientations. This paper demonstrates the capabilities of each of these NDT techniques for fibre orientation measurements and draws conclusions based on these results about the most promising areas for future research and development using these techniques. T2 - fib2020 Shanghai CY - Online meeting DA - 22.11.2020 KW - Ultrasonic testing KW - Steel fibre reinforced concrete (FRC) KW - Fibre orientation KW - X-ray computed tomography (CT) KW - Electrical impedance PY - 2020 AN - OPUS4-51651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schade, U. T1 - Etalon Effects in THz Film Measurements N2 - Etalon effects in THz transmittance spectra, either taken in time-domain or frequency-domain, often hamper or even hinder the interpretation of film properties. In this paper we discuss the transferability and applicability of spectroscopic methods usually employed in the near and mid infrared spectral range and exemplarily present the application field. T2 - 45. International Confercene on infrared, milimeter and terahertz waves CY - Online meeting DA - 08.11.2020 KW - Far-infrared spectroscopy KW - Etalon Effects PY - 2020 UR - https://live-irmmwthz.pantheonsite.io/technical-program AN - OPUS4-51652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kulow, Anicó T1 - Spatial Resolved Dispersive X-Ray Absorption Spectroscopy and Coded Aperture X-Ray Fluorescence Imaging N2 - One aim of this work was the development of a new setup for time- and laterally resolved XAFS measurements, based on the pronciple of dispersive XAFS. This setup is scanning free, stable, inexpensive, and straightforward to adjust for probing different elements. The second part of this work describes the impelemntation of a method for full-field X-ray fluorescence imaging with coded apertures. Expensive and complicated X-ray otpics, that are usually used for full-field imaging, are replaced with a coded aperture that consists of many pinholes drilled in an X-ray opaque material. Coded apertures are inexpensive to fabricate, energy independent and easy to use. The working principle is the same as with a pinhole camera, but the multiple holes allow a higher photon flux compared to a single pinhole or even a polycalippary optic, thus alowwing the reduction of measurement time. KW - X-ray fluorescence imaging KW - Coded Apertures KW - X-ray absorption spectroscopy KW - Synchrotron PY - 2021 SP - 1 EP - 175 CY - Berlin AN - OPUS4-52054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -