TY - JOUR A1 - Baláž, M. A1 - Tešinský, M. A1 - Marquardt, Julien A1 - Škrobian, M. A1 - Daneu, N. A1 - Rajňák, M. A1 - Baláž, P. T1 - Synthesis of copper nanoparticles from refractory sulfides using a semi-industrial mechanochemical approach N2 - The large-scale mechanochemical reduction of binary sulfides chalcocite (Cu2S) and covellite (CuS) by elemental iron was investigated in this work. The reduction of Cu2S was almost complete after 360 min of milling, whereas in the case of CuS, a significant amount of non-reacted elemental iron could still be identified after 480 min. Upon application of more effective laboratory-scale planetary ball milling, it was possible to reach almost complete reduction of CuS. Longer milling leads to the formation of ternary sulfides and oxidation product, namely cuprospinel CuFe2O4. The rate constant calculated from the magnetometry measurements using a diffusion model for Cu2S and CuS reduction by iron in a large-scale mill is 0.056 min−0.5 and 0.037 min−0.5, respectively, whereas for the CuS reduction in a laboratory-scale mill, it is 0.1477 min−1. The nanocrystalline character of the samples was confirmed by TEM and XRD, as the produced Cu exhibited sizes up to 16 nm in all cases. The process can be easily scaled up and thus copper can be obtained much easier from refractory minerals than in traditional metallurgical approaches. KW - Mechanochemistry KW - Copper sulfides KW - Copper nanoparticles KW - Magnetometry KW - Oxidation PY - 2020 DO - https://doi.org/10.1016/j.apt.2019.11.032 VL - 31 IS - 2 SP - 782 EP - 791 PB - Elsevier B.V. AN - OPUS4-50665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, Robert A1 - Dariz, P. T1 - Insights into the CaSO4–H2O System: A Raman-Spectroscopic Study N2 - Even though being the subject of natural scientific research for many decades, the system CaSO4–H2O, consisting of the five crystalline phases gypsum, bassanite, and the anhydrites III, II, and I, has left many open questions for research. Raman spectroscopy was used because of its structural sensitivity and in situ measurement capability to obtain further insight by studying phase transitions in both ex situ and in situ experiments. The findings include significant contributions to the completeness and understanding of Raman spectroscopic data of the system. The dehydration path gypsum–bassanite–anhydrite III was shown to have strong parallels to a physical drying process, which depends on many parameters beyond the burning temperature. Raman band width determination was demonstrated to enable the quantitative discrimination of α-bassanite and β-bassanite as well as the postulated three sub-forms of anhydrite II (AII), which are all based on differences in crystallinity. In the latter case, the observed continuous structural variations over increasing burning temperatures were elucidated as a combination of decreasing surface areas and healing of crystal lattice defects. We propose an only two-fold sub-division of AII into reactive “disordered AII” and much less reactive “crystalline AII” with a transition temperature of 650°C ± 50 K. KW - Gypsum KW - Bassanite KW - Hemihydrate KW - Anhydrite KW - Raman spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506701 DO - https://doi.org/10.3390/min10020115 SN - 2075-163X VL - 10 IS - 2 SP - 115, 35 PB - MDPI CY - Basel AN - OPUS4-50670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brinker, U. A1 - Bērziņš, V. A1 - Ceriņa, A. A1 - Gerhards, G. A1 - Kalniņš, M. A1 - Schmölcke, U. A1 - Meinel, Dietmar A1 - Luebke, H. T1 - Two burials in a unique freshwater shell midden: insights into transformations of Stone Age hunter-fisher daily life in Latvia N2 - The Stone Age site Riņņukalns, Latvia, is the only well-stratified shell midden in the Eastern Baltic. In this paper, we present new interdisciplinary results concerning its dating, stratigraphy, features, and finds to shed light on the daily life of a fisher population prior to the introduction of domesticated animals. The undisturbed part of the midden consists of alternating layers of unburnt mussel shell, burnt mussel shell and fish bone, containing artefacts, some mammal and bird bones, and human burials. Two of them, an adult man and a baby, are discovered recently and date to the calibration plateau between 3350 and 3100 cal BC, and to the later 4th millennium, respectively. Stable isotopes suggest a diet based heavily on freshwater fish, and this is supported not only by ten thousands of identified fish remains, but also by a fish bone concentration nearby the skull of the man, which is interpreted as remain of a grave gift (possible fish soup). Of special interest are the baby’s stable isotope values. It shows that the mother’s diet was atypical (perhaps because she was non-local), and/or that dietary stress during pregnancy increased fractionation between the mother’s diet and her bloodstream KW - Baltic Stone Age KW - Palaeoanthropology PY - 2020 DO - https://doi.org/10.1007/s12520-020-01049-7 VL - 12 IS - 5 SP - Article number: 97 PB - Springer-Verlag GmbH CY - Germany AN - OPUS4-50653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506555 DO - https://doi.org/10.1038/s41467-020-15422-6 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Li, Y. A1 - Frisch, J. A1 - Bär, M. A1 - Rappich, J. A1 - Kneipp, Janina T1 - In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles N2 - Hot carriers (electrons and holes) generated from the decay of localized surface plasmon resonances can take a major role in catalytic reactions on metal nanoparticles. By obtaining surface enhanced Raman scattering (SERS) spectra of p-aminothiophenol as product of the reduction of p-nitrothiophenol by hot electrons, different catalytic activity is revealed here for nanoparticles of silver, gold, and copper. As a main finding, a series of different ligands, comprising halide and non-halide species, are found to enhance product formation in the reduction reaction on nanoparticles of all three metals. A comparison with the standard electrode potentials of the metals with and without the ligands and SERS data obtained at different electrode potential indicate that the higher catalytic activity can be associated with a higher Fermi level, thereby resulting in an improved efficiency of hot carrier generation. The concept of such a ligand-enhanced hot electron reduction provides a way to make light-to-chemical energy conversion more efficient due to improved electron harvesting. KW - Ligands KW - Hot electrons KW - SERS KW - p-Nitrothiophenol KW - p-Aminothiophenol PY - 2020 DO - https://doi.org/10.1016/j.jcat.2020.01.006 VL - 383 SP - 153 EP - 159 PB - Elsevier Inc. CY - Amsterdam, NL AN - OPUS4-50626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang T1 - International standardization and metrology as tools to address the comparability and reproducibility challenges in XPS measurements N2 - The status of standardization related to x-ray photoelectron spectroscopy (XPS, ESCA) at ASTM International (Subcommittee E42.03) and ISO (TC 201) is presented and commented upon in a structured manner. The survey also identifies other active bodies, here VAMAS Technical Working Area 2 and the Surface Analysis Working Group at the International Meter Convention, contributing to prestandardization Research and metrology of XPS and reports their specific activities. It is concluded that existing standardization is delivering good practices in the use of XPS and has a high potential to avoid the recently observed erroneous use, misapplications, and misinterpretation by new and inexperienced users of the method—which seems to be the main reason for the “reproducibility crisis” in the field of XPS applications. A need for a more proactive publicizing of international documentary standards by experienced XPS users, specifically those who are involved in standardization, is identified. Because the existing portfolio of standards addressing the use of XPS is not complete, future standardization projects planned or already ongoing are mentioned. The way the standardization bodies are identifying future needs is shortly explained. KW - Standardisation KW - Comparability KW - Reproducibility KW - XPS KW - VAMAS KW - Metrology PY - 2020 DO - https://doi.org/10.1116/1.5131074 VL - 38 IS - 2 SP - 021201-1 EP - 021201-8 PB - AVS AN - OPUS4-50560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ocker, L. A1 - Lisec, Jan A1 - Seitz, G. A1 - Adamus, A. A1 - Hempfling, L. A1 - Wagner, B. A1 - Vahdad, R. A1 - Verburg, F. A. A1 - Luster, M. A1 - Schurrat, T. A1 - Bier, D. A1 - Frank, M. A1 - Engel, N. T1 - Hypericin and its radio iodinated derivatives – A novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro N2 - In this in vitro study, we got a first insight of a possible potential of Hypericin for the treatment of pediatric soft tissue sarcoma. By coupling with radioiodine, we developed a novel approach for a combined anti-tumor treatment. The in vitro experiments lay the foundation for further in vivo experiments, which are needed to study the effects of a sequential administration of 131I-HYP and HYP. KW - Mass-Spectrometry KW - Cancer PY - 2020 VL - 29 SP - 101588 PB - Elsevier B.V. AN - OPUS4-49601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duwe, M. A1 - Quast, J.-H. A1 - Schneider, S. A1 - Fischer, Daniel A1 - Beck, Uwe T1 - Thin-film metrology of tilted and curved surfaces by imaging Mueller-matrix ellipsometry N2 - For the vast majority of ellipsometric measurements, the application of planar substrates is mandatory and requires a proper sample alignment prior to the measurement. Here, the authors present a generalized approach of how to extract the isotropic ellipsometric sample parameters from an imaging Mueller-matrix measurement even if the sample is significantly misaligned. They validate the method by layer-thickness calculations based on imaging Mueller-matrix measurements of flat crystalline silicon samples that were misaligned on purpose. Furthermore, they also exploit this method’s capabilities to perform spatially resolved layer-thickness measurements of a single-layer indium-tin-oxide coating on a fused-silica microlens without the need of realignment or repositioning of the sample during the measurement. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Metrology KW - Thin films KW - Polarization spectroscopy KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry PY - 2019 DO - https://doi.org/10.1116/1.5122757 SN - 2166-2746 SN - 2327-9877 VL - 37 IS - 6 SP - 062908 PB - AIP CY - New York, NY AN - OPUS4-50209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Falahat, A.M. A1 - Kupsch, Andreas A1 - Hentschel, M.P. A1 - Lange, A. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. T1 - Correction approach of detector backlighting in radiography N2 - In various kinds of radiography, deficient transmission imaging may occur due to backlighting inside the detector itself arising from light or radiation scattering. The related intensity mismatches barely disturb the high resolution contrast, but its long range nature results in reduced attenuation levels which are often disregarded. Based on X-ray observations and an empirical formalism, a procedure is developed for a first order correction of detector backlighting. A backlighting factor is modeled as a function of the relative detector coverage by the sample projection. Different cases of sample transmission are regarded at different backlight factors and detector coverage. The additional intensity of backlighting may strongly affect the values of materials’ attenuation up to a few 10%. The presented scenario provides a comfortable procedure for corrections of X-ray or neutron transmission imaging data. KW - X-ray imaging KW - Neutron imaging KW - Radiology KW - Backlighting KW - Digital detector array PY - 2019 DO - https://doi.org/10.1063/1.5097170 SN - 0034-6748 VL - 90 IS - 12 SP - 125108 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-50217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 DO - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Wohlleben, W. A1 - Babick, F. A1 - Ghanem, A. A1 - Gaillard, C. A1 - Mech, A. A1 - Rauscher, H. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Friedrich, C. M. T1 - NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification N2 - The European Commission’s recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities’ registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It providesMT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is Held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain. KW - EC nanomaterial definition KW - Decision support KW - Expert system KW - Nanomaterial KW - Nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492449 DO - https://doi.org/10.3390/ma12193247 VL - 12 IS - 19 SP - 3247 PB - MDPI CY - Basel, CH AN - OPUS4-49244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of Elemental Composition of Fe1-xNix and Si1-xGex Alloy Thin Films by EPMA and μ-XRF N2 - The present study reports on measurements on thin Fe-Ni films on silicon and first-time results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide Substrate by electron probe microanalysis (EPMA). Standard-based and standardless EPMA (with EDS) results were used in combination with the thin film analysis software Stratagem for the quantification. Further, X-ray fluorescence analysis (XRF) can be used for the determination of elemental composition and thickness of such films as well. In this case, XRF with a μ-focus X-ray source (μ-XRF) attached to a SEM was applied. For quantification, a fundamental parameter (FP) approach has been used to calculate standard-based and standardless results. Both thin film systems have been chosen as samples of an international round robin test (RRT) organised in the frame of standardisation technical committee ISO/TC 201 ‘Surface chemical analysis’, under the lead of KRISS. The main objective of the RRT is to compare the results of atomic fractions of Fe1-xNix and Si1-xGex alloy films obtained by different surface Analysis techniques, such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) applied in the depth-profiling operation mode. Five samples of different atomic fractions of each thin film system, i.e., Fe1-xNix and Si1-xGex, have been grown by ion beam sputter deposition on silicon and Al2O3 wafers, respectively. Reference FeNi and SiGe films with well-known elemental composition and thickness have been also supplied for standard-based analysis. An excellent agreement has been obtained between the atomic fractions determined by EPMA and µ-XRF with the KRISS certified values.zeige mehr KW - Thin film analysis KW - EPMA KW - XRF KW - Fe-Ni KW - Si-Ge PY - 2019 DO - https://doi.org/10.1017/S1431927619009668 VL - 25 SP - 1786 EP - 1787 PB - Cambridge University Press AN - OPUS4-49245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What Can, and Should We Jointly Do? N2 - There are different ways how to prove the quality of the analytical results obtained in a laboratory, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards provide requirements, specifications, Guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals to be developed into new international standards, particularly with respect to recent but established technology, such the silicon drift detector (SDD) EDS. An international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. KW - Data KW - Electron probe microanalysis KW - Electron microscopy KW - VAMAS KW - Iinter-laboratory comparison PY - 2019 DO - https://doi.org/10.1017/S1431927619009541 VL - 25 SP - 1762 EP - 1763 PB - Cambridge University Press AN - OPUS4-49246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular-matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two-months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden and inflammatory activity by dual-probe molecular MRI of progressive atherosclerosis. The in-vivo detection and quantification of different MR biomarkers in a single scan could be useful to improve characterization of atherosclerotic-lesions. KW - In-vivo KW - Molecular MRI PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492514 DO - https://doi.org/10.1038/s41598-019-50100-8 VL - 9 IS - 1 SP - Article number: 13827 PB - Nature AN - OPUS4-49251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirsch, A. A1 - Lohmann, S.-H. A1 - Strelow, C. A1 - Kipp, T. A1 - Würth, Christian A1 - Geißler, Daniel A1 - Komoski, A. A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute A1 - Mews, A. T1 - Fluorescence Quantum Yield and Single-Particle Emission of CdSe N2 - The fluorescence quantum yield (QY) of CdSe dot/CdS rod (DR) nanoparticle ensembles is dependent on the Shell growth and excitation wavelength. We analyze the origin of this dependency by comparing the optical properties of DR ensembles to the results obtained in single-particle experiments. On the Ensemble level, we find that the QY of DRs with shell lengths shorter than 40 nm exhibits no dependence on the excitation wavelength, whereas for DRs with shell lengths longer than 50 nm, the QY significantly decreases for excitation above the CdS band gap. Upon excitation in the CdSe core, the ensemble QY, the fluorescence wavelength, and the fluorescence blinking behavior of individual particles are only dependent on the radial CdS shell thickness and not on the CDs shell length. If the photogenerated excitons can reach the CdSe core region, the fluorescence properties will be dependent only on the surface passivation in close vicinity to the CdSe core. The change in QY upon excitation above the band gap of CdS for longer DRs cannot be explained by nonradiative particles because the ratio of emitting DRs is found to be independent of the DR length. We propose a model after which the decrease in QY for longer CdS shells is due to an increasing fraction of nonradiative exciton recombination within the elongated shell. This is supported by an effective-mass-approximation-based calculation, which suggests an optimum length of DRs of about 40 nm, to combine the benefit of high CdS absorption cross section with a high fluorescence QY. KW - Fluorescence KW - Quantum dot KW - Photophysics KW - Single particle spectroscopy KW - Mechanism KW - Theory KW - Ensemble measurements KW - Quantum yield KW - CdSe KW - CdS shell PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b07957 VL - 123 IS - 39 SP - 24338 EP - 24346 PB - ACS Publications AN - OPUS4-49556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimold, W. U. A1 - Crosta, A. P. A1 - Hasch, M. A1 - Kowitz, Astrid A1 - Hauser, N. A1 - Sanchez, J. P. A1 - Simoes, L. S. A. A1 - de Sanchez, G. J. A1 - Zaag, P. T. T1 - Shock deformation confirms the impact origin for the Cerro do Jarau, Rio Grande do Sul, Brazil, structure N2 - Cerro do Jarau is a conspicuous, circular morpho‐structural feature in Rio Grande do Sul State (Brazil), with a central elevated core in the otherwise flat “Pampas” terrain typical for the border regions between Brazil and Uruguay. The structure has a diameter of approximately 13.5 km. It is centered at 30o12′S and 56o32′W and was formed on basaltic flows of the Cretaceous Serra Geral Formation, which is part of the Paraná‐Etendeka Large Igneous Province (LIP), and in sandstones of the Botucatu and Guará formations. The structure was first spotted on aerial photographs in the 1960s. Ever since, its origin has been debated, sometimes in terms of an endogenous (igneous) origin, sometimes as the result of an exogenous (meteorite impact) event. In recent years, a number of studies have been conducted in order to investigate its nature and origin. Although the results have indicated a possible impact origin, no conclusive evidence could be produced. The interpretation of an impact origin was mostly based on the morphological characteristics of the structure; geophysical data; as well as the occurrence of different breccia types; extensive deformation/silicification of the rocks within the structure, in particular the sandstones; and also on the widespread occurrence of low‐pressure deformation features, including some planar fractures (PFs). A detailed optical microscopic analysis of samples collected during a number of field campaigns since 2007 resulted in the disclosure of a large number of quartz grains from sandstone and monomict arenite breccia from the central part of the structure with PFs and feather features (FFs), as well as a number of quartz grains exhibiting planar deformation features (PDFs). While most of these latter grains only carry a single set of PDFs, we have observed several with two sets, and one grain with three sets of PDFs. Consequently, we here propose Cerro do Jarau as the seventh confirmed impact structure in Brazil. Cerro do Jarau, together with Vargeão Dome (Santa Catalina state) and Vista Alegre (Paraná State), is one of very few impact structures on Earth formed in basaltic rocks. KW - Serra da cangalha KW - Recovery experiments KW - Piaui state KW - Santa-marta KW - Features KW - Pressure KW - GPA KW - Sandstone KW - Geology PY - 2018 DO - https://doi.org/10.1111/maps.13233 SN - 1086-9379 VL - 54 IS - 10 SP - 2384 EP - 2394 PB - Wiley AN - OPUS4-50029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring N2 - In civil engineering, many structures are made of reinforced concrete. Most Degradation processes relevant to this material, e.g., corrosion, are related to an increased level of material moisture. Therefore, moisture monitoring in reinforced concrete is regarded as a crucial method for structural health monitoring. In this study, passive radio frequency identification (RFID)-based sensors are embedded into the concrete. They are well suited for long-term operation over decades and are well protected against harsh environmental conditions. The energy supply and the data transfer of the humidity sensors are provided by RFID. The sensor casing materials are optimised to withstand the high alkaline environment in concrete, having pH values of more than 12. Membrane materials are also investigated to identify materials capable of enabling water vapour transport from the porous cement matrix to the embedded humidity sensor. By measuring the corresponding relative humidity with embedded passive RFID-based sensors, the cement hydration is monitored for 170 days. Moreover, long-term moisture monitoring is performed for more than 1000 days. The Experiments show that embedded passive RFID-based sensors are highly suitable for long-term structural health monitoring in civil engineering. KW - RFID based sensors KW - Embedded sensors KW - Corresponding relative humidity KW - Porous building materials KW - Reinforced concrete KW - Corrosion KW - Civil engineering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500831 DO - https://doi.org/10.3390/s19245514 VL - 19 IS - 24 SP - 1 EP - 18 PB - MDPI CY - Basel, Swiss AN - OPUS4-50083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M.A. A1 - Gebauer, J. A1 - Sommerfeld, Thomas A1 - Koch, Matthias T1 - First Synthesis of (−)-Altenuene-D3 Suitable as Internal Standard for Isotope Dilution Mass Spectrometry N2 - Metabolites from Alternaria fungi exhibit a variety of biological properties such as phytotoxic, cytotoxic, or antimicrobial activity. Optimization of a literature procedure culminated in an efficient total synthesis of (−)-altenuene as well as a stable isotope-labeled derivative suitable for implementation in a LC-MS/MS method for mycotoxin analysis. KW - Altenuene KW - Alternaria mycotoxins KW - Food safety KW - Isotope-labeled KW - SIDA-LC-MS/MS KW - Suzuki coupling PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500696 DO - https://doi.org/10.3390/molecules24244563 SN - 1420-3049 VL - 24 SP - 4563 PB - MDPI CY - Basel AN - OPUS4-50069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyranvand, S. A1 - Pourghobadi, Z. A1 - Sattari, S. A1 - Soleymani, K. A1 - Donskyi, Ievgen A1 - Gharabaghi, M. A1 - Unger, Wolfgang A1 - Farjanikish, G. A1 - Nayebzadeh, H. A1 - Adeli, M. T1 - Boronic acid functionalized graphene platforms for diabetic wound N2 - While noncovalent interactions between graphene derivatives and biosystems are extensively studied, less knowledge about their covalent multivalent interactions at biointerfaces is available. Due to the affinity of boronic acids towards cis-diol bearing biosystems, graphene sheets with this functionality were synthesized and their covalent interactions with the bacteria and nematode were investigated. As expected, graphene platforms with boronic acid functionality were able to wrap bacteria and destroy it in a short time. Surprisingly, body of nematodes was ruptured and their viability decreased to 30% after 24 h incubation with the functionalized graphene sheets. Because of their antibacterial and antiparasitic activities as well as their ability for wound dressing, graphene platforms with the boronic acid functionality were further investigated for diabetic wound healing. In vivo experiments showed that graphene platforms are more efficient than the commercially available drug, phenytoin, and restore both infected and non-infected diabetic wounds in ten days. Taking advantage of their straightforward synthesis, strong interactions with different biosystems as well as their ability to heal diabetic wounds, the boronic Acid functionalized graphene sheets are promising candidates for a broad range of future biomedical applications. KW - Graphene KW - Boronic acid KW - Functionalized graphene KW - XPS PY - 2020 UR - https://www.sciencedirect.com/science/article/abs/pii/S0008622319310954 DO - https://doi.org/doi.org/10.1016/j.carbon.2019.10.077 VL - 158 SP - 327 EP - 336 PB - Elsevier Ltd. AN - OPUS4-50559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepsutlu, B. A1 - Wycisk, V. A1 - Achazi, K. A1 - Kapishnikov, S. A1 - Perez-Berna, A.J. A1 - Guttmann, P. A1 - Cossmer, Antje A1 - Pereiro, E. A1 - Ewers, H. A1 - Ballauff, M. A1 - Schneider, G. A1 - McNally, J.G. T1 - Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings N2 - Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1–6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake. KW - Cellular trafficking KW - Confocal laser scanning microscopy KW - Cytoplasmic remodeling KW - Dendritic polyglycerol sulfate KW - Polyethylenimine KW - 3D ultrastructural analysis KW - Cryo-soft X-ray tomography PY - 2020 DO - https://doi.org/10.1021/acsnano.9b09264 VL - 14 IS - 2 SP - 2248 EP - 2264 AN - OPUS4-50464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Zorn, R. A1 - Lohstroh, W. A1 - Schneider, G. J. A1 - Zamponi, M. A1 - Holerer, O. A1 - Frick, B. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy N2 - The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized gamma-relaxation a lower temperature and a so called alpha-2-relaxation at higher temperatures. The relaxation rates of the alpha-2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric alpha-2-relaxation and follows the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called alpha-1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the alpha-1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy which supports its assignment. The alpha-2-relaxation was assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric gamma-relaxation. KW - Discotic Liquid Crystals PY - 2020 DO - https://doi.org/10.1039/c9sm02487e VL - 16 IS - 8 SP - 2005 EP - 2016 PB - Royal Chemical Society AN - OPUS4-50466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckel, S. A1 - Zscherpel, Uwe A1 - Huthwaite, P. A1 - Paul, N. A1 - Schumm, A. T1 - Radiographic film system classification and noise characterisation by a camera-based digitisation procedure N2 - Extracting statistical characteristics from radiographic films is vital for film system classification and contrast sensitivity evaluation and serves as a basis for film noise simulation. A new method for digitising radiographic films in order to extract these characteristics is presented. The method consists of a camera-based setup and image processing procedure to digitise films. Correct optical density values and granularity can be extracted from the digitised images, which are equal to results obtained by standardised measurement procedures. Specific statistical characteristics of film noise are theoretically derived and subsequently verified by the obtained data, including characteristics such as Gaussianity and spatial spectral characteristics of the optical density fluctuations. It is shown that the presented method correctly measures the granularity of film noise and can therefore replace time-consuming microdensitometer measurements traditionally required for film system classifications. Additionally, the inherent unsharpness of film systems was investigated and compared with literature data. This comparison serves as another validation approach of the presented method. KW - Radiography KW - Image processing KW - Film noise KW - Film system classification KW - Digitisation PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102241 SN - 0963-8695 VL - 111 IS - 4 SP - 102241 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckel, S. A1 - Huthwaite, P. A1 - Zscherpel, Uwe A1 - Schumm, A. A1 - Paul, N. T1 - Realistic film noise generation based on experimental noise spectra N2 - Generating 2D noise with local, space-varying spectral characteristics is vital where random noise fields with spatially heterogeneous statistical properties are observed and need to be simulated. A realistic, non-stationary noise generator relying on experimental data is presented. That generator is desired in areas such as photography and radiography. For example, before performing actual X-ray imaging in practice, output images are simulated to assess and improve setups. For that purpose, realistic film noise modelling is crucial because noise downgrades the detectability of visual signals. The presented film noise synthesiser improves the realism and value of radiographic simulations significantly, allowing more realistic assessments of radiographic test setups. The method respects space-varying spectral characteristics and probability distributions, locally simulating noise with realistic granularity and contrast. The benefits of this approach are to respect the correlation between noise and image as well as internal correlation, the fast generation of any number of unique noise samples, the exploitation of real experimental data, and its statistical non-stationarity. The combination of these benefits is not available in existing work. Validation of the new technique was undertaken in the field of industrial radiography. While applied to that field here, the technique is general and can also be utilised in any other field where the generation of 2D noise with local, space-varying statistical properties is necessary. KW - Nondestructive testing KW - Image quality KW - Noise simulation KW - Radiography PY - 2020 DO - https://doi.org/10.1109/TIP.2019.2955284 SN - 1057-7149 VL - 29 SP - 2987 EP - 2998 PB - IEEE Xplore CY - Washington, D.C. AN - OPUS4-50518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Osterloh, Kurt A1 - Röhrs, S. A1 - Schwabe, A. A1 - Radujcovic, S. A1 - Bücherl, T. A1 - Dangendorf, V. A1 - Zscherpel, Uwe A1 - Reiche, I. A1 - Nüsser, A. ED - Zscherpel, Uwe ED - Kasperl, S. T1 - Elucidating the distribution of organic consolidants in wood by Neutron Tomography N2 - While the absorption of X-rays and gamma radiation is determined by the Z-number of the elements a specimen is composed of, it is the hydrogen making an effective contrast with neutron imaging. As a consequence, interrogating with neutrons presents a suitable tool to study the distribution of organic consolidants in materials such as wood as encountered in impregnated wooden artworks. Four different examples of objects are presented here to demonstrate the potential of neutron CT: 1) small wooden pieces of ship wrecks (< 2 cm thickness) interrogated with cold neutrons (0.5 meV at the ANTARES facility of the FRM II in Garching) to demonstrate the potential and the limitation of using low energy neutrons, 2) a wooden statue soaked with carbolineum (fission neutrons 1.8 MeV at the NECTAR facility of the FRM II), 3) a smaller wooden figure of a skull heavily soaked with carbolineum so it was too tight for the fission neutrons used before with accelerator neutrons (broad range about 5.5 MeV at the PTB in Braunschweig) and 4) pieces of charred wood to study the impregnation with a consolidant (NECTAR, FRM II). With the exception of the last example, all results have been combined with X-ray tomography (BAM 8.3 in Berlin). In the case of the charred wood specimens (example 4) the density histograms of the neutron tomography results were compared with those obtained from untreated references. The observed gain in specific density of the soaked specimens corresponded with an increase of specific weight. All results obtained so far showed distinct distribution patterns attributable to structural peculiarities or organic consolidants providing valuable support for subsequent restoration works. T2 - International symposium on digital industrial radiography and computed tomography DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Neutron Imaging KW - Cold to fast neutron testing KW - Tomography of wood samples KW - Art restauration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505326 UR - https://www.ndt.net/search/docs.php3?id=24740 SN - 1435-4934 VL - 24 IS - 11 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-50532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Structural and Morphological Quantitative 3D Characterisation of Ammonium Nitrate Prills by X-ray Computed Tomography N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency. KW - ANFO KW - Explosives KW - Surface area KW - Porosity KW - XCT KW - Data processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505395 DO - https://doi.org/10.3390/ma13051230 VL - 13 IS - 5 (Special Issue "Micro Non-Destructive Testing and Evaluation") SP - 1230 PB - MDPI AN - OPUS4-50539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebel, Kenny A1 - Bald, Ilko T1 - Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA N2 - The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A4), d(A8), d(A12), d(A16), and d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A4) to d(A16), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A20), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA20 sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy. KW - DNA origami KW - DNA radiation damage KW - DNA strand breaks KW - Low-energy electrons KW - Sequence dependence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503563 DO - https://doi.org/10.3390/ijms21010111 VL - 21 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, C. A1 - Schierack, P. A1 - Gerber, U. A1 - Schröder, C. A1 - Choi, Youngeun A1 - Bald, Ilko A1 - Lehmann, W. A1 - Rödiger, S. T1 - Streptavidin Homologues for Applications on Solid Surfaces at High Temperatures N2 - One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10–15 μm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH–biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH–biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability. KW - Biopolymers Probes KW - Hybridization KW - Fluorescence KW - Genetics PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.9b02339 VL - 36 IS - 2 SP - 628 EP - 636 PB - American Chemical Society Publication CY - Washington AN - OPUS4-50357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 DO - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Gaft, M. A1 - Nagli, L. A1 - Raichlin, Y. T1 - Laser-induced breakdown spectroscopy (LIBS) of BaF2-Tm3+ N2 - Our recent study was focused on the emission from Laser Induced Plasma (LIP) at the delay times of tenths of microseconds after the laser pulse. At these long delays, the spectrum is dominated by the broadband molecular emission and plasma induced luminescence (PIL) produced by a luminescent matrix; only solitary atomic emission lines can be seen. Barium fluoride BaF2 activated by thulium (Tm) is a famous scintillator that presents the promising object for LIP in terms of both the potential for BaF molecular emission and Tm3+ PIL. The detection of molecular and PIL bands presents a new opportunity for analysis of halogens and rare-earth elements, which are the difficult objects for LIBS. In this paper, we show that the UV, Green, Extreme Red, and Infrared molecular bands from BaF and blue luminescence from Tm3+ are present in the LIP emission spectra while the detection of atomic Emission from F I and Tm I was impossible with the same experimental setup. Thus, the detection of molecular emission and PIL can be more sensitive than the traditional detection of Emission from atoms and ions. KW - BaF KW - Laser-Induced Breakdown Spectroscopy (LIBS) KW - Rare-Earth elements (Tm3+) KW - Plasma-induced luminescence PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105767 VL - 164 SP - 105767 PB - Elsevier B.V. AN - OPUS4-50360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Vianello, A. A1 - Vollertsen, J. A1 - Westad, F. A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples N2 - Hyperspectral imaging of environmental samples with infrared microscopes is one of the preferred methods to find and characterize microplastics. Particles can be quantified in terms of number, size and size distribution. Their shape can be studied and the substances can be identified. Interpretation of the collected spectra is a typical problem encountered during the analysis. The image datasets are large and contain spectra of countless particles of natural and synthetic origin. To supplement existing Analysis pipelines, exploratory multivariate data analysis was tested on two independent datasets. Dimensionality reduction with principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) was used as a core concept. It allowed for improved visual accessibility of the data and created a chemical two-dimensional image of the sample. Spectra belonging to particles could be separated from blank spectra, reducing the amount of data significantly. Selected spectra were further studied, also applying PCA and UMAP. Groups of similar spectra were identified by cluster analysis using k-means, density based, and interactive manual clustering. Most clusters could be assigned to chemical species based on reference spectra. While the results support findings obtained with a ‘targeted analysis’ based on automated library search, exploratory analysis points the attention towards the group of unidientified spectra that remained and are otherwise easily overlooked. KW - Microplastics KW - FTIR KW - Exploratory analysis PY - 2020 DO - https://doi.org/10.1039/c9ay02483b VL - 12 IS - 6 SP - 781 EP - 791 PB - Royal Society of Chemistry AN - OPUS4-50396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Becker, C. A1 - Michalchuk, Adam A1 - Linberg, Kevin A1 - Paulus, B. A1 - Emmerling, Franziska T1 - Tuning the Apparent Stability of Polymorphic Cocrystals through Mechanochemistry N2 - Mechanochemistry has become a valuable method for the synthesis of new materials and molecules, with a particular strength for screening and preparing multicomponent crystals. In this work, two novel cocrystals of pyrazinamide (PZA) with pimelic acid (PA) were prepared mechanochemically. Their formation was monitored in real time by in situ synchrotron powder X-ray diffraction. Control over the polymorphic form was obtained through the selective choice of liquid additive via liquid assisted grinding. Slurry experiments and dispersion-corrected density functional theory calculations suggest that Form I is the thermodynamically stable form under ambient conditions. Upon aging, Form II converts to Form I. The stability of Form II upon aging was found to depend strongly on the milling duration, intensity, and material of the milling vessels. Longer or higher energy milling drastically increased the lifetime of the Form II product. For the first time, this work also demonstrates that the choice of milling jar can have a decisive effect on the aging stability of a bulk polymorphic powder. In contrast to material prepared in steel milling vessels, the preparation of Form II in Perspex (PMMA) vessels increased its lifetime 3-fold. These findings offer a new dimension to garnering control over mechanochemical cocrystallization and demonstrate the critical importance of the careful and timely ex situ screening of ball mill grinding reactions. This will be of importance for potential industrial applications of mechanochemical cocrystallization where understanding polymorph longevity is crucial for the development of a robust preparative protocol. KW - Physical and chemical processes KW - Organic compounds KW - Liquids KW - Materials KW - Stability PY - 2019 DO - https://doi.org/10.1021/acs.cgd.9b01158 VL - 19 IS - 12 SP - 7271 EP - 7279 PB - ACS Publications AN - OPUS4-50281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartelmeß, Jürgen A1 - Zimmek, David A1 - Bartholmai, Matthias A1 - Strangfeld, Christoph A1 - Schäferling, M. T1 - Fibre optic ratiometric fluorescence pH sensor for monitoring corrosion in concrete N2 - In this communication a novel concept for pH sensing is introduced which is specifically adapted to monitor carbonation induced corrosion in concrete structures. The method is based on a ratiometric measurement principle, exploiting the pH sensitive colour switching of thymol blue in the basic pH regime and the emissive properties of two different (Zn)CdSe/ZnS core shell quantum dots. The transition point of thymol blue in a Hydrogel D4 matrix was determined to be at around pH 11.6, which fits ideally to the intended application. Next to the fundamental spectroscopic characterization of the ratiometric response, a new design for a sensor head, suitable for the incorporation into concrete matrices is presented. Toward this, a manufacturing process was developed which includes the preparation of a double layer of polymers containing either thymol blue or a quantum dot mixture inside a porous ceramic tube. Results of a proof-of-priciple performance test of the sensor head in solutions of different pH and in cement specimens are presented, with encouraging results paving the way for future field tests in concrete. KW - Fiber optic sensing KW - PH monitoring in concrete KW - Embedded sensors KW - Ratiometric fluorescence PY - 2020 DO - https://doi.org/10.1039/c9an02348h VL - 145 IS - 6 SP - 2111 EP - 2117 PB - Royal Society of Chemistry AN - OPUS4-50381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Wurzler, Nina A1 - Salz, D. A1 - Özcan Sandikcioglu, Özlem A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties N2 - Biofouling constitutes a major challenge in the application of biosensors and biomedical implants, as well as for (food) packaging and marine equipment. In this work, an antifouling surface coating based on the combination of mussel-inspired dendritic polyglycerol (MI-dPG) and an amine-functionalized block copolymer of linear polyglycerol (lPG−b−OA11, OA = oligo-amine) was developed. The coating was compared to a MI-dPG surface which was postfunctionalized with commercially available amine-terminated Polyethylene glycol (HO−PEG−NH2) of similar molecular weight. In the current work, These coatings were compared in their chemical stability, protein fouling characteristics, and cell fouling characteristics. The lPG−b−OA11-functionalized coating showed high chemical stability in both phosphate buffered saline (PBS) and sodium dodecyl sulfate (SDS) solutions and reduced the adhesion of fibrinogen from human plasma with 99% and the adhesion of human serum albumin with 96%, in comparison to the bare titanium dioxide substrate. Furthermore, the Proliferation of human umbilical vein endothelial cells (HUVECs) was reduced with 85% when the lPG−b−OA11 system was compared to bare titanium dioxide. Additionally, a reduction of 94% was observed when the lPG−b−OA11 system was compared to tissue culture polystyrene. KW - Antifouling surface coatings KW - Human umbilical cell adhesion KW - Linear polyglycerol KW - Polyethylene glycol KW - Mussel-inspired adhesives PY - 2019 DO - https://doi.org/10.1021/acsabm.9b00786 VL - 2 IS - 12 SP - 5749 EP - 5759 PB - ACS AN - OPUS4-50342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Morphological characterisation of explosive powders by XCT: When grain numbers count N2 - Ammonium nitrate (AN) prills are commonly used as an ingredient in industrial explosives and in fertilisers. Conventional techniques (such as BET or mercury intrusion porosimetry) can measure the open porosity and specific surface area of AN prill, but the closed porosity is not obtainable. This work was focused on evaluating X-ray computed tomography (XCT) as a non-destructive technique for the assessment of porosity in AN prills. An advanced data processing workflow was developed so that the segmentation and quantification of the CT data could be performed on the entire 3D volume, yet allowing the measurements (e.g.; volume, area, shape factor…) to be extracted for each individual phase (prill, open porosity, closed porosity) of each individual prill, in order to obtain statistically relevant data. Clear morphological and structural differences were seen and quantified between fertiliser and explosive products. Overall, CT can provide a very wide range of parameters that are not accessible to other techniques, destructive or non-destructive, and thus offers new insights and complementary information. T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Ammonium nitrate KW - Prill KW - Non-destructive characterisation KW - Porosity KW - Specific surface area PY - 2020 UR - http://www.ndt.net/?id=25118 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Paciornik, S. A1 - Bruno, Giovanni T1 - Advanced Deep Learning-Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites N2 - The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models. KW - Computed tomography KW - Convolutional neural networks KW - Deep learning KW - Metal matrix composites KW - Segmentations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504261 DO - https://doi.org/10.1002/adem.201901197 SN - 1438-1656 VL - 22 IS - 4 SP - 1901197 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Zancajo, Victor M.R. A1 - Diehn, S. A1 - Filiba, N. A1 - Elbaum, R. T1 - Spectroscopic Discrimination of Sorghum Silica Phytoliths N2 - Grasses accumulate silicon in the form of silicic acid, which is precipitated as amorphous silica in microscopic particles termed phytoliths. These particles comprise a variety of morphologies according to the cell type in which the silica was deposited. Despite the evident morphological differences, phytolith chemistry has mostly been analysed in bulk samples, neglecting differences between the varied types formed in the same species. In this work, we extracted leaf phytoliths from mature plants of Sorghum bicolor (L.) Moench. Using solid state NMR and thermogravimetric analysis, we show that the extraction methods alter greatly the silica molecular structure, its condensation degree and the trapped organic matter. Measurements of individual phytoliths by Raman and synchrotron FTIR microspectroscopies in combination with multivariate analysis separated bilobate silica cells from prickles and long cells, based on the silica molecular structures and the fraction and composition of occluded organic matter. The variations in structure and composition of sorghum phytoliths suggest that the biological pathways leading to silica deposition vary between these cell types. KW - Phytoliths KW - Biosilicification KW - Raman KW - Sorghum KW - Solid state NMR KW - Synchrotron FTIR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502672 DO - https://doi.org/10.3389/fpls.2019.01571 VL - 10 SP - 1571 PB - Frontiers Media CY - Lausanne AN - OPUS4-50267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietz, T. A1 - Gottlieb, Cassian A1 - Kohns, P. A1 - Ankerhold, G. T1 - Comparison of atomic and molecular emission in LIBS for the quantification of harmful species in cement-based materials N2 - Due to the penetration of harmful chlorides into concrete, e.g. from de-icing salt, damage processes such as chloride-related pitting corrosion can occur if critical values are exceeded. In this study, multiphase materials such as chloride-contaminated concrete are examined in detail. A direct comparison is made by analyzing the spectroscopic information of simultaneously measured atomic and molecular emissions with laser-induced breakdown spectroscopy (LIBS). In addition, the influence on the calibration is examined on the basis of the combined spectral information of both reaction paths of the penetrated chlorides. The calibration models of univariate and multivariate methods were validated using reference samples with wet chemical analysis. The results are applied to a concrete sample of a parking deck, which was also analyzed by potentiometric wet chemistry. In order to account for the heterogeneity of concrete, spatially (200 μm) and spectroscopically (0.1 nm) resolved LIBS measurements were performed using a fully automated laboratory system. Simultaneous measurements with three spectrometers allow the analysis of the emission processes of several elements such as Cl, Ca, O, Si and Mg as well as the newly formed molecules CaO and CaCl. The evaluation of the molecular emission in combination with atomic lines extends the analytical performance, since different concrete phases such as aggregates and cement matrix can be better represented. The measurements were carried out in ambient air and with helium purge gas. The limit of detection (LOD) achieved for a combined evaluation of atomic and molecular emission was determined to be 0.028 wt%. KW - Laser-induced breakdown spectroscopy (LIBS) KW - Cement-based materials KW - Atomic and molecular mapping KW - Chemometrics PY - 2019 DO - https://doi.org/10.1016/j.sab.2019.105707 SN - 0584-8547 VL - 161 SP - 105707 PB - Elsevier B.V. AN - OPUS4-50438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tjaden, B. A1 - Lisec, Jan A1 - Schramm, A. T1 - N-Myc-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma N2 - N-Myc is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of Myc family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of Myc proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of N-Myc overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of N-Myc induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of N-Myc. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of N-Myc overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered N-Myc induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation. KW - Mass-Spectrometry KW - Cancer KW - MYCN PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507193 DO - https://doi.org/10.1038/s41598-020-64040-1 VL - 10 IS - 1 SP - 7157 AN - OPUS4-50719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noureen, N. A1 - Shah, F. A. A1 - Lisec, Jan A1 - Usman, H. A1 - Khalid, M. A1 - Munir, R. A1 - Zaidi, N. T1 - Revisiting the Association between Human Leukocyte Antigen and End-Stage Renal Disease N2 - Multiple works have studied possible associations between human leukocyte antigen (HLA) alleles and end stage renal disease (ESRD). However, there are several contradictions in these previous works and no consistent HLA associations with ESRD itself have been identified. Most of these works have several limitations, for instance, the population size was too small, or only limited HLA loci were studied. The presented work aims to revisit the association between ESRD and HLA antigens while taking in to account the previously overlooked limitations. Here, we compared the HLA polymorphism (at HLA-A, -B, -C, -DRB1, -DQB1 and DQA1 loci) in ESRD patients (n=497) and controls (n=672). Our data identified several HLA alleles that displayed a significant positive or negative association with ESRD. We also determined whether heterozygosity or homozygosity of the ESRD-associated HLA alleles at different loci could modify the prevalence of the disease. Few HLA allele combinations displayed significant associations with ESRD among which HLA-A*3 –HLA-A*26 combination showed the highest strength of association (OR= 4.488, P≤ 0.05) with ESRD. However, the age of ESRD onset was not affected by HLA allele combinations at different loci. Most of the previous works have studied the association of HLA with ESRD in homogeneous ethnic groups and have interpreted their data accordingly. Here, we also performed an extensive literature analysis to determine whether the association of HLA to ESRD can be similar across different ethnic groups. This analysis showed that at least for certain alleles, the association of HLA to ESRD can be similar in different ethnic groups. For instance, HLA-A*11, HLA-DRB1*11, and HLA-DRB1*4 all showed significant positive associations with ESRD in different ethnic groups. The findings of our study will help in determining possible protective or susceptible roles of various HLA alleles in ESRD. KW - Mass-Spectrometry KW - HLA KW - Renal disease PY - 2020 DO - https://doi.org/10.1101/2020.03.18.996330 SP - 1 EP - 23 AN - OPUS4-50720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - O’Callaghan, S.-L. A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Structural annotation of electro- and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry N2 - Moxidectin (MOX) is a widely used anthelmintic drug for the treatment of internal and external parasites in food-producing and companion animals. Transformation products (TPs) of MOX, formed through metabolic degradation or acid hydrolysis, May pose a potential environmental risk, but only few were identified so far. In this study, we therefore systematically characterized electro- and photochemically generatedMOX TPs using high-resolution mass spectrometry (HRMS). Oxidative electrochemical (EC) TPs were generated in an electrochemical reactor and photochemical (PC) TPs by irradiation with UV-C light. Subsequent HRMS measurements were performed to identify accuratemasses and deduce occurring modification reactions of derived TPs in a suspected target analysis. In total, 26 EC TPs and 59 PC TPs were found. The main modification reactions were hydroxylation, (de-)hydration, and derivative formation with methanol for EC experiments and isomeric changes, (de-)hydration, and changes at the methoxime moiety for PC experiments. In addition, several combinations of different modification reactions were identified. For 17 TPs, we could predict chemical structures through interpretation of acquired MS/MS data. Most modifications could be linked to two specific regions of MOX. Some previously described metabolic reactions like hydroxylation or O-demethylation were confirmed in our EC and PC experiments as reaction type, but the corresponding TPs were not identical to known metabolites or degradation products. The obtained knowledge regarding novel TPs and reactions will aid to elucidate the degradation pathway of MOX which is currently unknown. KW - Moxidectin KW - Transformation products KW - Electrochemical Reactor PY - 2020 DO - https://doi.org/10.1007/s00216-020-02572-1 VL - 412 IS - 13 SP - 3141 EP - 3152 PB - Springer AN - OPUS4-50721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Dell’Aglio, M. A1 - Motto-Ros, V. A1 - Pelascini, F. A1 - De Giacomo, A. T1 - Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during Pulsed Laser Ablation (PLAL) in Liquid for NPs production and consequent considerations on NPs formation N2 - In this paper experimental temperature and density maps of the laser induced plasma in water during Pulsed Laser ablation in Liquid (PLAL) for the production of metallic nanoparticles (NPs) has been determined. A detection system based on the simultaneous acquisition of two emission images at 515 and 410 nm has been constructed and the obtained images have been processed simultaneously by imaging software. The results of the data analysis show a variation of the temperature between 4000 and 7000 K over the plasma volume. Moreover, by the study of the temperature distribution and of the number densities along the plasma expansion axis it is possible to observe the condensation zone of the plasma where NPs can be formed. Finally, the time associated to the electron processes is estimated and the plasma charging effect on NPs is demonstrated. The set of observations retrieved from these experiments suggests the importance of the plasma phase for the growth of NPs and the necessity of considering the spatial distribution of plasma parameters for the understanding of one of the most important issues of the PLAL process, that is the source of solid material in the plasma phase. KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Nanoparticle formation PY - 2019 DO - https://doi.org/10.1088/1361-6595/ab369b VL - 28 IS - 8 SP - Article Number: 085017 PB - IOP Publishing AN - OPUS4-48753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Dariz, P. T1 - Raman band widths of anhydrite II reveal the burning history of high‐fired medieval gypsum mortars N2 - When used as a mineral binder, gypsum is thermally dehydrated and mixed with water, resulting in a paste hardening in the backreaction to calcium sulphate dihydrate (CaSO4 · 2 H2O). Although nowadays mainly hemihydratebased (CaSO4 · ½ H2O) binders are employed, higher firing temperatures in medieval kilns yielded anhydrite II (CaSO4). Except for the discrimination of the metastable phases anhydrite III and I due to different crystal structures, variations within the production temperature range of anhydrite II (approximately 300 to 1180°C) were not analytically accessible until recently. This study describes the development of an analytical technique, which is based on steady changes of band widths in room‐temperature Raman spectra of anhydrite II as a function of burning temperature. Raman microspectroscopic mapping experiments enable to pinpoint individual unreacted grains of thermal anhydrite in mortars and to discriminate them from natural anhydrites originating from the raw gypsum. The determination of band full widths at half maximum of down to 3 cm−1 and differences between them of a few tenths of wavenumbers is not a trivial task. Thus, a focus of this work is on peak fitting and strategies for correction of instrument‐dependent band broadening, which is often neglected also beyond the field of mortar analysis. Including other potential influences on band widths, burning temperatures of 400 to 900°C can be retraced in high‐fired medieval gypsum mortars with an uncertainty of approximately ± 50 K, as demonstrated with sample material of a stucco sculpture dated around 1400. KW - Analytical methods KW - Gypsum dehydration KW - High-fired gypsum mortar KW - Raman band width determination KW - Thermal anhydrite PY - 2019 DO - https://doi.org/10.1002/jrs.5632 SN - 1097-4555 VL - 50 IS - 8 SP - 1154 EP - 1168 PB - Wiley AN - OPUS4-48757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry N2 - We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (fg) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 μm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 μm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell KW - Spheroid PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b02239 DO - https://doi.org/10.1021/acs.analchem.9b02239 SN - 0003-2700 VL - 91 IS - 15 SP - 10197 EP - 10203 PB - American Chemical Society, ACS Publications CY - Washington D.C. AN - OPUS4-48719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beck, Joana T1 - Review: Fitz's Atlas™of coating surveys N2 - Fitz's Atlas of coating surveys is designed as loose‐leave binder with a resistant cover that not only provides the possibility of updating the Atlas easily but also makes it practicable for on‐site use. This binder is well structured by sheet dividers with tabs for each of the 16 chapters. All in all, this atlas supports the surveyor by giving practicable hints and advice, lists and pictures to prepare and conduct investigations and write surveys. KW - Coating KW - Survey KW - Protection PY - 2019 DO - https://doi.org/10.1002/maco.201970084 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 8 SP - 1508 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Cuellar-Camach, J.L. A1 - Guday, G. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Osterrieder, K. A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions N2 - As resistance to traditional drugs emerges for treatment of Virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex Virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3–C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic Inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications. KW - Functionalized nanographene KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS KW - Antiviral activity PY - 2019 DO - https://doi.org/10.1039/c9nr05273a SN - 2040-3364 VL - 11 IS - 34 SP - 15804 EP - 15809 PB - The Royal Society of Chemistry AN - OPUS4-48807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 DO - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed Zafar A1 - Campbell, B. J. A1 - Jansen, M. T1 - Topotactic, pressure-driven, diffusion-less phasetransition of layered CsCoO2to a stuffedcristobalite-type configuration N2 - CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation at 100 K, which corresponds to a structuralrelaxation with concurrent tilting and breathing modes of edge-sharing CoO4tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity ofthe tetrahedra. At 923 K and 2 GPa, beta-CsCoO2 undergoes a first-order phasetransition to a new quenchable high-pressure polymorph,alpha-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powderdiffraction data, the new high-pressure polymorph gamma-CsCoO2 crystallizes in the tetragonal space groupI41/amd:2 (Z= 4) with the lattice constants a= 5.8711 (1) and c= 8.3214 (2) A, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure-CsCoO2polymorph.The pressure-induced transition (beta>gamma) is reversible;-CsCoO2 stays metastable under ambient conditions, but transforms back to the-CsCoO2structure upon heating to 573 K. The transformation pathway revealed isremarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry oftheir common subgroupPb21a(alternative setting of space group No. 29 that matches the conventional-phase cell). KW - Structures under extreme conditions KW - Topotactic phase transitions KW - Transformation pathways KW - Oxocobaltates KW - Cristobalite frameworks PY - 2019 DO - https://doi.org/10.1107/S2052520619008436 SN - 2052-5206 VL - 75 IS - 4 SP - 704 EP - 710 PB - International Union of Crystallography AN - OPUS4-48782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munasir, A1 - Triwikantoro, A1 - Zainuri, M. A1 - Bäßler, Ralph A1 - Darminto, T1 - Corrosion Polarization Behavior of Al-SiO2 Composites in 1M NaCl and Related Microstructural Analysis N2 - The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The study was also equipped with scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) investigations. Before exposure, Al-SiO2(T) exhibited the best corrosion resistance. Performance improvement was indicated by Al-SiO2(B) up to 10 times better than Al-SiO2(T) after exposure. The increased SiO2 content did not significantly enhance the corrosion resistance of the composites. The Al-SiO2 composites with 5% SiO2 content showed very high corrosion resistance (as the optimum composition). Furthermore, pitting corrosion was observed in the Al-SiO2 composites, indicated by the formation of corrosion products at grain boundaries. The product was affected by the presence of SiO2 in the Al matrix and the NaCl environment at 90 °C (approach to synthetic geothermal media: Na+, Cl, H+, OH-). Our study revealed the presence of γ-Al2O3, γ-Al(OH)3, and Al(OH)2Cl as the dominant corrosion products. KW - Al-Composite KW - Corrosion KW - Corrosion rate KW - SiO2 Nanoparticle KW - Tafel Plot PY - 2019 DO - https://doi.org/10.5829/ije.2019.32.07a.11 SN - 1025-2495 SN - 1735-9244 VL - 7 IS - 32 SP - 982 EP - 990 PB - Materials and Energy Research Center AN - OPUS4-48742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huan, Y. A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. A1 - Liu, D. A1 - Rong, M. T1 - Dynamics of laser-induced plasma splitting N2 - The dynamics of laser-induced plasma plume splitting is investigated using spatiotemporal plasma imaging and spectrometry in this paper. Plasma plume splitting into fast and slow components is clearly observed using plasma optical emission as time evolves. The spatial resolved plasma spectra are used to investigate the plasma species distribution, which reveals that the charged copper ions, which radiate at wavelength range 485 nm - 504 nm, are merely present in the fast component. In order to further interpret the mechanism, the pressure-dependent and laser energy-dependent plume splitting are analyzed. Based on the results, the charge separation field is proposed to explain this phenomenon. This work can be of importance for such areas as laser induced breakdown spectroscopy, laser-induced ion source formation, pulse laser deposition, film growth, and nanoscale synthesis. KW - Spectroscopy KW - Laser induced plasma KW - Splitting KW - Imaging PY - 2020 DO - https://doi.org/10.1016/j.optlaseng.2019.105832 SN - 0143-8166 VL - 124 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-48746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faes, W. A1 - Lecompte, S. A1 - van Bael, J. A1 - Salenbien, R. A1 - Bäßler, Ralph A1 - Bellemans, I. A1 - Cools, P. A1 - de Geyter, N. A1 - Morent, R. A1 - Verbeken, K. A1 - de Paepe, M. T1 - Corrosion behaviour of different steel types in artificial geothermal fluids N2 - Geothermal energy is an interesting alternative to polluting fossil energy sources. Therefore, in Belgium, two wells have been drilled for a deep geothermal power plant. However, the environment to which the installations are exposed is challenging. The geothermal brine has 165 g/l total dissolved solids (of which 90% are sodium and chlorine) and the production temperature can be up to 130 °C. To assess their suitability to be used in a geothermal power plant, the corrosivity of the artificial brine to three common construction materials was investigated with exposure and electrochemical tests. The metals under consideration are a low-alloyed carbon steel (S235JR), an austenitic stainless steel (UNS S31603) and a duplex stainless steel (UNS S31803). The carbon steel, that was found to corrode uniformly, could be considered as a constructional material if a sufficient wall thickness is chosen. The austenitic stainless steel and the duplex stainless steel demonstrate very low uniform corrosion rates. They are however susceptible to pitting and crevice corrosion. To guarantee safe operation of the geothermal power plant, the susceptibility of the alloys to stress corrosion cracking should be tested and in situ experiments should be performed. KW - Geothermal energy KW - Corrosion KW - Carbon dioxide KW - Carbon steel KW - Stainless steel PY - 2019 DO - https://doi.org/10.1016/j.geothermics.2019.05.018 SN - 0375-6505 VL - 82 IS - 11 SP - 182 EP - 189 PB - Elsevier Ltd. AN - OPUS4-48759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Hertwig, Andreas A1 - Kotil, L. A1 - Kraehnert, R. T1 - Analysis of elemental composition and porosity of mesoporous iridium titanium mixed oxide thin films for energy application by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films KW - NanoSIMS PY - 2019 DO - https://doi.org/10.1017/S1431927619009589 SN - 1431-9276 (Print) SN - 1435-8115 (Online) VL - 25 IS - S2 (August) SP - 1770 EP - 1771 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-48768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Paz, B. A1 - Völling, E. T1 - On the ore provenance of the Trojan silver artefacts N2 - Lead isotopes are a well-established tool to trace the geographic origin of samples and artefacts in archaeology and geochemistry. In archaeology, lead isotopes are often applied to gain information on the provenance of the used ores especially in lead and silver artefacts. The assignment of a specific and unambiguous provenance in most cases is not possible or at least hindered due to several limitations such as ore deposits overlapping in their lead isotopic composition, a large spread within one ore deposit or a missing overlap with known mining sites. Such difficult cases can only be solved by using information from sources being independent of the isotope data. This information can be of chemical nature such as concentrations of key elements or they can be of archaeological nature such as cultural or trade route information.Within this study, we combined lead isotope data of ores and artefacts with silver mass fractions in the ore deposits, Au/Ag-ratios in ores and artefacts and finally archaeological Information on the cultural context in the Mediterranean and Anatolian Region. This approach enabled us to significantly reduce the potential number of mining regions. Finally, the potential sources could be narrowed down to the three remaining locations the Central Taurus, Arap Dağ and the Eastern Troad. Beneath these three locations, the Central Taurus shows the highest probability for the geographic origin of the galena which has been used to create the Trojan silver artefacts. KW - Trojan silver artefacts KW - Priam's treasure KW - Lead isotope composition KW - Central Taurus KW - Ore provenance KW - Elemental composition PY - 2019 DO - https://doi.org/10.1007/s12520-018-0756-x SN - 1866-9557 SN - 1866-9565 VL - 11 IS - 7 SP - 3267 EP - 3277 PB - Springer Verlag AN - OPUS4-48272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489172 DO - https://doi.org/10.1002/open.201900215 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Procop, Mathias A1 - Hodoroaba, Vasile-Dan T1 - Uncertainties in secondary fluorescence correction in EPMA N2 - Secondary fluorescence is an inevitable effect that has to be taken into account in any algorithm for quantitative electron probe microanalysis (EPMA) as an additional correction. Moreover, secondary fluorescence worsens spatial resolution of EPMA. Secondary fluorescence is excited both by characteristic radiation and by the X-ray continuum. In most cases the correction is small. There are, however, cases, e.g. the determination of low heavy metal concentration in a light matrix, where the contribution of secondary fluorescence exceeds 10% of the measured X-ray line intensity. For secondary fluorescence correction the measured X-ray line intensity has to be divided by the correction factor (1+I_flchar/I_p +I_flcont/I_p )≈(1+I_flchar/I_p )(1+I_flcont/I_p ) in order to get those intensity I_p, which is excited only by the primary electrons. I_flchar and I_flcont mean the calculated characteristic and continuums fluorescence intensities. In order to get the intensity of fluorescence radiation, the absorption of the exciting radiation in the specimen, the photoionization probability and the self-absorption of the emitted line must be calculated. The critical quantity is the X-ray yield of the exciting atoms in case of fluorescence by characteristic radiation and the bremsstrahlung yield of the specimen in case of continuum fluorescence. In the former case it is reasonable to apply the same physical model to calculate I_flchar and I_p. KW - EPMA KW - Secondary fluorescence correction KW - Uncertainties KW - Microanalysis PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/uncertainties-in-secondary-fluorescence-correction-in-epma/AA92E973D350A74C574067AAFB2D9044 DO - https://doi.org/10.1017/S1431927619012534 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2360 EP - 2361 PB - Cambridge University Press AN - OPUS4-48863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Hodoroaba, Vasile-Dan T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials N2 - Most industrial nanoparticles have non-spherical shapes and also possess polydisperse size distributions, and due to their agglomeration/ aggregation state are difficult (or even impossible) to be addressed individually. Further, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). KW - Nanoparticles KW - Imaging KW - Non-spherical KW - Reference material KW - Particle size distribution PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/towards-accurate-analysis-of-particle-size-distribution-for-nonspherically-shaped-nanoparticles-as-quality-control-materials/CD48E9298865410124E22837D8CF73A0 DO - https://doi.org/10.1017/S1431927619012376 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2328 EP - 2329 PB - Cambridge University Press AN - OPUS4-48856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Kaiser, Martin ED - Würth, Christian ED - Kraft, Marco ED - Soukka, T. T1 - Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations N2 - We assessed the influence of Yb3+ and Er3+ dopant concentration on the relative spectral distribution, quantum yield (  UC), and decay kinetics of the upconversion luminescence (UCL) and particle brightness (BUC) for similarly sized (33 nm) oleate-capped -NaYF4:Yb3+,Er3+ upconversion (UC) nanoparticles (UCNPs) in toluene at broadly varied excitation power densities (P). This included an Yb3+ series where the Yb3+ concentration was varied between 11%–21% for a constant Er3+ concentration of 3%, and an Er3+ series, where the Er3+ concentration was varied between 1%–4% for a constant Yb3+ concentration of 14%. The results were fitted with a coupled rate equation model utilizing the UCL data and decay kinetics of the green and red Er3+ emission and the Yb3+ luminescence at 980 nm. An increasing Yb3+ concentration favors a pronounced triphotonic population of 4F9/2 at high P by an enhanced back energy transfer (BET) from the 4G11/2 level. Simultaneously, the Yb3+-controlled UCNPs absorption cross section overcompensates for the reduction in  UC with increasing Yb3+ concentration at high P, resulting in an increase in BUC. Additionally, our results show that an increase in Yb3+ and a decrease in Er3+ concentration enhance the color tuning range by P. These findings will pave the road to a deeper understanding of the energy transfer processes and their contribution to efficient UCL, as well as still debated trends in green-to-red intensity ratios of UCNPs at different P. KW - Nanoparticle KW - Lanthanide KW - Upconversion nanoparticle KW - Fluorescence KW - Integration sphere spectroscopy KW - Mechanism KW - Lifetime, synthesis KW - Surface chemistry KW - Yb(III) KW - Er(III) KW - Energy transfer KW - Absolute measurement KW - Quantum yield PY - 2019 DO - https://doi.org/10.1007/s12274-019-2450-4 SN - 1998-0124 SN - 1998-0000 VL - 12 IS - 8 SP - 1871 EP - 1879 PB - Springer AN - OPUS4-48880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jarvis, B. A1 - Wilrich, Cordula A1 - Wilrich, P.-Th. T1 - Estimation of the POD function and the LOD of a binary microbiological measurement method from an interlaboratory experiment N2 - Background: We deal with interlaboratory experiments (collaborative studies) in which k participating laboratories, selected randomly from a population of laboratories, use samples from one and the same material or matrix. They perform binary microbiological measurements for which the measurement results are either “0” (target microorganisms not detected) or “1” (target microorganisms detected). The performance of such a measurement method is described by its probability of detection (POD) function, i.e., the POD as a function of the contamination of the sample (CFU per gram or CFU per milliliter), or by the level of detection (LODp), i.e., the contamination level of the sample that is detected (measurement result “1”) with a specified probability p. Objective: We derive an approximate statistical analysis that is simple enough to be implemented in a spreadsheet application. Methods: Under the assumption of a Poisson distribution of the number of CFU in the samples, we estimate the mean POD function of the laboratories and the SD of the laboratory effect based on a complementary log-log model, a special case of the Generalized Linear Model in the special situation in which the contamination level is known by means other than the POD. The estimates are obtained by maximization of the Laplace approximation of the likelihood function. By simulation, a bias correction factor for the estimate of the SD is obtained. With the estimated POD function, LODs can be estimated. The model can also be used to evaluate the relative LOD of an alternative method with repect to a reference method. Results: The EXCEL program PODLOD-interlab_ver1.xls for this method of statistical analysis can be downloaded from http://www.wiwiss.fu-berlin.de/fachbereich/vwl/iso/ehemalige/wilrich. Highlights: A simple approximate statistical method for the estimation of the POD and LOD is derived. The method also allows the estimation of the RLOD of an alternative Microbiological Methods Received December 11, 2018. Accepted by AH April 5, 2019. Estimation of the POD Function and the LOD of a Binary Microbiological Measurement Method from an Interlaboratory Experiment Basil Jarvis, Ross Biosciences Ltd, Upton Bishop, Ross-on-Wye HR9 7UR, United Kingdom; Cordula Wilrich, Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin, Germany; Peter-Theodor Wilrich, Freie Universität Berlin, Institut für Statistik und Ökonometrie, Garystrasse 21, D-14195 Berlin, Germany. DOI: https://doi.org/10.5740/jaoacint.18-0412 method with respect to reference method. The method is implemented in an EXCEL program that can be downloaded from http://www.wiwiss.fu-berlin.de/fachbereich/vwl/iso/ehemalige/wilrich. KW - Probability of detection KW - POD KW - Level of detection KW - Limit of detection KW - LOD KW - Interlaboratory experiment KW - Collaborative studies KW - Qualitative measurements KW - Binary measurement KW - Microbiological measurement PY - 2019 UR - https://aoac.publisher.ingentaconnect.com/contentone/aoac/jaoac/2019/00000102/00000005/art00042 DO - https://doi.org/10.5740/jaoacint.18-0412 SN - 1060-3271 SN - 1944-7922 VL - 102 IS - 5 SP - 1617 EP - 1623 PB - AOAC International CY - Gaithersburg, USA, MD, 20877-2504 AN - OPUS4-48883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Soyka, J. A1 - Brülls, S. A1 - Er, J. A1 - Hoffmann, Katrin A1 - Beerhues, J. A1 - Sakar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif N2 - A new fluorescent pentaphene derivative is presented that differs from hexabenzocoronene (HBC) by one carbon atom in the basal plane skeleton. A 500% increased fluorescence quantum yield is measured compared to the HBC derivative. The pentaphene compound, obtained by a modified Scholl oxidation, is also emissive in the solid-state, due to the packing motif in the crystal. KW - Hexabenzocoronenes KW - Pentaphenes KW - Solid-state fluorescence PY - 2019 DO - https://doi.org/10.1039/c9cc05451k SN - 1364-548X N1 - Corrigendum: Chemical Communications 55 (2019) 12879 VL - 55 IS - 71 SP - 10515 EP - 10518 PB - The Royal Society of Chemistry AN - OPUS4-48908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faßbender, Sebastian A1 - Döring, A.-K. A1 - Meermann, Björn T1 - Development of complementary CE-MS methods for speciation analysis of pyrithione-based antifouling agents N2 - In the recent decade, metal pyrithione complexes have become important biocides for antifouling purposes in shipping. The analysis of metal pyrithione complexes and their degradation products/species in environmental samples is challenging because they exhibit fast UV degradation, transmetalation, and ligand substitution and are known to be prone to spontaneous species transformation within a chromatographic system. The environmental properties of the pyrithione species, e.g., toxicity to target and non-target organisms, are differing strongly, and it is therefore inevitable to identify as well as quantify all species separately. To cope with the separation of metal pyrithione species with minimum species transformation during analysis, a capillary electrophoresis (CE)–based method was developed. The hyphenation of CE with selective electrospray ionization- and inductively coupled plasma–mass spectrometry (ESI-, ICP-MS) provided complementary molecular and elemental information for the identification and quantification of pyrithione species. To study speciation of pyrithiones, a leaching experiment of several commercial antifouling paints containing zinc pyrithione in ultrapure and river water was conducted. Only the two species pyrithione (HPT) and dipyrithione ((PT)2) were found in the leaching media, in concentrations between 0.086 and 2.4 μM (HPT) and between 0.062 and 0.59 μM ((PT)2), depending on the paint and leaching medium. The limits of detection were 20 nM (HPT) and 10 nM ((PT)2). The results show that complementary CE-MS is a suitable tool for mechanistical studies concerning species transformation (e.g., degradation) and the identification of target species of metal pyrithione complexes in real surface water matrices, laying the ground for future environmental studies. KW - Complementary MS KW - Environmental speciation KW - Capillary electrophoresis-mass spectrometry KW - Antifouling biocides PY - 2019 DO - https://doi.org/10.1007/s00216-019-02094-5 SN - 1618-2642 VL - 411 IS - 27 SP - 7261 EP - 7272 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-48962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Özelci, Ersan A1 - Rühle, Bastian A1 - Weigert, Florian A1 - Lubotzky, B. A1 - Kewes, G. A1 - Resch-Genger, Ute A1 - Benson, O. T1 - Quantitative measurements of the pH-sensitive quantum yield of fluorophores in mesoporous silica thin films using a drexhage-type experiment N2 - The photoluminescence quantum yield characterizes the performance of emitters for applications in optical devices, as reporters or probes in material and analytical sciences, and for sensing applications. Quantum yield measurements are challenging for luminescent molecules and nanocrystals immobilized in thin films for many sensor applications, particularly if spatially resolved quantitative luminescence information is desired. We show here that a Drexhage-type experiment, where a silver-coated millimeter-sized sphere is used to modify the local density of states, can provide an elegant approach to counter this challenge. As a representative example of the potential of this method, we measure the pH-dependent photoluminescence quantum yield of fluorescein isothiocyanate bound to a thin mesoporous silica film. The results were compared with those of the studies on the pH dependence of the same dye in solution. We found that our approach can link single fluorophore studies to ensemble measurements and pave the way for the spatially resolved fluorescence measurements of ultralow concentrations of emitters utilized as optically active elements and reporters in thin sensor films or incorporated into membranes. KW - Fluorescence KW - Quantum yield KW - Method KW - pH KW - Dye KW - Sensor KW - Fluorescein KW - Film KW - Silica KW - Single molecule KW - Lifetime KW - Absolute quantum yield PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b03917 SN - 1932-7447 SN - 1932-7455 VL - 123 IS - 33 SP - 20468 EP - 20475 PB - ACS Publications AN - OPUS4-48984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lopez-Serrano Oliver, Ana A1 - Haase, A. A1 - Peddinghaus, A. A1 - Wittke, D. A1 - Jakubowski, Norbert A1 - Luch, A. A1 - Grützkau, A. A1 - Baumgart, S. T1 - Mass cytometry enabling absolute and fast quantification of silver nanoparticle uptake at the single cell level N2 - In the last decades, significant efforts have been made to investigate possible cytotoxic effects of metallic nanoparticles (NPs). Methodologies enabling precise information regarding uptake and intracellular distribution of NPs at the single cell level remain to be established. Mass cytometry (MC) has been developed for high-dimensional single cell analyses and is a promising tool to quantify NP−cell interactions. Here, we aim to establish a new MC-based quantification procedure to receive absolute numbers of NPs per single cell by using a calibration that considers the specific transmission efficiency (TE) of suspended NPs. The current MC-quantification strategy accept TE values of complementary metal solutions. In this study, we demonstrate the different transmission behavior of 50 nm silver NPs (AgNP) and silver nitrate solution. We have used identical AgNPs for calibration as for in vitro-differentiated macrophages (THP-1 cell line) in a time- and dose-dependent manner. Our quantification relies on silver intensities measuring AgNPs in the same detection mode as the cells. Results were comparable with the TE quantification strategy using AgNPs but differed when using ionic silver. Furthermore, intact and digested cell aliquots were measured to investigate the impact of MC sample processing on the amount of AgNPs/cell. Taken together, we have provided a MC-specific calibration procedure to precisely calculate absolute numbers of NPs per single cell. Combined with its unique feature of multiplexing up to 50 parameters, MC provides much more information on the single cell level than single cell-inductively coupled plasma mass spectrometry (SC-ICP-MS) and, therefore, offers new opportunities in nanotoxicology. KW - ICP-MS KW - Nanoparticle KW - Cell KW - SC-ICP-MS KW - Mass cytometry PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01870 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11514 EP - 11519 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mutruc, D. A1 - Goulet-Hanssens, A. A1 - Fairmann, S. A1 - Wahl, S. A1 - Zimathies, Annett A1 - Knie, C. A1 - Hecht, S. T1 - Modulating Guest Uptake in Core-Shell MOFs with Visible Light N2 - A two-component core-shell UiO-68 type metal-organic framework (MOF) with a nonfunctionalized interior for efficient guest uptake and storage and a thin light-responsive outer shell was prepared by initial solvothermal MOF synthesis followed by solvent-assisted linker exchange. The bulky shell linker features two tetra-ortho-fluorinated azobenzene moieties to exploit their advantageous photoisomerization properties. The obtained perfect octahedral MOF single crystals can be switched repeatedly and with an unprecedented efficiency between E- and Z-rich states using visible light only. Due to the high photoswitch density per pore of the shell layer, its steric demand and thus molecular uptake (and release) can be conveniently modulated upon green and blue light irradiation. Therefore, the "smart" shell acts as a light-controlled kinetic barrier or "gate" for the diffusion of cargo molecules in and out of the MOF crystals. KW - Visible light KW - Azobenzene KW - Guest uptake/release KW - Metal– organic frameworks KW - Photochromism PY - 2019 DO - https://doi.org/10.1002/anie.201906606 VL - 58 SP - 12862 EP - 12867 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Birk, C. T1 - A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment N2 - This paper presents an approach to the automatic enrichment of finite elements in the vicinity of a stress singularity. The enrichment consists of semi-analytical singular modes constructed using the Scaled Boundary Finite Element Method (SBFEM). In contrast to analytical methods, the SBFEM provides modes for inhomogeneous and anisotropic materials without additional effort. The finite element basis can be of arbitrary order and remains unaltered by the enrichment. The approach requires enrichment in only one layer of elements around a node. Due to the compatibility of SBFEM with FEM, there is no Need for transitional elements, and there are no parasitic terms. The approach is tested for several benchmark problems. The stress intensity factors are computed based on techniques inspired by the SBFEM. The proposed procedure is compared to a Standard finite element implementation and shows a significant improvement in the error of the displacement field for problems involving singular stresses. KW - Enriched finite element method KW - Scaled boundary finite element method KW - Stress intensity factors KW - Singular stress PY - 2019 DO - https://doi.org/10.1016/j.cma.2019.06.025 VL - 355 SP - 135 EP - 156 PB - Elsevier B.V. AN - OPUS4-48979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Schwerdtle, T. A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion N2 - Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles (AgNPs)-based coating. By Controlling surface polymerization of mussel-inspired dendritic polyglycerol (MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli (E. coli) DH5a and Staphylococcus aureus (S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry (ICP-MS) and bacterial viability tests. Furthermore, the Antifouling properties of the coatings in relation to the antibacterial properties were evaluated. KW - Antibacterial surface coatings KW - Silver nanoparticles KW - XPS KW - Mussel-inspired dendritic polyglycerol (MI-dPG) PY - 2019 DO - https://doi.org/10.1039/c9tb00534j SN - 2050-750X SN - 2050-7518 VL - 7 IS - 21 SP - 3438 EP - 3445 PB - The Royal Society of Chemistry AN - OPUS4-48520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Imaging of Ag NP transport through collagen-rich microstructures in fibroblast multicellular spheroids by high-resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry N2 - We investigated the penetration of silver nanoparticles (Ag NPs) into a three-dimensional in vitro tissue analog using NPs with various sizes and surface coatings, and with different incubation times. A high-Resolution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) time-of-flight (TOF) instrument was applied for imaging the distributions of elements in thin sample sections (20 μm thick). A fibroblast multicellular spheroid (MCS) was selected as the model system and cultured for more than 8 days to produce a natural barrier formed by the extracellular matrix containing collagen. The MCS was then exposed for up to 48 h to one of four types of Ag NPs (∅ 5 nm citrate coated, ∅ 20 nm citrate coated, ∅ 20 nm polyvinylpyrrolidone coated, and ∅ 50 nm citrate coated). Imaging showed that the penetration pathway was strongly related to steric networks formed by collagen fibrils, and Ag NPs with a hydrodynamic diameter of more than 41 nm were completely trapped in an outer rim of the MCSs even after incubation for 48 h. In addition, we examined the impact of these NPs on essential elements (P, Fe, Cu, and Zn) in areas of Ag NP accumulation. We observed a linear increase at the sub-femtogram level in the total concentration of Cu (fg per pixel) in samples treated with small or large Ag NPs (∅ 5 nm or ∅ 50 nm) for 48 h. KW - Nanoparticle KW - Laser ablation KW - ICP-MS KW - Imaging KW - Cell PY - 2019 DO - https://doi.org/10.1039/c9an00856j SN - 0003-2654 VL - 144 IS - 16 SP - 4935 EP - 4942 PB - Royal Society of Chemistry RSC CY - Cambridge AN - OPUS4-48531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul M. A1 - Lange, Nele A1 - Lippitz, Andreas A1 - Holzweber, Markus A1 - Kulak, N. A1 - Unger, Wolfgang T1 - Click chemistry on silicon nitride for biosensor fabrication N2 - Biosensors are of essential importance in medical and biological diagnostics. Often, they are produced using silane chemistry on glass or silicon oxide surfaces. However, controlling that silane chemistry is challenging. Here, we present an alternative strategy to form functional organic layers and biosensors on silicon Nitride (Si3N4). H-terminated Si3N4 films are used to generate reactive azide groups by various azidation methods. Biomolecular probes can then be immobilized using click chemistry reactions with the azide groups and due to its high sensitivity in XPS a fluorine-substituted test alkyne was utilized to optimize click chemistry conditions. After that a biotinylated alkyne was clicked to Si3N4 surfaces followed by immobilization of streptavidin as analyte in a model assay. The functionalized surfaces were thoroughly characterized by surface chemical analysis using X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS)spectroscopy. KW - Biosensors KW - H-terminated Si3N4 films KW - Click chemistry KW - X-ray photoelectron spectroscopy KW - Near edge X-ray absorption fine structure KW - Streptavidin binding PY - 2019 DO - https://doi.org/10.1016/j.apsusc.2019.03.002 SN - 0169-4332 VL - 481 SP - 10 EP - 15 PB - Elsevier B.V. AN - OPUS4-48634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schürmann, Robin A1 - Ebel, Kenny A1 - Nicolas, C. A1 - Milosavljevic, A. R. A1 - Bald, Ilko T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. KW - Photocatalytic reduction KW - Raman-spectroscopy KW - Hot-electrons KW - Work function KW - Surface KW - Nanaoparticles KW - Scattering KW - Molecule KW - Carriers KW - Layers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486464 DO - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 IS - 11 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-48646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jain, V. A1 - Kjaervik, Marit A1 - Bahr, S. A1 - Dietrich, P. A1 - Meyer, M. A1 - Thissen, A. A1 - Linford, M. R. T1 - Bovine serum albumin, aqueous solution, by near-ambient pressure XPS N2 - Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., at greater than 2500 Pa. With NAP-XPS, XPS can probe moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, C 1s, O 1s, and N 1s narrow scans from an aqueous solution of a common protein, bovine serum albumin. The C 1s peak envelope is well fit to four symmetric peaks of equal width that correspond to carbon bonded to carbon and hydrogen (C-1), carbon singly bonded to oxygen (C-2), carbonyl and/or amide carbon (C-3), and carboxyl carbon (C-4). Two possible peak fits are considered for the N 1s and O 1s peak envelopes. The N 1s signal is fit to four peaks that correspond to amine (—NH2), Amide (OvCZNH2), ammonium (—NH3 +), and N2(g) nitrogen, and alternatively to three peaks that correspond to amine, amide, and N2(g) nitrogen. The O 1s peak envelope is similarly fit to three and four components. KW - NAP-XPS KW - BSA KW - Bovine serum albumin KW - XPS KW - Near-ambient pressure PY - 2019 DO - https://doi.org/10.1116/1.5055229 VL - 26 IS - 1 SP - 014027 PB - American Vacuum Society CY - New York, USA AN - OPUS4-48655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Schwinn, M. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis N2 - The most challenging part in performing a single cell ICP-MS (sc-ICP-MS) approach is the sample preparation, in particular the reduction of the ionic background. This step is, in many cases, time-consuming and required for each sample separately. Furthermore, sc-ICP-MS measurements are mostly carried out "manually", given the fact that present systems are not allowing for an automated change of samples. Thus, within this work, we developed an approach based on a HPLC system coupled on-line with sc-ICP-MS via a set of switching valves as well as an in-line filter for automated cell washing. This set-up enables the ionic background removal as well as analysis of single cells completely automated without any manual sample pretreatment. Our approach was applied for the analysis of the single celled diatom species Cyclotella meneghiniana, a marine diatom species, on the basis of Mg24 and facilitates testing in 11 min per sample, requiring only around 10,000 cells in a volume of 10 µL and approx. 10 mL of a 5% MeOH/95% deionized water (v/v) mixture. Even at extremely saline culturing media concentrations (up to 1000 mg L-1 magnesium) our on-line approach worked sufficiently allowing for distinction of ionic and particulate fractions. Furthermore, a set of diatom samples was analyzed completely automated without the need for changing samples manually. So, utilizing this approach enables analyzing a high quantity of samples in a short time and therefore in future the investigation of ecotoxicological effects is simplified for example in terms of metal accumulation by taking biovariability into account. KW - Single cell-ICP-MS KW - Diatoms KW - Ecotoxicology testing KW - Automated system PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.045 SN - 1873-4324 VL - 1077 SP - 87 EP - 94 PB - Elsevier AN - OPUS4-48567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbács, G. A1 - Gornushkin, Igor B. T1 - Analysis and classification of liquid samples by spatial heterodyne spectroscopy N2 - Spatial heterodyne spectroscopy (SHS) is used for quantitative analysis and classification of liquid samples. SHS is a version of a Michelson interferometer with no moving parts and with diffraction gratings in place of mirrors. The instrument converts frequency-resolved information into spatially resolved one and records it in the form of interferograms. The back-extraction of spectral information is done by the Fast Fourier transform. A SHS instrument is constructed with the resolving power 5000 and spectral range 522 - 593 nm. Two original technical solutions are used as compared to previous SHS instruments: the use of a high frequency diode pumped solid state (DPSS) laser for excitation of Raman spectra and a microscope-based collection system. Raman spectra are excited at 532 nm at the repetition rate 80 kHz. Raman shifts between 330 cm-1 and 1600 cm-1 are measured. A new application of SHS is demonstrated: for the first time it is used for quantitative Raman analysis to determine concentrations of cyclohexane in isopropanol and glycerol in water. Two calibration strategies are employed: univariate based on the construction of a calibration plot and multivariate based on partial least square regression (PLSR). The detection limits for both cyclohexane in isopropanol and glycerol in water are at a 0.5 mass% level. In addition to the Raman-SHS chemical analysis, classification of industrial oils (biodiesel, poly(1-decene), gasoline, heavy oil IFO380, polybutenes, and lubricant) is performed using their Raman-fluorescence spectra and principal component analysis (PCA). The oils are easily discriminated as they show distinct non-overlapping patterns in the space of principal components. KW - Spectroscopy KW - Atomic KW - Laser induced breakdown KW - Lasers PY - 2019 DO - https://doi.org/10.1177/0003702819863847 SN - 1943-3530 VL - 73 IS - 12 SP - 1409 EP - 1419 PB - Sage AN - OPUS4-48599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine ED - Kärger, J. ED - Heitjans, P. T1 - Determining the pore size distribution in synthetic and building materials using 1D NMR N2 - NMR is gaining increasing interest in civil engineering applications for the use of microstructure characterization as e.g. pore size determination and monitoring of moisture transport in porous materials. In this study, the use of NMR as a tool for pore size characterization was investigated. For our study we used screed and synthetic materials at partial and full saturation. A successful determination could be achieved when having a reference or calibration method, although partly diffusion effects have been registered. Due to these diffusion effects, for the determination of pore size distributions of synthetic materials another NMR device was needed. Finally, the determination of the surface relaxivity of screed (50 μm/s) led to a higher value than first expected from literature. T2 - 14th International Bologna Conference on Magnetic Resonance in Porous Media CY - Gainesville, FL, USA DA - 18.02.2018 KW - NMR relaxometry KW - Pore size distribution KW - Building materials KW - Porous materials KW - Surface relaxivity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483680 UR - https://diffusion.uni-leipzig.de/pdf/volume31/diff_fund_31(2019)02.pdf SN - 1862-4138 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 31 IS - 2 SP - 1 EP - 9 PB - University of Leipzig CY - Leipzig AN - OPUS4-48368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Oesterle, D. A1 - Bretz, S. A1 - Frenzel, L. A1 - Stege, H. A1 - Winkelmeyer, I. A1 - Hahn, Oliver A1 - Geiger, G. T1 - Kandinsky’s fragile art: a multidisciplinary investigation of four early reverse glass paintings (1911–1914) by Wassily Kandinsky N2 - This work highlights the rediscovery of the technique of reverse glass painting by the artists of the “Blaue Reiter” collective in the early 20th-century and focusses particularly on the role of Wassily Kandinsky (1866–1944). Kandinsky created more than 70 reverse paintings on glass and showed several of them in exhibitions together with paintings on canvas and cardboard, implying a coequal importance of these techniques. Four of his early (1911–1914) reverse glass paintings (Auferstehung, Allerheiligen II, Rudern, Apokalyptischer Reiter II) were selected for investigation and their iconography, painting techniques and painting materials were examined. Two paintings were executed on so-called cathedral glass, revealing a “hammered surface”, whereas Kandinsky used a corrugated glass panel for Rudern. A multi-analytical, non-invasive approach [X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), VIS spectroscopy (VIS), Raman spectroscopy] was taken to identify the pigments and classify the binding media. The results reveal a broad palette of materials. Several pigments like lead white, zinc white, Strontium yellow, Prussian blue, viridian, cadmium yellow, ultramarine blue, cinnabar and carbon black were found in most of the four paintings. The use of the rare synthetic organic pigments PR60 and PB52 is discussed. In two works of art, cadmium carbonate is associated with cadmium yellow. The identification of aluminium foil along with tin foils in Rudern indicates an early use of this material for reverse glass paintings. KW - Reverse glass painting KW - Non-invasive analysis KW - Raman spectroscopy KW - DRIFTS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480075 DO - https://doi.org/10.1186/s40494-019-0268-8 VL - 7 IS - 27 SP - 1 EP - 17 PB - Springer AN - OPUS4-48007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non-invasive in-situ identification of synthetic organic pigments in modern reverse paintings on glass (1913–1946) N2 - This work addresses the identification of synthetic organic pigments (SOP) in eight modern reverse paintings on glass (1913–1946) by means of an in-situ multi-analytical approach. We combined the complementary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to overcome the main disadvantages of each method: extensive band overlapping in DRIFT spectra and fluorescence problems in Raman spectra. A collection of DRIFTS reference spectra enables a precise pigment identification by DRIFTS and establishes this method as a serious non-destructive alternative for the identification of SOP. The group of β-naphthol pigments yielded valuable results for both methods, whereas synthetic alizarin (PR83) was preferentially detected by DRIFTS. Finally, uncommon triaryl carbonium pigments and two azo group-based yellows were identified in the paintings by means of Raman spectroscopy. KW - Synthetic organic pigments KW - DRIFTS KW - Raman spectroscopy KW - Reverse glass painting PY - 2019 DO - https://doi.org/10.1016/j.culher.2019.01.011 SN - 1296-2074 SN - 1778-3674 VL - 38 SP - 20 EP - 28 PB - Elsevier Masson SAS. AN - OPUS4-48008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Inutan, E. A1 - Karki, S. A1 - Elia, E. A1 - Zhang, W. A1 - Weidner, Steffen A1 - Marshall, D. A1 - Hoang, K. A1 - Lee, C. A1 - Davis, E. A1 - Smith, V. A1 - Meher, A. A1 - Cornejo, M. A1 - Auner, G. A1 - McEwen, C. T1 - Fundamental studies of new ionization technologies and insights from IMS-MS N2 - Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this Special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original Environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened. KW - Inlet ionization KW - Vacuum ionization KW - Matrices KW - Fundamentals KW - Ion mobility PY - 2019 DO - https://doi.org/10.1007/s13361-019-02194-7 SN - 1044-0305 SN - 1879-1123 VL - 30 IS - 6 SP - 1133 EP - 1147 PB - Springer AN - OPUS4-48011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Darlatt, Erik A1 - Lippitz, Andreas A1 - Müller, S. A1 - Schalley, C. A1 - Unger, Wolfgang T1 - Systematic XP and NEXAFS spectroscopy studies of (ter-)pyridineterminated self-assembled monolayers and their addressability for functional molecules N2 - The chemical composition of surfaces functionalized with self-assembled monolayers (SAMs) is an important parameter that determines their performance in a broad range of applications, from immobilizing molecular machines to initiation and growth control of MOFs (Metal-Organic Frameworks). In this article, a critical Survey of XPS (X-ray photoelectron spectroscopy) and NEXAFS (near edge X-ray absorption fine structure) spectroscopy data for pyridine-functionalized monolayers on gold surfaces is presented to compile correlations that have been indiscernible before. Monolayers with aromatic backbones are compared to monolayers with aliphatic backbones. Monolayers with pyridine end-groups are compared to mixed monolayers formed terpyridine-functionalized by molecules end-groups and non-functionalized molecules. Thiol-oxidation during ageing of the SAMs in air is addressed. And finally, the addressability of the SAMs for the deposition of metal-ions and organic molecules is investigated and compared. This work consequently delivers a comprehensive set of spectroscopic data of (ter-)pyridine-terminated SAMs and their performance as template for the preparation of functional multilayers of macrocycles exhibiting a preferential orientation. KW - (ter-)pyridineterminated self-assembled monolayer KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS PY - 2019 DO - https://doi.org/10.1016/j.elspec.2019.03.011 VL - 233 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-48018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Hesse, R. A1 - Denecke, R. A1 - Werner, W. A1 - Unger, Wolfgang T1 - The use of ionic liquids for the determination of the spectrometer transmission function in X-ray photoelectron spectroscopy (XPS) N2 - The uncertainty of measurement in quantitative XPS analysis can be reduced by using a calibrated spectrometer transmission function T (E), which is usually determined by taking spectra from Au, Ag, Cu and Ge elemental reference materials. However, this approach is quite time-consuming due to required sample preparation steps like sputter cleaning etc., and the relatively big number of samples to be measured. This contribution proposes the use of the ionic liquids [C2C1im][NTf2] and [C3C1im][NTf2] as reference materials for a determination of T(E). These multi-elemental samples deliver five intensive photoemission peaks, F 1s, O 1s, N 1s, C 1s and S 2p, in an energy window from 160 eV to 700 eV which is of specific interest for applications of quantitative XPS for surface chemical analysis of soft matter, one of the major applications of XPS. KW - Quantitative XPS KW - Ionic liquid KW - Transmission function PY - 2019 DO - https://doi.org/10.1016/j.elspec.2019.03.008 VL - 233 SP - 51 EP - 56 PB - Elsevier B.V. AN - OPUS4-48019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guday, G. A1 - Donskyi, Ievgen A1 - Gholami, M. F. A1 - Algara-Siller, G. A1 - Witte, F. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Paulus, B. A1 - Rabe, J. A1 - Adeli, M. A1 - Haag, R. T1 - Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization N2 - A new method for top‐down, one‐pot, gram‐scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π‐conjugated system. Statistical analyses of Raman spectroscopy and X‐ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π‐conjugated system and enhancing conductivity via n‐type doping through the bridging N‐atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties. KW - Graphene KW - XPS KW - NEXAFS PY - 2019 DO - https://doi.org/10.1002/smll.201805430 VL - 15 IS - 12 SP - 1805430 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS N2 - The analytical potential of a nanosecond laser ablation coupled plasma mass spectrometer (ns-LA-ICP-SFMS)system is investigated for fast and highly spatially resolved (~µm) elemental distribution within single cells. The size, morphology and overlapping of laser-induced craters has been investigated with Atomic Force Microscopy (AFM). KW - Atomic Force Microscopy KW - Laser Ablation KW - Elemental Distribution PY - 2019 DO - https://doi.org/10.1039/c8ja00096d SN - 0267-9477 VL - 34 IS - 4 SP - 655 EP - 663 PB - RSC AN - OPUS4-48549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - Early stage in situ detection of polynuclear aluminum phases in aqueous solution N2 - Polynuclear cationic aluminum hydroxide phases are known intermediates in the formation of aluminum oxides or (oxide) ydroxides upon hydrolysis of aluminum salt solutions. In the presence of sulfate anions, these aluminum polyoxocations (Al13) can form crystalline Al13 sulfates with varying chemical composition. The formation of these Al13 sulfates in aqueous solution has been poorly understood. Here, we investigate the early stage crystallization of Al13 clusters in a sulfate-containing solution, in situ and in real time. Dynamics associated with Al13 sulfate formation have been obtained for the first time, using Synchrotron X-ray diffraction (XRD) of solutions suspended by acoustic levitation. Time-resolved in situ data show that the cubic phase, Na [(AlO4)Al12(OH)24(H2O)12](SO4)4*10H2O, forms after only minutes. The Formation mechanism of Al13 sulfates was found to depend on the sulfate:aluminum (SO4:Al) ratio. Ex situ XRD of the product Al13 sulfates in solution shows that for SO4:Al ratio ≤ 1.5 two other crystalline phases form, and convert to the cubic phase upon washing and drying. In situ XRD for the same ratio shows transient formation of an intermediate during the crystallization process. KW - Polyoxocation KW - In situ KW - Crystallization KW - Acoustic levitation KW - Synchroton x-ray diffraction PY - 2019 DO - https://doi.org/10.1016/j.poly.2019.05.049 VL - 170 SP - 639 EP - 648 PB - Elsevier Ltd. AN - OPUS4-48552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lörchner, Dominique A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Kroh, L. W. A1 - Köppen, Robert T1 - Investigation of two triazine-based heterocyclic brominated flame retardants by coupled thermogravimetry-Fourier transform infrared spectroscopy N2 - In this study, the thermal decomposition of 1,3,5-tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBPTAZTO) and 2,4,6-tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ) were investigated for the first time by thermogravimetric analysis. Both compounds were thermal degraded between 225 and 350 °C (TDBP-TAZTO) as well as 300 and 400 °C (TTBP-TAZ). As a result, mass loss (%) of 98.5% for TTBP-TAZ and 95.4% for TDBP-TAZTO at 600 °C under N2 were observed. The major pyrolytic degradation products of TTBP-TAZ were formed in a single step and identified by FTIR analysis as 2,4,6-tribromophenol and further bromine-substituted aromatic compounds. In comparison, TDBP-TAZTO was pyrolytic degraded in two steps, whereby on the first step the release of hydrogen Bromide and 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione could be detected. In the second minor step, isocyanic acid could be additionally identified. Subsequently, the obtained products of the TGA-FTIR measurements were used for a targeted search for mass fragments in mass spectrometry measurements. For TTBP-TAZ, only the degradation product 1,3,5-tribromobenzene could be detected by MS/MS analyzes. No comparable thermal degradation products, except hydrogen bromide, were observed in the MS/MS spectra of TDBP-TAZTO. Therefore, the search of further mass fragments was not possible compared to the findings of the TGA-FTIR measurements. KW - Pyrolysis KW - Thermal decomposition KW - TGA-FTIR KW - Mass spectrometry PY - 2019 DO - https://doi.org/10.1016/j.jaap.2019.104635 VL - 141 SP - 104635-1 EP - 104635-5 PB - Elsevier B.V. AN - OPUS4-48506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Minero, C. A1 - Hodoroaba, Vasile-Dan A1 - Martra, G. A1 - Maurino, V. T1 - Formic acid photoreforming for hydrogen production on shape-controlled anatase TiO2 nanoparticles: Assessment of the role of fluorides, {101}/{001} surfaces ratio, and platinization N2 - Hydrogen production via formate photoreforming on TiO2 is characterized by marked dependence on the ratio between {101} and {001} surfaces for anatase nanoparticles. We observed higher rates of hydrogen Evolution with the increase of the {101} facets presence, owing to their reductive nature. This helps the Pt photodeposition in the early stages of Irradiation and, then, the hydrogen ion reduction reaction. The selective photodeposition of 2 nm Pt nanoparticles on {101} facets was confirmed by transmission electron microscopy (TEM) micrographs. The results are confirmed also by experiments carried out without the use of Pt as cocatalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H2 evolution. KW - Titanium dioxide KW - Fluoride KW - Platinum KW - Nanoparticles KW - Controlled-shape KW - Hydrogen photoproduction KW - Surface PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acscatal.9b01861 DO - https://doi.org/10.1021/acscatal.9b01861 SN - 2155-5435 VL - 9 IS - 8 SP - 6692 EP - 6697 PB - ACS Publications AN - OPUS4-48355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Fandino, J. A1 - Nordlien, J. H A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Quarles, C. D. A1 - Gonzalez, J. A1 - Jakubowski, Norbert A1 - Bordel, N. T1 - Improving the analytical performance of pulsed-GD-SFMS for multi-elemental depth profile analysis of heat-treated Zn coatings on extruded aluminium N2 - The formation of diffusion layers on Zn layers deposited on Al substrates is mainly used to prevent corrosion effects. Evaluation of the influence exerted by different coating methodologies and heat treatments on the formation of these diffusion layers is of great interest for the aluminium industry. Particularly, multi-elemental in-depth distributions of major, minor and trace elements in Zn-coatings is highly demanded before and after heat treatments. A fast characterization of these materials require a direct solid analytical technique able to provide high sensitivity and high depth resolution. For this purpose, an improved analytical method based on the use of pulsed glow discharge sector field mass spectrometry (pulsed-GD-SFMS) is investigated. Glow discharge operating parameters (e.g. pulse duration, pulse frequency), glow discharge source design (e.g. flow tube lengths), and SFMS mass spectra acquisition conditions (e.g. integration time) are evaluated to achieve low sputtering rates, high mass spectra acquisition rates and improved depth resolution. At the optimize conditions Zn coatings deposited by arc-spray and electrodeposition are analysed before and after heat treatments to evaluate the diffusion of different key elements. Moreover, results are validated using femtosecond laser ablation (fs-LA)-ICP-MS, which provides additional information about the heterogeneous distribution of some elements in the Zn coatings. KW - GDMS KW - Pulsed-GD-SFMS KW - Depht profiling KW - Zn KW - Aluminium PY - 2019 DO - https://doi.org/10.1039/c9ja00189a VL - 34 IS - 11 SP - 2252 EP - 2260 PB - Royal Society of Chemistry CY - London AN - OPUS4-49451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tillo, Adam A1 - Bartelmeß, Jürgen A1 - Chauhan, Vraj P. A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Microfluidic Device for the Determination of Water Chlorination Levels Combining a Fluorescent meso-Enamine Boron Dipyrromethene Probe and a Microhydrocyclone for Gas Bubble Separation N2 - Chlorination procedures are commonly applied in swimming pool water and wastewater treatment, yet also in food, pharmaceutical, and paper production. The amount of chlorine in water needs to be strictly controlled to ensure efficient killing of pathogens but avoid the induction of negative health effects. Miniaturized microfluidic fluorescence sensors are an appealing approach here when aiming at online or at-site measurements. Two meso-enamine-substituted boron dipyrromethene (BODIPY) dyes were found to exhibit favorable indication properties, their reaction with hypochlorite leading to strong fluorescence enhancement. Real-time assays became possible after integration of these fluorescent probes with designed two-dimensional (2D) and three-dimensional (3D) microfluidic chips, incorporating a passive sinusoidal mixer and a microhydrocyclone, respectively. A comparison of the two microfluidic systems, including their abilities to prevent accumulation or circulation of microbubbles produced by the chemical indication reaction, showed excellent fluidic behavior for the microhydrocyclone-based device. After coupling to a miniaturized optical reader for fluorescence detection, the 2D microfluidic system showed a promising detection range of 0.04−0.5 mg L−1 while still being prone to bubble-induced fluctuations and suffering from considerably low signal gain. The microhydrocyclone-based system was distinctly more robust against gas bubbles, showed a higher signal gain, and allowed us to halve the limit of detection to 0.02 mg L−1. The use of the 3D system to quantify the chlorine content of swimming pool water samples for sensitive and quantitative chlorine monitoring was demonstrated. KW - Chlorine KW - BODIPY KW - Fluorescence KW - Micro-Hydrocyclone KW - Microfluidic Chip PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b03039 SN - 0003-2700 VL - 91 IS - 20 SP - 12980 EP - 12987 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -