TY - CONF A1 - Pauw, Brian Richard A1 - Kaestner, Claudia A1 - Thuenemann, Andreas T1 - How good is SAXS? Results from a large Round Robin on an easy sample N2 - 22 laboratories returned 45 small-angle scattering datasets on a suspension of silver nanoparticles. The variance of the results has been analyzed in order to estimate the expected accuracy and precision of the small-angle scattering technique. T2 - XVII International Small Angle Scattering Conference - SAS2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - Small-angle scattering KW - Round Robin KW - Silver nanoparticles KW - Quality KW - McSAS PY - 2018 AN - OPUS4-46518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. A1 - Wilsch, Gerd T1 - Application of two calibration-free LIBS techniques for synthetic spectra of cement samples N2 - Two calibration-free LIBS techniques are used for the quantitative analysis of synthetic cement samples: the CF-LIBS based on the Boltzmann plot method and the Monte Carlo (MC) LIBS based on the iterative spectrum fitting. In CF-LIBS, the inverse problem is solved, i.e. the elemental concentrations are determined by the reconstruction of plasma parameters from spectra. The MC-LIBS technique solves the direct problem by finding the highest correlation between the model-generated and experimental spectrum. The accuracy of both calibration-free LIBS methods suffers from factors such as inaccurately determined instrumental function, the deviation of experimental plasma from the mathematical model used, not taking into account the collection geometry and from the uncertainty of spectroscopic data. Therefore, the both calibration-free LIBS approaches are applied to synthetic spectra which perfectly suit the mathematical model of the method. This test yields the accuracy of both the approaches for the ideal case. In addition, the accuracy of both methods is investigated for non-isothermal plasma, because real laser-induced plasma often has high gradients in temperature. Both methods assume an isothermal plasma. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - Cement KW - MC-LIBS KW - LIBS KW - CF-LIBS PY - 2018 AN - OPUS4-46774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - An introductory lecture for users at the Diamond Light Source, on how to use the McSAS software to analyze their data. T2 - Small Angle Scattering Training School CY - Diamond Light Source, Didcot, United Kingdom DA - 04.06.2018 KW - Small-angle scattering KW - Software KW - Analysis PY - 2018 AN - OPUS4-46517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Thünemann, Andreas T1 - THE MAUS: A GI-/ULTRA-/W/SAXS Instrument of the future N2 - The Multi-scale Analyzer for Ultrafine Structures or the “MAUS” for short, is a SAXS instrument that combines a multitude of features that make it both unique, and one of the most adaptable instruments around. T2 - SAS2018 CY - Traverse City, MI, USA DA - 07.10.2018 KW - SAXS KW - MAUS KW - Small-angle scattering KW - DAWN KW - Grazing incidence PY - 2018 AN - OPUS4-46523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Snow, T. A1 - Pauw, Brian Richard A1 - Smith, A. A1 - Terrill, N. A1 - Thuenemann, Andreas T1 - Modular SAXS data corrections N2 - A standardized methodology for the correction of scattering patterns, the calculation of uncertainties, the subtraction of backgrounds and solvents, optionally followed by the azimuthal averaging/reduction step, is presented. T2 - XVII International Small Angle Scattering Conference - SAS2018 CY - Traverse City, Michigan, USA DA - 07.10.2018 KW - Small-angle scattering KW - Software KW - Sata corrections KW - Quality PY - 2018 AN - OPUS4-46520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma fundamentals and diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basics of plasma computer modeling will be presented. T2 - 03.-06. September 2018, 13 Symposium "Massenspektrometrische Verfahren der Elementspurenanalyze", BAM, Berlin, Adlershof CY - BAM, Berlin, Adlershof, Germany DA - 03.09.2018 KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information KW - Plasma modeling PY - 2018 AN - OPUS4-46108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Dynamical chemical model of laser induced plasma N2 - Laser induced plasma (LIP) is a highly dynamic, short living event which presents significant difficulty for both diagnostics and modeling. The former requires precise spatially- and time-resolved measurements on a micron-nanosecond scale while the latter needs numerous descriptive parameters; many of them can only be obtained from experiment. Diagnostics and modeling should always complement each other for obtaining a truthful picture of LIP. In this presentation, a newly developed collisional-dominated model will be presented. The model is based on the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The model incorporates plasma chemistry through the equilibrium approach that relies on atomic and molecular partition functions. Several chemical systems are modeled including Si-C-Cl-N and B-H-Cl systems. The model is used to study the equilibrium states of the systems as functions of the concentrations of plasma species and plasma temperature. The model also predicts the evolution of number densities of atomic and molecular species in the expanding plasma plume. T2 - 18.09.2018, 9th International Conference on PLASMA PHYSICS AND PLASMA TECHNOLOGY (PPPT‐9) CY - Minsk, Belorussia DA - 17.09.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-46111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Chemistry in laser‑induced plasmas at local thermodynamic equilibrium N2 - The equation of state for plasmas containing negative and positive ions of elements and molecules formed by these elements is modeled under the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye–Hückel theory. The hierarchy problem for constants of molecular reactions is resolved by using three different algorithms for high, medium, and low temperatures: the contraction principle, the Newton–Raphson method, and a scaled Newton–Raphson method, respectively. These algorithms are shown to have overlapping temperature ranges in which they are stable. The latter allows one to use the developed method for calculating the equation of state in combination with numerical solvers of Navier–Stokes equations to simulate laser-induced Plasmas initiated in an atmosphere and to study formation of molecules and their ions in such plasmas. The method is applicable to a general chemical network. It is illustrated with examples of Ca–Cl and C–Si–N laser-induced plasmas. KW - Plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1007/s00339-018-2129-9 SN - 1432-0630 SN - 0947-8396 VL - 124 IS - 10 SP - 716, 1 EP - 21 PB - Springer AN - OPUS4-46112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. G. T1 - Equilibrium Chemistry in BCl3–H2–Ar Plasma N2 - The approach, which was developed earlier for modeling chemical reactions in laser induced plasmas, is applied to radio-frequency discharge plasmas. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of an argon-hydrogen plasma with an Addition of boron trichloride is studied as a function of plasma temperature and mole ratio H2∕BCl3. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained earlier by means of another equilibrium model that uses ab-initio quantum chemical computations of thermochemical and kinetic data and a 0D thermochemical quilibrium solver. KW - Modeling chemical reactions KW - Plasma physics KW - Plasma enhanced chemical vapor deposition PY - 2019 DO - https://doi.org/10.1007/s11090-019-09985-6 VL - 39 IS - 4 SP - 1087 EP - 1102 PB - Springer AN - OPUS4-47817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Palásti, David J. A1 - Veres, M. A1 - Rigó, I. A1 - Geretovszky, Z. A1 - Kovács-Széles, É. A1 - Gojani, Ardian A1 - Galbács, Gábor T1 - Optimization and detailed spectroscopic characterization of an improved SH-LIBS setup N2 - The spatial heterodyne detection principle has a great potential in spectroscopy. It has an optical setup similar to that of a Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier transformation. Although SHS was initially developed for astronomical and satellite-based atmospheric measurements, but in recent years it has been started to be applied in other branches of spectroscopy too. Recently the area of laser-induced breakdown spectroscopy (LIBS) has also discovered the potential of SHS. The main appeal of SHS detection in LIBS includes the compactness and robustness of the setup (in view of field applications) and the flexibility to optimize the setup for either high sensitivity or for high resolution, which can be benficially exploited in applications like stand-off measurements, quantitative analysis with isotope resolution, etc. In the present work, we have improved and further optimized our initial LIBS-SHS setup described in a previous conference. By using optical simulations, we have modelled the light transmission efficiency, instrumental function and imaging properties of the system. We significantly improved and automated the spectral and image data processing sequence. The optimizations carried out resulted in an improved spectral resolution and repeatability, a lower spectral background and the elimination of the central line artifact originating from the Fourier transformation procedure. A detailed characterization of the LIBS spectroscopy performance (e.g. resolution, spectral coverage, tuning range, linearity, etc.), including a comparison with that of a LIBS setup based on a conventional dispersion CCD spectrometer was also performed. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - SHS KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Spatial heterodyne spectrometer PY - 2019 AN - OPUS4-48047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Palásti, David J. A1 - Galbacs, G. T1 - Quantitative and qualitative analysis of liquid samples N2 - Spatial heterodyne spectroscopy (SHS) is an optical setup that combines both dispersive and interference based methods to obtain spectroscopic information. It has the high light throughput characteristic for interference based methods, but at the same time it has the high resolution typical of grated spectrometers. The basic SHS optical setup is similar to that of the Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier Transformation. Although initially SHS was developed for astronomical and satellite-based atmospheric measurements, where spectroscopy of faint but large light sources are investigated, but in recent years the application of SHS spectroscopy is gaining popularity. Our research group is active both in Raman-SHS and LIBS-SHS, due to the fact that there are many overlapping challenges for the two spectroscopies in terms of optical and optoelectronic optimization. In the present study, we investigated the possibility of using SH detection for the qualitative and quantitative Raman spectroscopy of liquid samples. We constructed our own compact spatial heterodyne spectrometer using 300 mm-1 gratings (Newport), a 50:50 cube beamsplitter (Thorlabs), dischroic mirrors, bandpass and notch filters (Semrock), a Tamron telelens and a Retiga R1 CCD camera. A DPSS laser (532 nm, 20 ns) with variable energy and repetition rate (up to 100 µJ and 80 kHz) was used for excitation, with its beam driven through a 10x microscope objective (Thorlabs) to focus the laser light inside the liquid samples. The evaluation of the recorded interference patterns was carried out by self-developed software written in Octave. In the qualitative experiments, we investigated several oils and additives and employed principal component analysis (PCA) for their classification. It was found that the recorded spectra could be separated well in the subspace of just two principal components. The quantitative experiments were conducted with two sets of binary solvent mixtures (isopropanol-cyclohexane, glycerol-water). The simple univariate method based on the net intensity of one spectral peak did not give good results, but principal component regression (PCR) gave rise to fairly good and robust calibrations. Our results therefore show that a relatively simple and robust SHS setup can be advantageously used for both quantitative and qualitative Raman spectroscopy. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - SHS KW - Raman spectroscopy KW - Spatial Heterodyne Spectrometer PY - 2019 AN - OPUS4-47542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sergei, S. A1 - Kornev, R.A. A1 - Sennikov, P. G. T1 - Equilibrium chemistry of boron halides in plasma chemical reactors N2 - High purity halides of III-VI group elements, especially chloride and fluorides, are used in gas phase technologies for obtaining high purity materials and coatings. The reduction of halides in hydrogen-halide mixtures can be achieved in various discharge plasmas, e.g. inductively coupled, ark, and even laser-induced plasmas. Existing models of such plasmas are not sufficiently accurate to predict a yield of the targeted compounds and to describe the plasma processes involved in formation of these compounds. Besides, a construction of costly plasma-chemical reactors can be alleviated by the prior modeling of plasma processes that may occur in such reactors. A goal of this work is to extend the model, which was initially developed for laser induced Plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge Plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - Chemical reactors KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-47541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemistry in laser-induced and other types of plasmas N2 - A goal of this work is to extend the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - Workshop on Laser and Plasmas Applications CY - Bari, Italy DA - 04.03.2019 KW - Plasma KW - LIBS KW - Plasma modeling PY - 2019 AN - OPUS4-47545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Strasse, Anne T1 - Optical detection of defects during laser metal deposition: Simulations and experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. KW - Additive manufacturing KW - Laser metal deposition (LMD) KW - Thermal model KW - Optical sensor KW - Process control PY - 2021 DO - https://doi.org/10.1016/j.apsusc.2021.151214 SN - 0169-4332 VL - 570 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbács, G. A1 - Gornushkin, Igor B. T1 - Analysis and classification of liquid samples by spatial heterodyne spectroscopy N2 - Spatial heterodyne spectroscopy (SHS) is used for quantitative analysis and classification of liquid samples. SHS is a version of a Michelson interferometer with no moving parts and with diffraction gratings in place of mirrors. The instrument converts frequency-resolved information into spatially resolved one and records it in the form of interferograms. The back-extraction of spectral information is done by the Fast Fourier transform. A SHS instrument is constructed with the resolving power 5000 and spectral range 522 - 593 nm. Two original technical solutions are used as compared to previous SHS instruments: the use of a high frequency diode pumped solid state (DPSS) laser for excitation of Raman spectra and a microscope-based collection system. Raman spectra are excited at 532 nm at the repetition rate 80 kHz. Raman shifts between 330 cm-1 and 1600 cm-1 are measured. A new application of SHS is demonstrated: for the first time it is used for quantitative Raman analysis to determine concentrations of cyclohexane in isopropanol and glycerol in water. Two calibration strategies are employed: univariate based on the construction of a calibration plot and multivariate based on partial least square regression (PLSR). The detection limits for both cyclohexane in isopropanol and glycerol in water are at a 0.5 mass% level. In addition to the Raman-SHS chemical analysis, classification of industrial oils (biodiesel, poly(1-decene), gasoline, heavy oil IFO380, polybutenes, and lubricant) is performed using their Raman-fluorescence spectra and principal component analysis (PCA). The oils are easily discriminated as they show distinct non-overlapping patterns in the space of principal components. KW - Spectroscopy KW - Atomic KW - Laser induced breakdown KW - Lasers PY - 2019 DO - https://doi.org/10.1177/0003702819863847 SN - 1943-3530 VL - 73 IS - 12 SP - 1409 EP - 1419 PB - Sage AN - OPUS4-48599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kazakov, Alexander Ya. T1 - Model of stimulated emission in aluminum laser-induced plasma produced by resonance pumping N2 - Stimulated emission observed experimentally in aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the population inversion and lasing at wavelengths 2.1 μm and 396.1 nm. The population inversion for lasing at 2.1 μm is created by depopulation of the ground state and population of the upper state via absorption of resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped upper state to the lasing state via cascade transitions driven optically and by collisions. The model predicts that the population inversion and corresponding gain may reach high values even at moderate pump energies of several μJ per pulse. The efficiency of lasing at 2.1 μm and 396.1 nm is estimated to be on the order of a percent of laser pump energy. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experiment. T2 - FLAMN, June 30- July 4 2019 CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-48598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Experimenting on MAUS N2 - Initial results, findings and experience after 1.5 years of using the Multi-scale Analyser for Ultrafine Structures (MAUS), a bespoke wide-range SAXS instrument for the nanostructure quantification of demanding materials science samples. T2 - S4SAS Conference 2019 CY - Diamond Light Source, Didcot, UK DA - 06.06.2019 KW - X-ray scattering KW - SAXS KW - Nanostructure quantification KW - Nanocharacterisation PY - 2019 AN - OPUS4-48193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, benefits, and potential pitfalls N2 - Introducing McSAS, the analytical tool (software) we developed for extracting form-free size distributions from X-ray scattering patterns. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - SAXS KW - Software KW - Monte Carlo KW - Nanocharacterisation KW - Nanostructure PY - 2019 AN - OPUS4-48192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - dataMerge V0.1 - A statistics-aware binning and merging backend N2 - A tool for merging and/or rebinning single or multiple datasets to achieve a lower point density with best possible statistics. highly scriptable, CLI, no GUI Version 0.1: works but could do with a cleanup. Weighting by uncertainty currently always on, but should be optional for use as an azimuthal or radial averager KW - X-ray science KW - Image averaging KW - Dataset merging KW - Photon counting detectors KW - SAXS KW - SANS KW - X-ray scattering KW - X-ray diffraction PY - 2022 DO - https://doi.org/10.6084/m9.figshare.21591360 PB - Digital Science CY - Cambridge, MA, USA AN - OPUS4-56340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS N2 - Introduction keynote for the "Small Angle Scattering Training School 2019", introducing a wide range of aspects around small-angle scattering. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - Nanostructure KW - Introduction KW - Practical aspects PY - 2019 AN - OPUS4-48191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS N2 - A lecture to introduce small-angle scattering to Master's students at the Humbold University T2 - materials science course at HU Berlin CY - Adlershof, Berlin, Germany DA - 21.06.2019 KW - Small-angle scattering PY - 2019 AN - OPUS4-48518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - The Joint Summer School of the two Marie Skłodowska-Curie Innovative Training Networks (ITN) “BioCapture” and “GlycoImaging”, funded by the EU within the Horizon 2020 framework programme, which are both devoted to the development of new methods for cancer biomarker and cancer cell detection, will take place at the Adlershof Campus of BAM. 19 Early stage researchers of both projects will convene, discuss their own science and plan future collaborative research. Training in scientific writing (instructor: Luita Spangler, Free University of Berlin), an employability workshop (Antti Kapanen, University of Applied Sciences Berlin) and first contacts with the “dark side of science” (Brian R. Pauw, BAM) will complement the programme of the summer school. T2 - EU-ITN-Summer School CY - Adlershof, Berlin, Germany DA - 26.08.2019 KW - Scientific communication KW - Scientific rigour KW - Scientific method PY - 2019 AN - OPUS4-48760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palásti, David J. A1 - Himics, L. A1 - Vaczi, T. A1 - Veres, M. A1 - Gornushkin, Igor B. A1 - Galbacs, G. T1 - Optical modelling of spectroscopiccharacteristics of a dual-grating tunablespatial heterodyne LIBS spectrometer N2 - The spatial heterodyne spectrometer (SHS) concept, which is based on an interferometricoptical setup, boasts both the Fellgett and Jacquinot advantages. Theoretically it can provideboosted sensitivity and spectral resolution with respect to dispersion spectrometers in acompact, reasonably cheap arrangement without any moving components – this set ofcharacteristics can be attractive to a number of industrial, space and other field applications. The potential of SHS has already been demonstrated in IR and Raman spectroscopies(e.g.), and more recently also in LIBS. The scientific goal of our present project is toapply the SHS concept to the development of an optimized, but practical dual-grating,tunable SH-LIBS setup, which would possess appealing spectroscopic characteristics.During this development, we extensively rely on the computer-based simulation of theoptical setup, which is an efficient approach that we found to have been missing from earlierSHS efforts published. It can provide application-specific optimization of the SHS systemand predict the performance of the final system. In particular, we use optical simulation tostudy the effect of various important parameters on the relevant spectroscopic figures ofmerits of the system. We used the non-sequential ray-tracing mode of the Zemax/OpticStudio software for optical modelling of the SH-LIBS setup (Optical distortions were studiedin sequential mode). Characteristics of the setup and interferograms were calculated with atleast one million rays. All calculations were carried out for the visible spectral range(400-700 nm), using stepwise extension of monochromatic simulations with 5 nm steps.Wherever applicable, characteristic discrete visible wavelengths from the emissionspectrum of Hg discharge lamps (404.7 nm, 435.8 nm, 546.1 nm, 579.0 nm) were used for thecalculation of spectroscopy figures of merit and for the validation of simulation. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - Spatial Heterodyne Spectroscopy KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - LIBS KW - Modeling PY - 2019 AN - OPUS4-49772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Snow, T. T1 - Everything and the kitchen sink: Correcting X-ray data for everything N2 - No matter whether you are doing X-ray diffraction or scattering, at wide or small angles, in a lab or at a synchrotron, you will need a bespoke sequence of up to twenty different corrections before it gets about right (at our latest count). Our library now does this automatically and reliably to get you the data you deserve – in absolute units and with uncertainty estimates – without the pain. This talk will highlight the development of the modular library, the sequence and its foundation, show its applicability to real-world datasets, and highlight a possible way forward T2 - Invited talk at Dectris AG CY - Baden-Daettwil, Switzerland DA - 09.09.2019 KW - Small-angle scattering KW - Software KW - Data corrections PY - 2019 N1 - Video of the talk is available at: https://www.youtube.com/watch?v=AU3XvV4W87M AN - OPUS4-48978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Porizka, P. A1 - Kaiser, J. T1 - Tomography of asymmetrical laser-induced plasmas N2 - Asymmetrical laser-induced plasmas were investigated by a tomography approach based onthe inverse Radon transform. Two distinct sources of asymmetricity were investigated:double-pulsed laser-induced plasmas in the orthogonal configuration and single-pulsedlaser-induced plasmas under an inclined incidence angle. Both cases were observed atvarious delay times. The optical thinness of the laser-induced plasmas was achieved byappropriately adjusting the pulse energies. High temporal resolution was achieved by agated intensified charge-coupled-device camera. The asymmetrical laser-induced plasmaswere investigated in terms of their total emissivity, spectrally resolved emissivity, andtemperature. The latter was obtained by the Saha–Boltzmann plot method. The imagesrequired for the inverse Radon transform technique were obtained with a high angularaccuracy and reproducibility provided by mounting the spectrometer on a high-precisionnano-positioning rotary stage. The plasmas were induced in the center of rotation of thestage. This arrangement enabled the reconstruction of emissivity which was integrated overthe full spectral range (200–800 nm) or over a desired spectral range selected by a bandpassfilter (~10 nm). It also allowed for the reconstruction of spectrally-resolved emissivity ineach cross-sectional plasma slice by scanning the plasma across a spectrometer slit. The 3Dmaps of the temperature and electron density were thus obtained for different types ofasymmetric plasmas. The work will provide a more detailed description of the twoasymmetrical laser-induced plasmas. This might help with the development of LIBSinstrumentation using the orthogonal double-pulse geometry, or remote LIBS applicationswhich inherently rely on inclined-angle ablation. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-49771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbacs, G. A1 - Gornushkin, Igor B. T1 - Application of spatial heterodyne spectroscopy for chemical analysis based on Raman and laser-induced breakdown spectroscopy N2 - Spatial Heterodyne Spectroscopy (SHS) is a spectrometric technique that combines both dispersive and interferometric features into a customizable instrument. The Basis of SHS is a Michelson interferometer with its mirrors replaced by diffraction gratings and with no moving parts. The output signal from SHS is the interferogram, which is recorded with a 1D or 2D pixel array detector. The spatial periodicity of the fringes on the interferogram is a function of the wavelength of the diffracted light. Using the Fast Fourier Transform, the original optical spectrum that enters SHS is retrieved. The light that is analyzed by SHS can come from a variety of sources. In our work, we used Raman scattering and Laser-Induced Plasma to perform quantitative and qualitative analyses. Figure 1 compares the performance of the SHS with that of high Resolution echelle and portable low-resolution asymmetrically crossed Czerny-Turner spectrometers (OO in Fig.1). The analyzed light came from the plasma induced on a stainless-steel reference material. The SHS exhibits the resolution comparable to that of the echelle spectrometer used, about 8000. Due to a high throughput of the SHS (theoretically, ~200 times higher than that of grating instruments), the number of spectra needed to be accumulated for comparable signal-to-noise ratios is much smaller than in the case of the echelle and comparable to OO spectrometers. Examples of Raman SHS applied to several pure liquids are given in Fig. 2. Raman SHS was used in three different settings: (i) for classification of six types of oils, (ii) for univariate/multivariate analysis of binary mixture cyclohexane-isopropanol, and (iii) for multivariate analysis of glycerol solution in water. For the last two settings, chemometric analysis of the spectra yielded linear calibration plots over the range 1-90% of concentrations of isopropanol in cyclohexane, and 0.5-10% of glycerol in water. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Spatial heterodyne spectroscopy KW - Raman spectroscopy KW - Laser-Induced Background Spectroscopy PY - 2019 AN - OPUS4-49176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang A1 - Riedel, Jens A1 - Gornushkin, Igor B. A1 - Zheng, R. A1 - You, Yi T1 - High-throughput underwater elemental analysis through optical emission spectroscopy with ultrasound-assisted μJ-laser-induced breakdown at kHz repetition rate N2 - The elemental analysis of seawater is often critical to the understanding of marine chemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdown spectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a great potential for in-situ elemental analysis of seawater. In practice, it is crucial to create a compact, low cost and power saving instrument for the long-term deep-sea observation. A recently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidate as it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHz can provide a considerable throughput for LIBS analysis. However, the DPSS lasers operate at moderate pulse energies, usually less than one mJ, which cannot sustain stable breakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such a μJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. The phase interface and mass flow generated by the near-field ultrasound can greatly reduce the breakdown threshold and enhance element-specific emissions. Meanwhile, the high repetition-rate pulses can also improve the breakdown probability and generate unique emission lines originated from the water molecule. We further demonstrate that the high repetition-rate DPSS laser combined with the Echelle spectrometer can provide effective quantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy, EMSLIBS 2019 CY - Czech, Brno DA - 08.09.2019 KW - Ultrasound KW - Underwater LIBS KW - µJ-DPSS laser KW - High repetition-rate PY - 2019 AN - OPUS4-49223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang A1 - Riedel, Jens A1 - Gornushkin, Igor B. A1 - Zheng, Ronger A1 - You, Yi T1 - Ultrasound-Assisted Underwater Laser-induced Breakdown Spectroscopy with HighRepetition-Rate μJ-DPSS laser N2 - The elemental analysis of seawater is often critical to the understanding of marinechemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdownspectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a greatpotential for in-situ elemental analysis of seawater. In practice, it is crucial to create acompact, low cost and power saving instrument for the long-term deep-sea observation. Arecently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidateas it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHzcan provide a considerable throughput for LIBS analysis. However, the DPSS lasers operateat moderate pulse energies, usually less than one mJ, which cannot sustain stablebreakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such aμJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. Thephase interface and mass flow generated by the near-field ultrasound can greatly reduce thebreakdown threshold and enhance element-specific emissions. Meanwhile, the highrepetition-rate pulses can also improve the breakdown probability and generate uniqueemission lines originated from the water molecule. We further demonstrate that the highrepetition-rate DPSS laser combined with the Echelle spectrometer can provide effectivequantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Underwater LIBS PY - 2019 AN - OPUS4-49769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Calibration-free LIBS of steel samples N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is used to analyze 100 low alloy steel spectra. T2 - 20.06.2019 LTB workshop on LIBS analysis of steel CY - Berlin, LTB, Germany DA - 20.06.2019 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Chemical reactors PY - 2019 AN - OPUS4-48600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Tucson, AZ, USA DA - 10.01.2020 KW - Plasma modeling KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information PY - 2020 AN - OPUS4-50324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Dielectric Breakdown for Chemical Vapor Deposition by Hydrogen Reduction of Volatile Boron Halides BCl3 and  BF3 N2 - A possibility of deposition from laser-induced plasma is investigated in search for an economic and simple method for obtaining isotopic compounds from enriched gaseous precursors although no isotopic compounds are used in this the proof-of-principle work. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Equilibrium chemistry calculations show the deposition of boron, boron carbide, and carbon is thermodynamically favorable in BCl3 systems and only carbon in BF3 systems. Dynamic calculation of expanding plasma is performed using fluid dynamics coupled with equilibrium chemistry. Condensed phases of boron, boron carbide, and graphite are predicted with maximum concentrations in peripheral zones of the plasma. In experiment, plasma is induced in mixtures BCl3, H2 + BCl3, H2 + Ar + BCl3, H2 + BCl3 + CH4, BF3, H2 + BF3, H2 + Ar + BF3, and H2 + Ar + BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectrometry methods. The results show the composition of reaction products close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all reaction mixtures. Due to technical reasons only FTIR characterization of the BCl3 + H2 + CH4 deposit is done. It points to presence of condensed boron and boron carbide predicted by the model. Overall, the calculations and preliminary experimental results imply the chemical vapor deposition with laser induced plasma is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. KW - Boron halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown, Hydrogen reduction PY - 2020 DO - https://doi.org/10.1007/s11090-020-10096-w VL - 40 IS - 5 SP - 1145 EP - 1162 PB - Springer AN - OPUS4-50968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Gojani, Ardian A1 - Völker, Tobias A1 - Günther, Tobias A1 - Gornushkin, Igor B. A1 - Wilsch, Gerd A1 - Günster, Jens T1 - Investigation of grain sizes in cement-based materials and their influence on laser-induced plasmas by shadowgraphy and plasma imaging N2 - The effect of particle grain sizes in different cement-based mixtures on the laser-induced plasma evolution is studied using two experimental methods: (i) temporal and spatial evolution of the laser-induced shock wave is investigated using shadowgraphy and two-dimensional plasma imaging, and (ii) temporal and spatial distribution of elements in the plasma is investigated using two-dimensional spectral imaging. This study is motivated by the interest in applying laser-induced breakdown spectroscopy (LIBS) for chemical analysis of concrete, and subsequently obtain information related to damage assessment of structures like bridges and parking decks. The distribution of grain sizes is of major interest in civil engineering as for making concrete different aggregate grain sizes defined by a sieving curve (64mm to 0.125 mm) are needed. Aggregates up to a size of 180 μm can be excluded from the data set, therefore only the amount of small aggregates with a grain size below 180 μm must be considered with LIBS. All components of the concrete with a grain size smaller than 0.125mm are related to the flour grain content. Tested samples consisted of dry and hardened cement paste (water-cement ratio w/z=0.5), which served as a reference. Aggregate mixtures were made by adding flour grains (size 40 μm) and silica fume (size 0.1 μm) in different ratios to cement: 10%, 30%, 50% and 60%, all combined to the remaining percentage of dry or hydrated cement. The visualization results show that a dependance in the evolution of the plasma as a function of sample grain size can be detected only in the initial stages of the plasma formation, that is, at the initial 3 μs of the plasma life. Spectral information reveals the elemental distribution of the silicon and calcium in plasma, in both neutral and ionized form. Here also, a significant effect is observed in the first 1 μs of the plasma lifetime. KW - LIBS KW - Cement-based materials KW - Particle size KW - Shadowgraphy KW - Plasma imaging PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105772 VL - 165 SP - 105772 PB - Elsevier B.V. AN - OPUS4-50319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma as a chemical reactor: how feasible? N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - 1st workshop on Tandem LIBS/LA-ICP-MS CY - BAM, Berlin, Adlershof DA - 18.11.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma chemical reactor PY - 2019 AN - OPUS4-49776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Völker, Tobias A1 - Kepes, Erik A1 - Wolsch, Gerd A1 - Baudelet, M. T1 - Molecule formation in calcium carbonate and calcium hydroxide libs plasmas: model and experiment N2 - Analysis of calcium hydrate and calcium carbonate samples and their mixtures is important for archeology, anthropology, and geology. Laser-induced plasma spectroscopy (LIBS) is a suitable tool for such the analysis as it allows for in- and on-line real time chemical assays. LIBS is inherently a technique for atomic analysis; however, since recently, it is also used for molecular analysis. The information attained by the latter is mainly related to “secondary” chemistry that deals with re-association of atoms and ions into molecules at long delay times (≥10 μs) after the initial breakdown. Even though the direct information about the initial molecular content in the target may be lost, the molecular analysis by LIBS can still be useful to assess the composition of samples. In this work, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled and compared to experiment. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of argon-calcium-oxygen and argon-calcium-hydrogen plasmas is studied as a function of plasma temperature and pressure. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - Plasma diagnostics KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. T1 - Modeling equilibrium chemistry in laser induced plasmas and plasma chemical reactors N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Porizka, P. A1 - Kaiser, J. T1 - Tomography of asymmetrical laser-induced plasmas N2 - Asymmetrical laser-induced plasmas were investigated by a tomography approach based on the inverse Radon transform. Two distinct sources of asymmetricity were investigated: double-pulsed laser-induced plasmas in the orthogonal configuration and single-pulsed laser-induced plasmas under an inclined incidence angle. Both cases were observed at various delay times. The optical thinness of the laser-induced plasmas was achieved by appropriately adjusting the pulse energies. High temporal resolution is achieved by a gated intensified charge-coupled-device camera. The asymmetrical laser-induced plasmas are investigated in terms of their total emissivity, spectrally resolved emissivity, and temperature. The latter is obtained by the Saha–Boltzmann plot method. The images required for the inverse Radon transform technique were obtained with a high angular accuracy and reproducibility provided by mounting the spectrometer on a high-precision nano-positioning rotary stage. The plasmas were induced in the center of rotation of the stage. This arrangement allows the reconstruction of emissivity, which is integrated over a full spectral range (200-800 nm) or over a desired spectral range selected by a bandpass filter (~10 nm). It also allows for the reconstruction of spectrally-resolved emissivity in each cross sectional plasma slice by scanning the plasma across a spectrometer slit. The 3D maps of temperature and electron density are thus obtained for different types of asymmetric plasmas. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS PY - 2019 AN - OPUS4-49834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Basics and applications of good SAXS: Quantifying the fine structure of lots of materials N2 - In contrast to the crisp, clear images you can get from electron microscopy, small-angle X-ray scattering (SAXS) patterns are rather featureless. These patterns, however, contain averaged structural information of all of the finest material structures that were illuminated by the X-ray beam. With careful and precise investigation, and supplementary information from complementary techniques, this bulk material structure can be quantified to reveal structural information spanning four or even five decades in size. Additionally, while the data correction and analysis is complex, sample preparation is very straightforward, also allowing for in-situ and operando measurements to be performed without breaking a sweat. In the right hands, then, this technique can be the most powerful tool in your analytical arsenal. T2 - OpTecBB webinar within the scope of the focus area Optical Analytics CY - Online meeting DA - 27.05.2020 KW - Small-angle scattering KW - Introduction KW - Application KW - Saxs KW - Nanomaterials KW - Nanostructure PY - 2020 UR - https://www.youtube.com/watch?v=mXkYL3dSsTY UR - https://optecbb.de/veranstaltungen/veranstaltung/webinar-basics-and-applications-of-good-saxs-1238/ AN - OPUS4-50879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Képeš, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J. T1 - Tomography of double-pulse laser-induced plasmas in the orthogonal geometry N2 - The temporal evolution of laser-induced plasmas is studied in the orthogonal double-pulse arrangement. Both the pre-ablation mode (an air spark is induced above the sample surface prior to the ablation pulse) and the re-heating mode (additional energy is delivered into the plasma created by the ablation pulse) is considered. The plasmas are investigated in terms of the temporal evolution of their electron density, temperature, and volume. The plasma volumes are determined using a time-resolved tomography technique based on the Radon transformation. The reconstruction is carried out for both white-light and band-pass filtered emissivities. The white-light reconstruction corresponds to the overall size of the plasmas. On the other hand, the band-pass emissivity reconstruction shows the distribution of the atomic sample species (Cu I). Moreover, through spectrally resolved tomographic reconstruction, the spatial homogeneity of the electron density and temperature of the plasmas is also investigated at various horizontal slices of the plasmas. Our results show that the pre-ablation geometry yields a more temporally stable and spatially uniform plasma, which could be beneficial for calibration-free laser-induced breakdown spectroscopy (LIBS) approaches. On the contrary, the plasma generated in the re-heating geometry exhibits significant variations in electron density and temperature along its vertical axis. Overall, our results shed further light on the mechanisms involved in the LIBS signal enhancement using double-pulse ablation. KW - Laser-induced plasma KW - Laser-induced breakdown spectroscopy KW - Double-pulse laserinduced breakdown spectroscopy KW - Plasma tomography KW - Radon reconstruction PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.06.078 SN - 0003-2670 SN - 0378-4304 VL - 1135 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-51142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The dark side of science N2 - This talk explores the various ways in which bad science can proliferate in the current academic environment, and what can be done to recognize and (maybe) correct it. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Scientific rigor KW - Academic fraud KW - Academic metrics PY - 2020 AN - OPUS4-51017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - A brief history of scattering N2 - Recorded on the first day of the Better with Scattering workshop. In this video, I explore some of the highlights of the development of small-angle X-ray scattering over its long history. I discuss developments on the technical side, analytical methods, detectors, data quality and data management. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - History PY - 2020 UR - https://www.youtube.com/watch?v=mFH6P4tZbyM AN - OPUS4-51015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - More of the same, please! Standardizing a perfectionist X-ray Scattering methodology for labs and synchrotrons N2 - After a colleague sent me a more useful measurement from a laboratory instrument than what I could get from the beamline, I knew it was time to reassess my life's choices. Over the course of several subsequent post-doc and permanent positions around lab instruments, I managed to refine a flexible, comprehensive methodology for data collection, correction and analysis which can be applied to many X-ray scattering investigations at the lab and at the synchrotron. With the help of friends at round places, this methodology was implemented and put into production, and has been delivering high-quality data since then. Now, we have almost all possible data corrections (for X-ray scattering) implemented, and are improving the hardware to deliver higher-quality metadata to enable the corrections to be performed to a higher accuracy. Simultaneously, we have set up a mini-large facility at BAM with the MAUS, the Multi-scale Analyzer for Ultrafine Structures. The MAUS combines the freedom of a laboratory instrument, with the spectrum of users of a beamline: besides measuring our own samples, and performing our own machine and methodology developments, we have opened this instrument for collaboration with fellow scientists from within BAM and from external institutes and universities. Here, we provide a comprehensive support for these collaborations, guiding the user from concept to sample selection, to interpretation and analysis. In 2019, we have supported over 30 different projects this way, leading to seven co-authored publications involving the MAUS in that year alone. As the MAUS uses the latest iteration of our comprehensive measurement methodology, the data quality is unmatched by any other lab instrument, and fully traceable to boot. The freedom of the laboratory allows for more proof-of-principle experimentation than what is possible at the synchrotron. Therefore, the MAUS provides a good first (and sometimes final) step towards many experimental materials science investigations, nicely complementing the capabilities of the synchrotron. If and when more flux is needed, the step to the synchrotron is now smaller than ever, in particular with the same method T2 - Symposium on large scale facilities CY - BAM, Berlin, Germany DA - 09.03.2020 KW - Small angle scattering KW - Methodology KW - X-ray scattering PY - 2020 AN - OPUS4-51014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, Benefits and Potential Pitfalls N2 - This talk introduces McSAS, code for analysis of scattering patterns to extract particle size distributions. It highlights how it works, how it should be used, and when it may (not) be applied T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Analysis PY - 2020 AN - OPUS4-51019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - X-ray generation N2 - This talk was recorded during the 2020 Better with Scattering workshop held at BAM in Berlin. This educational talk explains the various ways in which X-rays can be generated in the lab as well as at the synchrotron, with benefits and drawbacks for all. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - X-ray instrumentation KW - X-ray generation PY - 2020 UR - https://www.youtube.com/watch?v=Hze3PvcK7es AN - OPUS4-51016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Breßler, Ingo T1 - The SPONGE N2 - This software tool is intended to calculate X-ray scattering patterns from 3D objects described by an STL file. The fundamentals and use example(s) are shown. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - Small angle scattering KW - Software KW - Simulation PY - 2020 AN - OPUS4-51020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Gornushkin, Igor B. A1 - Kornev, R. A1 - Nazarov, V. A1 - Polyakov, V. A1 - Shkrunin, V. T1 - Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low‑Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration N2 - The physical plasma parameters, temperature and electron number density, are studied in the RF-IC (RF inductively coupled) discharge at a reduced pressure of 3 Torr in mixtures of MoF6 with Ar, H2 and CH4. The emission spectra of mixtures are investigated. It is shown that in the presence of argon, the concentration of free electrons in plasma and dissociation rate of MoF6 increase. A main role of molecular hydrogen is the generation of atomic hydrogen that binds atomic fuorine and leads to the formation of gaseous and solid products. Exhaust gas mixtures exiting the reactor are analyzed by mass spectrometry. It is shown that for all cases, the conversion of MoF6 into reaction products is close to 100%. A thermodynamic analysis of the equilibrium composition of MoF6 systems with Ar, H2 and CH4 was carried out and the obtained results are in good agreement with experimentally observed composition of the solid and gas phases. Analysis of solid deposits from mixture MoF6/H2/Ar revealed the presence of molybdenum powder and large amount of amorphous MoFx. The deposit obtained from mixtures with methane, MoF6/H2/Ar/CH4, contained crystalline molybdenum carbide, Mo3C2. KW - Molybdenum carbide KW - RF ICP discharge KW - Reduction of MoF6 KW - Thermodynamic KW - Molybdenum PY - 2020 DO - https://doi.org/10.1007/s11090-020-10138-3 SN - 0272-4324 VL - 41 IS - 2 SP - 673 EP - 690 PB - Springer AN - OPUS4-51569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Yan A1 - Yu, H. A1 - Gornushkin, Igor B. A1 - Li, J. A1 - Wu, Q. A1 - Zhang, Z. A1 - Li, X. T1 - Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy N2 - Remote and on-line measurement of chromium on structural steel surface in nuclear power plants is critical for protection against fluid accelerated corrosion. To improve the insufficient sensitivity of fiber-optic laser-induced breakdown spectroscopy toward trace element detection, a dual-pulse spectral enhancement system is set up. In an iron matrix, for the purpose of improving sensitivity of trace chromium analysis and reducing the self-absorption of iron, the effects of key parameters are investigated. The optimal values of the parameters are found to be: 450 ns inter-pulse delay, 700 ns gate delay, 30 mJ/6 mJ pulse energy ratio, and 19.8 mm lens-to-sample distance (corresponding to a 799 μm laser focused spot size). Compared to the single-pulse system, the shot number of dual-pulse ablation is limited for reducing surface damage. After the optimization of the dual-pulse system, the signal-to-noise ratio of the trace chromium emission line has been improved by 3.5 times in comparison with the single-pulse system, and the self-absorption coefficient of matrix iron has been significantly reduced with self-reversal eliminated. The number of detectable lines for trace elements has more than doubled thus increasing the input for spectral calibration without significantly increasing the ablation mass. Three calibration methods including internal standardization, partial least squares regression and random forest regression are employed to determine the chromium and manganese concentrations in standard samples of low alloy steel, and the limit of detection is respectively calculated as 36 and 515 ppm. The leave-one-out cross validation method is utilized to evaluate the accuracy of chromium quantification, and the concentration mapping of chromium is performed on the surface of a steel sample (16MND5) with a relative error of 0.02 wt.% KW - Fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) KW - Dual-pulse KW - Parameter optimization KW - Spectral enhancement KW - Self-absorption coefficient KW - Concentration mapping PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2020.147497 SN - 0169-4332 VL - 533 IS - 147497 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam AN - OPUS4-51143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Better with Scattering Part 1: Fundamentals of X-ray scattering N2 - Today's speaker is a young scientist whose research on all aspects of small-angle scattering has taken him from his birthplace in Netherlands, to Denmark, Japan and now Germany. His research has led to a new method and software for scattering pattern analysis, a comprehensive set of data corrections together with the Diamond Light Source, and a new ultra-SAXS plug-in instrument. For the last few years, he has been working on a comprehensive and universal methodology to get high-quality X-ray scattering measurements for any sample, using his new instrument at the institute. This instrument has now been heavily modified both in hardware and software, so that it can deliver better data. These developments are always driven by interesting collaborations with materials researchers and other scientists. As a joint member he has published works on a wide variety of materials, including self-assembled structures in liquids, composite materials and porous carbon catalysts. He has also been very active in outreach, for example by co-organizing an online lecture series called ‘#the Light Stuff’ on scattering and diffraction, running the ‘looking at nothing’ weblog, hosting a yearly introductory scattering course, and he has many scattering-related lectures available on YouTube. Our distinguished speaker is Dr. Brian Richard Pauw from the Federal Institute for Materials Research and Testing in Germany. I proudly invite Dr. Pauw to begin his talk T2 - The first training course on the principles & application of X-ray scattering in nanomaterials CY - Online meeting DA - 28.04.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Introduction KW - Theory PY - 2021 AN - OPUS4-53275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - The Dark Side of Science N2 - An overview of the dark side of science: what it is, how it occurs, and what you can do to understand it and fight for the light side. T2 - First training event of the ITN-Project GW4SHM CY - Online meeting DA - 23.11.2020 KW - Scientific rigor KW - Scientific misconduct KW - Data manipulation KW - Image manipulation PY - 2020 AN - OPUS4-51830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - Introduction to SAXS N2 - A simplified introductions to small-angle scattering (SAXS), to put across the main concepts and not get bogged down in equations. T2 - Better with Scattering workshop 2020 CY - BAM, Berlin, Germany DA - 16.03.2020 KW - SAXS KW - WAXS KW - MOFs KW - Data analysis KW - Nano PY - 2020 UR - https://www.youtube.com/watch?v=_YY9XtQfANk AN - OPUS4-51021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Complete set of raw and processed datasets, as well as associated Jupyter notebooks for analysis, associated with manuscript entitled: "The MOUSE project: a practical approach for obtaining traceable, wide-range X-ray scattering information" N2 - This dataset is a complete set of raw, processed and analyzed data, complete with Jupiter notebooks, associated with the manuscript mentioned in the title. In the manuscript, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for Ultrafine Structure Exploration). Through this project, we aim to provide a comprehensive methodology for obtaining the highest quality X-ray scattering information (at small and wide angles) from measurements on materials science samples. KW - X-ray scattering KW - Measurement methodology KW - Traceability derivation KW - Multi-scale measurements KW - Systems architecture KW - Nanomaterials PY - 2020 DO - https://doi.org/10.5281/zenodo.4312953 PB - Zenodo CY - Geneva AN - OPUS4-51825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard T1 - Set of technical drawings, associated with manuscript entitled: "Extending Synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes" N2 - This is a set of drawings accompanying the submitted paper entitled "Extending Synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes". The parts described herein will combine with commercial off-the-shelf components to build a high precision pair of rotation stages for accurate measurement of scattering angles with a sub-microradian precision. KW - X-ray scattering KW - USAXS KW - ultra-small-angle X-ray scattering KW - technical drawings KW - module KW - extension PY - 2021 DO - https://doi.org/10.5281/zenodo.4604703 PB - Zenodo CY - Geneva AN - OPUS4-52547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Raichlin, Y. T1 - Review on recent advances in analytical applications of molecular emission and modelling N2 - The review mainly deals with two topics that became important in applications of laser-induced breakdown spectroscopy (LIBS) in recent years: the emission of halogen- and rare-earth-containing molecules and selective excitation of molecules by molecular laser-induced fluorescence (MLIF). The first topic is related to the emission of alkaline-earth diatomic halides MX, M = Ca, Mg, Ba, Sr and X = F, Cl, Br, and I and rare-earth element (REE) oxides LaO, YO, and ScO. These molecules form in laser-induced plasma (LIP) soon after its ignition and persist for a long time, emitting broad bands in a visible part of the spectrum. They are best detected after relatively long delay times when emission from interfering plasma species (atoms and ions) has already been quenched. Such behavior of molecular spectra allows of using, for their detection, inexpensive CCD detectors equipped with simple electronic or mechanical shutters and low-resolution spectrometers. A main target for analysis by molecular spectroscopy is halogens; these elements are difficult to detect by atomic spectroscopy because their most intense atomic lines lie in the vacuum UV. Therefore, in many situations, emission from CaF and CaCl may provide a substantially more sensitive detection of F and Cl than emission from elemental F and Cl and their ions. This proved to be important in mining and concrete industries and even Mars exploration. A similar situation is observed for REEs; their detection by atomic spectroscopy sometimes fails even despite the abundance of atomic and ionic REEs' lines in the UV-VIS. For example, in minerals and rocks with low concentrations of REEs, emission from major and minor mineral elements hinders the weak emission from REEs. Many REEs do not form molecules that show strong emission bands in LIP but can still be detected with the aid of LIP. All REEs except La, Y, and Sc exhibit long-lived luminescence in solid matrices that is easily excited by LIP. The luminescence can be detected simultaneously with molecular emission of species in LIP within the same time and spectral window. The second topic is related to the combination of MLIF and LIBS, which is a technique that was proved to be efficient for analysis of isotopic molecules in LIP. For example, the characteristic spectral signals from isotopic molecules containing 10B and 11B are easier to detect with MLIF-LIBS than with laser ablation molecular isotopic spectrometry (LAMIS) because MLIF provides strong resonance excitation of only targeted isotopes. The technique is also very efficient in detection of halogen molecules although it requires an additional tunable laser that makes the experimental setup bulky and more expensive. KW - Plasma induced luminescence KW - Molecular emission KW - Laser induced plasma KW - Plasma modeling KW - Molecular analysis KW - LIBS PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105989 VL - 173 SP - 105989 PB - Elsevier B. V. AN - OPUS4-51420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - model of laser induced plasma relevant to structuring and coating of titanium implants N2 - The presentation will give a brief overview of the processes occurring in laser-induced plasma and methods of modeling these processes. In particular, a chemical-hydrodynamic model will be considered, which is related to the modification of the surface of metallic titanium by laser pulses. The details and simplifications of this model, its shortcomings and the possibilities of their elimination will be discussed. This model is related to the structuring of the surface of dental implants with a laser and the deposition of an oxide film on it. T2 - THE 2-nd THEMATIC INTERNATIONAL SCIENTIFIC AUTUMN SCHOOL ON LASER MICRO- & NANOTHECHNOLOGIES: 2021 – BIOMEDICAL TECHNOLOGIES CY - St. Petersburg, Russia DA - 09.11.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kornev, R. A. A1 - Veiko, V. P. T1 - Molecule formation in reactive LIBS plasmas: model and experiment N2 - Formation and detection of molecules in laser induced plasmas (LIP) is a hot topic. In analytical plasmas like LIBS, the detection of molecules is important for identification of geological and other materials, analysis of isotopes and difficult elements (Cl, F, etc.) via molecular emission. In chemical plasmas, like PECVD (plasma enhanced chemical vapor deposition) or PLD (pulsed laser deposition), molecules formed in the plasma determine a composition and a thickness of deposits. Similarly, molecules play an important role in microstructuring and oxidizing metal surfaces by laser ablation. It is unfortunate that different communities, which utilize plasma methods and seek for solutions of similar problems, do not strongly overlap, and do not fully use knowledge accumulated by each other. In this presentation, mechanisms of formation of molecules will be analyzed on the example of LIPs used for chemical vapor deposition and metal microstructuring. Theoretical analysis includes equilibrium chemistry calculations combined with plasma hydrodynamics. First, LIP excited in a gas mixture of BCl3 or BF3 with H2 or CH4 will be analyzed; this chemical system is used for obtaining deposits of refractory solid boron and boron carbide. Second, a breakdown in the SiF4 + SiCl4 gas mixtures will be described; this method allows synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3), the good etching agents (Figure). Third, solid ablation of Mo in BF3+H2 and Ti in air will be considered aimed at obtaining deposits of high hardness MoxBy and films of TixOy on textured Ti surfaces, correspondingly. In experiment, reaction gases before and after laser illumination, and solid deposits are analyzed by optical emission spectroscopy (OES), IR and mass spectrometry (MS), SEM, X-ray, and AFM. It will be shown that the hydrodynamic-chemical model adequately predicts the composition of LIPs, zones of molecular formation, dependence on reactant stoichiometry, plasma temperature and pressure. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Gijon, Spain DA - 29.11.2021 KW - Laser induced plasma KW - Plasma chemistry KW - Molecules formation KW - Plasma enhanced chemical deposition PY - 2021 AN - OPUS4-53850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kornev, Roman A1 - Kornev, A. R. A1 - Ermakov, A. A. T1 - Laser dielectric breakdown as a novel method for producing molybdenum borides N2 - Superhard materials with a Vickers hardness in the range of 30-40 GPa are of great interest, both from a fundamental and a practical viewpoints, since they have outstanding mechanical, thermal and chemical properties. Molybdenum borides belong to this group of materials. A review of publications on synthesis of molybdenum boride indicates a) great interest in this superhard material and b) the need for new effective methods of its synthesis, especially in a nanocrystalline form. Very promising are the plasma-chemical methods based on laser induced breakdown. The breakdown can be created either in reactive gases containing volatile compounds of boron and molybdenum or on solid samples. For gas breakdown, molybdenum hexafluoride MoF6 and boron trifluoride BF3 were used in the mixture with hydrogen and argon; for solid breakdown, the pure molybdenum sample was ablated into the mixture of H2 and BF3. The plasma-chemical synthesis of MoxBy structures was carried out in the reactor shown in Figure. Laser breakdown was created by a pulsed Nd: YAG laser operating at 1064 nm with a 15 ns pulse duration, 5 Hz repetition rate, and 800 mJ pulse energy. The laser was focused by a 5 cm focal length lens to produce 26 J/cm3 energy density in the focal point. The ratios H2:BF3: MoF6 = 5:2:1 and H2:BF3 = 3:1 were used in a pressure range 30 - 760 Torr. After ablation in the mixture H2 + BF3 + MoF6, the deposit contained an amorphous phase with a small impurity of crystalline molybdenum and no boride phase. After ablation of metallic Mo into H2 + BF3, the main phase was MoB2 in the form of nano dispersed powder with an average grain size of 100 nm. The degree of conversion of boron trifluoride and the yield of molybdenum boride were studied as a function of pressure. It was established that 30 Torr is optimal for the formation of MoB2. This work was supported by the Russian Science Foundation grant No. 20-13-00035. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Online meeting DA - 29.11.2021 KW - Plasma enhanced chemical deposition KW - Laser induced plasma KW - Plasma chemistry KW - Molybdenum boride PY - 2021 AN - OPUS4-53901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Gornushkin, Igor B. T1 - Recent Trends in Inexpensive Lithium Isotopic Analysis N2 - Lithium exists in two stable isotopes, 6Li and 7Li. The ratio of these in every ore varies depending on the geological history of the sample, thus providing a tool for fingerprinting the distinct origin of Li containing samples. Determination of the exact isotope ratio for e.g. designation of provenance today relies on expensive and bulky instrumentation such as multi `collector inductively coupled plasma mass spectrometry` (MC-ICP-MS). These instruments, however, are known to bear pitfalls in the characterization of particular elements including Lithium. BAM recently developed two alternative analytical devices for this task, solely relying on inexpensive optical spectroscopy in combination with state-of-the-art multivariate data analysis such as Machine learning algorithms. Both techniques have been comprehensively studied using certified reference materials and comparing the results to MC-ICP-MS results and could be shown to result in comparable figures of merit, paving the way for a more general accessibility to provenance determination instrumentation. The results also pave the way towards even further simplification of the laboratory infrastructure demands and to further include additional elements into the isotopic fingerprinting methodology. T2 - Lithium-Days CY - Halle, Germany DA - 06.12.2021 KW - Lithium KW - Isotopes KW - Optical Spectroscopy PY - 2021 AN - OPUS4-53966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Better with Scattering Part 2: Nanostructural investigations with X-ray scattering N2 - Today's speaker is a young scientist whose research on all aspects of small-angle scattering has taken him from his birthplace in Netherlands, to Denmark, Japan and now Germany. His research has led to a new method and software for scattering pattern analysis, a comprehensive set of data corrections together with the Diamond Light Source, and a new ultra-SAXS plug-in instrument. For the last few years, he has been working on a comprehensive and universal methodology to get high-quality X-ray scattering measurements for any sample, using his new instrument at the institute. This instrument has now been heavily modified both in hardware and software, so that it can deliver better data. These developments are always driven by interesting collaborations with materials researchers and other scientists. As a joint member he has published works on a wide variety of materials, including self-assembled structures in liquids, composite materials and porous carbon catalysts. He has also been very active in outreach, for example by co-organizing an online lecture series called ‘#the Light Stuff’ on scattering and diffraction, running the ‘looking at nothing’ weblog, hosting a yearly introductory scattering course, and he has many scattering-related lectures available on YouTube. Our distinguished speaker is Dr. Brian Richard Pauw from the Federal Institute for Materials Research and Testing in Germany. I proudly invite Dr. Pauw to begin his talk. T2 - The first training course on the principles & application of X-ray scattering in nanomaterials CY - Online meeting DA - 28.04.2021 KW - X-ray scattering KW - Methodology KW - MOUSE KW - Practical examples KW - Automation KW - Data organization PY - 2021 AN - OPUS4-53276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Kästner, L. A1 - Hauffen, Jan Christian A1 - Jung, P. A1 - Ziegler, Mathias T1 - Photothermal-SR-Net: A customized deep unfolding neural network for photothermal super resolution imaging N2 - This article presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super-resolution (SR) imaging. The photothermal SR approach is a well-known technique to overcome the spatial resolution limitation in photothermal imaging by extracting high-frequency spatial components based on the deconvolution with the thermal point spread function (PSF). However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, handcrafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, this article proposes Photothermal-SR-Net, which performs deconvolution by deep unfolding considering the underlying physics. Since defects appear sparsely in materials, our approach includes trained block-sparsity thresholding in each convolutional layer. This enables to super-resolve 2-D thermal images for nondestructive testing (NDT) with a substantially improved convergence rate compared to classic approaches. The performance of the proposed approach is evaluated on various deep unfolding and thresholding approaches. Furthermore, we explored how to increase the reconstruction quality and the computational performance. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. KW - Deep unfolding KW - Defect reconstruction KW - Elastic net KW - Inverse problems KW - Iterative shrinkage thresholding KW - Neural network KW - Nondestructive testing (NDT) KW - Photothermal imaging KW - Super resolution (SR) KW - Thermography PY - 2022 DO - https://doi.org/10.1109/tim.2022.3154803 SN - 1557-9662 VL - 71 SP - 1 EP - 9 PB - IEEE AN - OPUS4-54678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Kästner, L. A1 - Hauffen, Jan Christian A1 - Jung, P. A1 - Ziegler, Mathias T1 - Photothermal-SR-Net: A customized deep unfolding neural network for photothermal super resolution imaging N2 - This paper presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super resolution (SR) imaging. Photothermal imaging is a well-known technique in active thermography for nondestructive inspection of defects in materials such as metals or composites. A grand challenge of active thermography is to overcome the spatial resolution limitation imposed by heat diffusion in order to accurately resolve each defect. The photothermal SR approach enables to extract high-frequency spatial components based on the deconvolution with the thermal point spread function. However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, hand-crafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics. This enables to super resolve 2D thermal images for nondestructive testing with a substantially improved convergence rate. Since defects appear sparsely in materials, Photothermal-SR-Net applies trained blocksparsity thresholding to the acquired thermal images in each convolutional layer. The performance of the proposed approach is evaluated and discussed using various deep unfolding and thresholding approaches applied to 2D thermal images. Subsequently, studies are conducted on how to increase the reconstruction quality and the computational performance of Photothermal-SR-Net is evaluated. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. KW - Photothermal super resolution KW - Nondestructive testing KW - Deep unfolding KW - Deep learning KW - Deep imaging KW - Physics-based deep learning KW - Laser thermography KW - Elastic net KW - Iterative shrinkage thresholding algorithm PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525371 DO - https://doi.org/10.48550/arXiv.2104.10563 SN - 2331-8422 SP - 1 EP - 10 PB - Cornell University CY - Ithaca, NY AN - OPUS4-52537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super resolution KW - Photothermal KW - Imaging KW - Compressed sensing KW - Internal defects KW - Nondestructive testing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518866 DO - https://doi.org/10.48550/arXiv.2007.03341 SN - 2331-8422 SP - 1 EP - 9 PB - Cornell University CY - Ithaca, NY AN - OPUS4-51886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Portella, Pedro Dolabella T1 - Structured heating in active thermography by using laser arrays N2 - Lock-in- and flash thermography are standard methods in active thermography. They are widely used in industrial inspection tasks e.g. for the detection of delaminations, cracks or pores. The requirements for the light sources of these two methods are substantially different. While lock-in thermography requires sources that can be easily and above all fast modulated, the use of flash thermography requires sources that release a very high optical energy in the very short time. By introducing high-power vertical cavity surface emitting lasers (VCSELs) arrays to the field of thermography a source is now available that covers these two areas. VCSEL arrays combine the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination range of flash lamps or LEDs and can thus potentially replace all conventional light sources of thermography. However, the main advantage of this laser technology lies in the independent control of individual array areas. It is therefore possible to heat not only in terms of time, but also in terms of space. This new degree of freedom allows the development of new NDT methods. We demonstrate this approach using a test problem that can only be solved to a limited extent in active thermography, namely the detection of very thin, hidden defects in metallic materials that are aligned vertically to the surface. For this purpose, we generate destructively interfering thermal wave fields, which make it possible to detect defects within the range of the thermal wave field high sensitivity. This is done without pre-treatment of the surface and without using a reference area to depths beyond the usual thermographic rule of thumb. T2 - ConaEnd&Iev 2018 CY - Sao Paulo, Brazil DA - 27.08.2018 KW - VCSEL KW - Active thermography KW - Laser KW - Structured heating KW - Subsurface defects PY - 2018 AN - OPUS4-45851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution imaging: a comparison of different reconstruction techniques N2 - The diffusive nature of heat propagation complicates the separation of two closely spaced defects. This results in a fundamental limitation in spatial resolution. Therefore, super resolution (SR) image reconstruction can be used. SR processing techniques based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying SR algorithms such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Two different data processing strategies are evaluated and discussed regarding their influence on the reconstruction goodness as well as their complexity. Moreover, the degradation of the SR reconstruction by the choice of regularization parameters in data processing is discussed. The application of both SR techniques that are evaluated in this paper results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. The fundamental difference between both SR techniques is their complexity. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hauffen, J. C. A1 - Kästner, L. A1 - Ahmadi, Samim A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Learned block iterative shrinkage thresholding algorithm for photothermal super resolution imaging N2 - Block-sparse regularization is already well known in active thermal imaging and is used for multiple-measurement-based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. We show the benefits of using a learned block iterative shrinkage thresholding algorithm (LBISTA) that is able to learn the choice of regularization parameters, without the need to manually select them. In addition, LBISTA enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present LBISTA and compare it with state-of-the-art block iterative shrinkage thresholding using synthetically generated and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations. Thus, this allows us to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super-resolution imaging. KW - Thermography KW - Laser KW - Machine learning KW - Optimization KW - Non-destructive testing KW - NDT KW - Neural network KW - Defect reconstruction KW - Block-sparsity KW - Active thermal imaging KW - Regularization KW - Laser thermography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554598 DO - https://doi.org/10.3390/s22155533 SN - 1424-8220 VL - 22 IS - 15 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-55459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Super resolution laser line scanning thermography N2 - In this paper we propose super resolution measurement and post-processing strategies that can be applied in thermography using laser line scanning. The implementation of these techniques facilitates the separation of two closely spaced defects and avoids the expected deterioration of spatial resolution due to heat diffusion. The experimental studies were performed using a high-power laser as heat source in combination with pulsed thermography measurements (step scanning) or with continuous heating measurements (continuous scanning). Our work shows that laser line step scanning as well as continuous scanning both can be used within our developed super resolution (SR) techniques. Our SR techniques make use of a compressed sensing based algorithm in post- processing, the so-called iterative joint sparsity (IJOSP) approach. The IJOSP method benefits from both - the sparse nature of defects in space as well as from the similarity of each measurement. In addition, we show further methods to improve the reconstruction quality e.g. by simple manipulations in thermal image processing such as by considering the effect of the scanning motion or by using different optimization algorithms within the IJOSP approach. These super resolution image processing methods are discussed so that the advantages and disadvantages of each method can be extracted. Our contribution thus provides new approaches for the implementation of super resolution techniques in laser line scanning thermography and informs about which experimental and post-processing parameters should be chosen to better separate two closely spaced defects. KW - Super resolution KW - Laser thermography KW - Compressed sensing KW - Laser scanning KW - Joint sparsity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509796 DO - https://doi.org/10.1016/j.optlaseng.2020.106279 SN - 0143-8166 VL - 134 SP - 106279 PB - Elsevier Ltd. AN - OPUS4-50979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Hauffen, Jan Christian A1 - Kästner, L. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Learned block iterative shrinkage thresholding algorithm for photothermal super resolution imaging N2 - Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameters, we propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network. More precisely, we show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters. In addition, this algorithm enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present the algorithm and compare it with state of the art block iterative shrinkage thresholding using synthetically generated test data and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations than without learning. Thus, this new approach allows to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super resolution imaging. KW - Iterative shrinkage thresholding algorithm KW - Neural network KW - Deep learning KW - Active thermography KW - Photothermal super resolution PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525364 DO - https://doi.org/10.48550/arXiv.2012.03547 SN - 2331-8422 SP - 1 EP - 11 PB - Cornell University CY - Ithaca, NY AN - OPUS4-52536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Thiel, Erik A1 - Pech May, Nelson Wilbur T1 - Using spatial and temporal shaping of laser-induced diffuse thermal wave fields in thermography N2 - The diffuse nature of thermal waves is a fun-damental limitation in thermographic nonde-structive testing. In our studies we investigated different approaches by shaping the thermal wave fields which result from heating. We have used high-power laser sources to heat metallic samples. Using these spatial and temporal shaping techniques leads to a higher detection sensitivity in our measurements with the infra-red camera. In this contribution we show our implementation of shaping laser-induced diffuse thermal wave fields and the effect on the defect reconstruction quality. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Thermal wave KW - Diffusion KW - High-power laser KW - Thermography KW - Spatiotemporal shaping PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C5.1 SP - 179 EP - 180 AN - OPUS4-50897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Winckelmann, Alexander A1 - Vogl, Jochen A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Determination of calcium, iron, and selenium in human serum by isotope dilution analysis using nitrogen microwave inductively coupled atmospheric pressure plasma mass spectrometry (MICAP-MS) N2 - In this study, we demonstrate the applicability of nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) for Ca, Fe, and Se quantification in human serum using isotope dilution (ID) analysis. The matrix tolerance of MICAP-MS in Na matrix was investigated, uncovering that high Na levels can suppress the signal intensity. This suppression is likely due to the plasma loading and the space charge effect. Moreover, 40Ca and 44Ca isotopic fractionation was noted at elevated Na concentration. Nine certified serum samples were analyzed using both external calibration and ID analysis. Overestimation of Cr, Zn, As, and Se was found in the results of external calibration, which might be resulted from C-induced polyatomic interference and signal enhancement, respectively. Further investigations performed with methanol showed a similar enhancement effect for Zn, As, and Se, potentially supporting this assumption. The mass concentrations determined with ID analysis show metrological compatibility with the reference values, indicating that MICAP-MS combined with ID analysis can be a promising method for precise Ca, Fe, and Se determination. Moreover, this combination reduces the influences of matrix effects, broadening the applicability of MICAP-MS for samples with complex matrix. KW - Selenium KW - Nitrogen microwave inductively coupled atmospheric pressure mass spectrometry KW - Isotope dilution KW - Human serum KW - Calcium KW - Iron PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598664 DO - https://doi.org/10.1007/s00216-024-05274-0 SN - 1618-2642 SP - 3117 EP - 3125 PB - Springer CY - Berlin AN - OPUS4-59866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Ziegler, Mathias A1 - Maierhofer, Christiane ED - Maldague, X. T1 - Systematic errors in the evaluation of uncorrected data from thermographic lock-in measurements N2 - Lock-in thermography (LT) is based on the correct evaluation of phase differences between the temperature oscillations at different surface regions of the object under test during periodic heating. Since the usual heating procedures contain a DC component, the actual heating pattern achieved is not harmonic. This causes systematic deviations when phase differences are determined by means of harmonic analysis, e.g. with FFT analysis. The resulting errors depend clearly on the ratio between DC and AC amplitude, which is demonstrated at simulated and experimentally recorded temperature transients. Further experimental LT data obtained by different oscillating energy inputs showed a variety of possible shapes of transients with different DC components. T2 - 14th QIRT Conference CY - Berlin, Germany DA - 26.06.2018 KW - NDT KW - Lock-in Thermography KW - FFT PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453768 SP - 539 EP - 547 PB - QIRT Council AN - OPUS4-45376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - New techniques in super resolution photothermal imaging for nondestructive testing N2 - In this work we focus on our most recent studies to super resolution (SR) laser thermography. The goal of SR nondestructive testing methods is to facilitate the separation of closely spaced defects. We explain how to combine laser scanning with SR techniques. It can be shown that stepwise as well as continuous scanning techniques are applicable. Finally, we discuss the effect of experimental parameters and im-age processing techniques to find the optimal SR technique which leads to the highest reconstruction quality within laser thermography. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Super resolution KW - Laser thermography KW - Nondestructive testing KW - Laser scanning KW - Photothermal imaging PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C4.1 SP - 169 EP - 170 AN - OPUS4-50895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Margreiter, R. A1 - Baumann, J. A1 - Mantouvalou, I. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Strub, E. T1 - Investigations on fire-gilding N2 - Fire-gilding is a historic technique for the application of golden layers on a number of different base materials utilizing a gold amalgam. This technique leaves a significant amount of Hg in the golden layer, giving archeometrists a reliable indicator to identify firegildings. Recent findings on presumably fire-gilded objects have shown in several cases significantly lower Hg content than previously studied objects. This prompted a synchrotron-based X-ray fluorescence investigation into the Hg distribution along the material–gilding interface, as well as a series of measurements regarding the Hg content development in fire-gilded samples during artificial aging. This work presents findings on laboratory-prepared fire-gildings, indicating an Hg enrichment at the interface of firegilded silver samples. Notably, such an enrichment is missing in fire-gilded copper samples. Further, it is confirmed that fire-gilded layers typically do not undercut an Hg bulk content of 5%. In this light, it seems improbable that ancient samples that contain <5% Hg are fire-gilded. The results presented in this study might lead to a non-destructive method to identify the Hg enrichment at the interface. This might be obtained by a combination of different non-destructive measurements and might also work unambiguously in samples in which the gold top layer is altered. KW - BAMline KW - X-Ray Fluorescence KW - Gilding KW - Depth profile KW - Archaeometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552885 DO - https://doi.org/10.1111/arcm.12797 SN - 0003-813X SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-55288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam A. L. T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567659 DO - https://doi.org/10.1063/5.0130673 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Thermographic detection of internal defects using 2D photothermal super resolution reconstruction with sequential laser heating N2 - Thermographic photothermal super resolution reconstruction enables the resolution of internal defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. Based on a combination of the application of special sampling strategies and a subsequent numerical optimization step in post-processing, thermographic super resolution has already proven to be superior to standard thermographic methods in the detection of one-dimensional defect/inhomogeneity structures. In our work, we report an extension of the capabilities of the method for efficient detection and resolution of defect cross sections with fully two-dimensional structured laser-based heating. The reconstruction is carried out using one of two different algorithms that are proposed within this work. Both algorithms utilize the combination of several coherent measurements using convex optimization and exploit the sparse nature of defects/inhomogeneities as is typical for most nondestructive testing scenarios. Finally, the performance of each algorithm is rated on reconstruction quality and algorithmic complexity. The presented experimental approach is based on repeated spatially structured heating by a high power laser. As a result, a two-dimensional sparse defect/inhomogeneity map can be obtained. In addition, the obtained results are compared with those of conventional thermographic inspection methods that make use of homogeneous illumination. Due to the sparse nature of the reconstructed defect/inhomogeneity map, this comparison is performed qualitatively. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548351 DO - https://doi.org/10.1063/5.0088102 SN - 1089-7550 VL - 131 IS - 18 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-54835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iro, M. A1 - Ingerle, D. A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kregsamer, P. A1 - Streli, C. T1 - Investigation of polycapillary half lenses for quantitative confocal micro-X-ray fluorescence analysis N2 - The use of polycapillary optics in confocal micro-X-ray fluorescence analysis (CMXRF) enables the destruction-free 3D investigation of the elemental composition of samples. The energy-dependent transmission properties, concerning intensity and spatial beam propagation of three polycapillary half lenses, which are vital for the quantitative interpretation of such CMXRF measurements, are investigated in a monochromatic confocal laboratory setup at the Atominstitut of TU Wien, and a synchrotron setup on the BAMline beamline at the BESSY II Synchrotron, Helmholtz-Zentrum-Berlin. The empirically established results, concerning the intensity of the transmitted beam, are compared with theoretical values calculated with the polycap software package and a newly presented analytical model for the transmission function. The resulting form of the newly modelled energy-dependent transmission function is shown to be in good agreement with Monte Carlo simulated results for the complete energy regime, as well as the empirically established results for the energy regime between 6 keV and 20 keV. An analysis of possible fabrication errors was conducted via pinhole scans showing only minor fabrication errors in two of the investigated polycapillary optics. The energy-dependent focal spot size of the primary polycapillary was investigated in the laboratory via the channel-wise evaluation of knife-edge scans. Experimental results are compared with data given by the manufacturer as well as geometric estimations for the minimal focal spot size. Again, the resulting measurement points show a trend in agreement with geometrically estimated results and manufacturer data. KW - BAMline KW - Synchrotron KW - Capillary KW - confocal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562430 DO - https://doi.org/10.1107/S1600577522009699 SN - 1600-5775 VL - 29 SP - 1376 EP - 1384 PB - International Union of Crystallography CY - Chester AN - OPUS4-56243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hönig, Gerald A1 - Schlichting, S. A1 - Wagner, M. R. A1 - Müssener, J. A1 - Hill, P. A1 - Grieb, T. A1 - Teubert, J. A1 - Schörmann, J. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - QCSE tuning in polar GaN/AlN heterostructures N2 - We show both theoretically and experimentally how the encapsulation of the active region by additional guard layers can be used to achieve a significant reduction of the built-in electric fields in polar nitride heterostructures. This reduction of the QCSE results in a strongly enhanced emission intensity and faster recombination dynamics in the active region. In particular we are able to shift the emission energy of 4-nm-thick GaN nano-discs up to 3.32 eV, which is just 150 meV below the bulk GaN bandgap as compared to a red-shift of about 1 eV in a conventional heterostructure with the same thickness. T2 - SPIE. PHOTONICS WEST OPTO CY - San Francisco, CA, USA DA - 29.01.2018 KW - QCSE KW - Piezopolarization KW - Spontaneous Polarization KW - IFGARD KW - Nanoheterostructures KW - Nonpolar PY - 2018 AN - OPUS4-43383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Thermographic Detection of Internal Defects using Photothermal Super Resolution Reconstruction and 2D structured Illumination Patterns N2 - For a long time, the rule of thumb for active thermography as a non-destructive testing method was that the resolution of internal defects/inhomogeneities is limited to a ratio of defect depth/defect size ≤ 1. This is due to the diffusive nature of thermal conduction in solids. So-called super resolution approaches have recently allowed this physical limit to be overcome many times over. This offers the attractive possibility of developing thermography from a purely near surface-sensitive testing method to one with improved depth range. How far this development can be pushed is the subject of current research. We have already been able to show that this classical limitation for one- and two-dimensional defect geometries can be overcome by illuminating the test object sequentially in a structured manner with individual laser spots and thus subsequently calculating a defect map from the resulting measurement data by applying photothermal super resolution reconstruction, which allows significantly improved separation of individual closely spaced defects. As a result, this method benefits strongly from the combination of sequential spatially structured illumination and modern numerical optimization methods, which come at the expense of higher experimental complexity. This leads to long measurement times, large data sets, and tedious numerical analysis, in contrast to the application of established standard thermographic methods with homogeneous illumination. In this work, we report on the application of full-area spatially structured two-dimensional illumination patterns, which, by applying state-of-the-art laser projector technology in conjunction with a high-power laser, makes it possible to achieve an efficient implementation of photothermal super-resolution reconstruction even for larger test areas in the first place. T2 - 13th European Conference on Non-destructive Testing CY - Lisbon, Portugal DA - 03.07.2023 KW - Thermography KW - Super resolution KW - Digital light processing KW - Material testing KW - Internal defects KW - DMD PY - 2023 AN - OPUS4-57909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584924 DO - https://doi.org/10.1039/d3cc03277a SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Förste, F. A1 - Bauer, L. A1 - Streeck, C. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Kadow, D. A1 - Keil, C. A1 - Mantouvalou, I. T1 - Quantitative Analysis and 2D/3D Elemental Imaging of Cocoa Beans Using X‑ray Fluorescence Techniques N2 - As an important raw material for the confectionery industry, the cocoa bean (Theobroma cacao L.) has to meet certain legal requirements in terms of food safety and maximum contaminant levels in order to enter the cocoa market. Understanding the enrichment and distribution of essential minerals but also toxic metals is of utmost importance for improving the nutritional quality of this economically important raw food material. We present three X-ray fluorescence (XRF) techniques for elemental bio-imaging of intact cocoa beans and one additional XRF technique for quantitative analysis of cocoa pellets. The interrelation of all the methods presented gives a detailed picture of the content and 3D-resolved distribution of elements in complete cocoa beans for the first time. KW - BAMline KW - Synchrotron KW - XRF KW - CXC KW - Cocoa PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05370 VL - 95 SP - 5627 EP - 5635 PB - ACS Publications AN - OPUS4-57832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, Christian A1 - Ziegler, Mathias T1 - Thermographic testing using 2D pseudo-random illumination and photothermal super resolution reconstruction N2 - Due to the diffusive nature of heat propagation in solids, the detection and resolution of internal defects with active thermography based non-destructive testing is commonly limited to a defect-depth-to-defect-size ratio greater than or equal to one. In the more recent past, we have already demonstrated that this limitation can be overcome by using a spatially modulated illumination source and photothermal super resolution-based reconstruction. Furthermore, by relying on compressed sensing and computational imaging methods we were able to significantly reduce the experimental complexity to make the method viable for investigating larger regions of interest. In this work we share our progress on improving the defect/inhomogeneity characterization using fully 2D spatially structured illumination patterns instead of scanning with a single laser spot. The experimental approach is based on the repeated blind pseudo-random illumination using modern projector technology and a high-power laser. In the subsequent post-processing, several measurements are then combined by taking advantage of the joint sparsity of the defects within the sample applying 2D-photothermal super resolution reconstruction. Here, enhanced nonlinear convex optimization techniques are utilized for solving the underlying ill-determined inverse problem for typical simple defect geometries. As a result, a higher resolution defect/inhomogeneity map can be obtained at a fraction of the measurement time previously needed. T2 - Thermosense: Thermal Infrared Applications XLIV CY - Orlando, FL, USA DA - 05.04.2022 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2022 AN - OPUS4-54667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Burgholzer, P. A1 - Berer, T. A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Thermographic super resolution using structured 1D laser illumination and joint sparsity N2 - Thermographic NDE is based on the interaction of thermal waves with inhomogeneities. These inhomogeneities are related to sample geometry or material composition. Although thermography is suitable for a wide range of inhomogeneities and materials, the fundamental limitation is the diffusive nature of thermal waves and the need to measure their effect radiometrically at the sample surface only. The propagation of the thermal waves from the heat source to the inhomogeneity and to the detection surface results in a degradation in the spatial resolution of the technique. A new concerted ansatz based on a spatially structured heating and a joint sparsity of the signal ensemble allows an improved reconstruction of inhomogeneities. As a first step to establish an improved thermographic NDE method, an experimental setup was built based on structured 1D illumination using a flash lamp behind a mechanical aperture. As a follow-up to this approach, we now use direct structured illumination using a 1D laser array. The individual emitter cells are driven by a random binary pattern and additionally shifted by fractions of the cell period. The repeated measurement of these different configurations with simultaneously constant inhomogeneity allows for a reconstruction that makes use of joint sparsity. With analytical-numerical modelling or numerical FEM simulations, we study the influence of the parameters on the result of non-linear reconstruction. For example, the influence of the illumination pattern as a variable heat flux density and Neumann boundary condition for convolution with the constant Green's function can be studied. These studies can be used to derive optimal conditions for a measurement technique. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena" CY - Erice, Italy DA - 06.09.2018 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2018 AN - OPUS4-46180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Puthiyaveettil, N. A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Unnikrishnakurup, Sreedhar A1 - Krishnamurthy, C. V. A1 - Balasubramaniam, K. T1 - Numerical study of laser line thermography for crack detection at high temperature N2 - The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situation in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser use to generate a laser, which is using to scan the metal surface with notch. The corresponding heat distribution on the surface monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we report the capability of laser thermography in crack detection at elevated temperature. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Cracks PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454441 DO - https://doi.org/10.21611/qirt.2018.076 AN - OPUS4-45444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim T1 - Lock-in Thermography using High-Power Laser Sources N2 - Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test specimen. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. We present current activities with kilowatt-class high-power laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages. T2 - 12th European Conference on Non-destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Thermography KW - Laser Thermography KW - Lock-in Thermography PY - 2018 AN - OPUS4-45445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim T1 - Lock-in Thermography using High-Power Laser Sources N2 - Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz, see Fig.1. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Using the one-dimensional solution to the thermal heat diffusion equation together with the absorptance of the material which is illuminated with a harmonically modulated light source, we can calculate the temperature oscillation at the surface of a solid. As a second step, we calculate the corresponding oscillation of the total thermal emission using Stefan-Boltzmann law as a first order approximation and taking into account the emissivity of the material. Within this framework we can calculate the minimal irradiance of a light source necessary to provoke a measurable signal within a thermographic camera at a noise equivalent temperature difference (NETD) of 30 mK. In Fig. 2 this relationship is displayed for a wide spectrum of modulation frequencies and for a number of different light sources scaled to the same electrical input power and illumination area. Using this figure, it is now easily possible to analyze the range of materials to be tested using lock-in thermography, since only the materials (dotted lines) below the irradiance-vs-frequency curves (solid lines) are heated in excess of the camera’s NETD. This figure clearly shows that laser sources considerably increase the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in texting. We present current activities with kilowatt-class high-power laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser Thermography KW - Lock-in Thermography PY - 2018 AN - OPUS4-45449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Characterization of defects in fibre reinforced composites (FRC) using passive and active thermography N2 - Impact damages and delaminations in fibre-reinforced composites (FRC) might not be visible at the surface, but could have an influence on the resistance and on the long-term behaviour of the component. Therefore, and especially for safety relevant structures, non-destructive methods are required for the assessment of such damages. Active thermography methods are suitable to characterize damages after loading using different kind of excitation techniques and various configurations of infrared (IR) camera and heating sources. Here, flash lamps, impulse excitation with infrared radiator and lock-in technique with halogen lamps or widened laser beams are suited. In addition, non-optical sources like sonotrodes (requiring direct contact to the structure) or induction generators (only suited for carbon fibre reinforced polymer (CFRP) structures) could be applied as well. For the investigation of the evolution of the damage during the impact, passive thermography can be applied in-situ. Elastic and plastic deformations alter the temperature of the structure and thus the temperature on the surface. In this contribution, at first the general principles of quantitative defect characterisation in FRC using active thermography with flash, impulse and lock-in excitation are described. Optical and thermal properties of the FRC material and its anisotropy are considered. Results of phase differences obtained at flat bottom holes with flash and lock-in thermography are compared for qualifying both methods for quantitative defect characterization. Secondly, the damage evolution of CFRP and GFRP structures under impact load and static tensile loading is described. The spatial and temporal evolution of the surface temperature enables us to distinguish matrix cracks or fibre-matrix separation from delaminations between the layers. Afterwards, all results for loading defects, obtained by passive and active thermography, are compared with each other. Fig. 1 and 2 show the difference of passive and flash thermography obtained at impact and tensile loaded CFRP plates, respectively. As one purpose of these investigations is the development of standards within national (DIN) and European (CEN) standardisation bodies, new draft and final standards are presented and further needs are discussed at the end of the presentation. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Flash thermography KW - Lock-in thermography KW - CFRP KW - GFRP PY - 2018 AN - OPUS4-46283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Studemund, T. A1 - Ziegler, Mathias T1 - Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects N2 - Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah DA - 16.07.2017 KW - Laser applications KW - Thermography KW - VCSEL KW - Subsurface defects PY - 2018 SN - 978-0-7354-1644-4 DO - https://doi.org/10.1063/1.5031547 SN - 0094-243X VL - 1949 SP - UNSP 060001, 1 EP - 8 AN - OPUS4-45171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Mayr, G. T1 - Thermography using High-Power Laser Arrays N2 - Due to their high irradiance and wide modulation bandwidth, high-power lasers open up a wide field of application. For example, the classical methods of pulse and lock-in thermography can be realized in high quality. In addition, structured heating is also possible by using arrays of such lasers. This makes it possible to implement new thermographic methods, such as interference-based detection of cracks or super resolution. T2 - Fifth NDTonAIR Training Event: Thermography Workshop CY - Linz, Austria DA - 13.02.2019 KW - Thermography KW - Laser Thermography KW - Super Resolution KW - Thermal Waves KW - NDT PY - 2019 AN - OPUS4-47491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - A comparison of different techniques for photothermal super resolution image reconstruction N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows an improved reconstruction of closely located defects. This new technique has also been studied using 1D laser arrays in active thermography. The post-processing can be roughly described by two steps: 1. Finding a sparse basis representation using a reconstruction algorithm such as the Fourier transform, 2. Application of an iterative joint sparsity (IJOSP) method to the firstly reconstructed data. For this reason, different methods in post-processing can be compared using the same measured data set. The focus in this work was the variation of reconstruction algorithms in step 1 and its influence on the results from step 2. More precise, the measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Photothermal super resolution image reconstruction using structured 1d laser illumination N2 - The separation of two closely spaced defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows for an improved reconstruction of closely spaced defects. This new technique has been studied using a 1D laser array with randomly chosen illumination pattern. This paper presents the results after applying super resolution algorithms, such as the iterative joint sparsity (IJOSP) algorithm, to our processed measurement data. Different data processing techniques before applying the IJOSP algorithm as well as the influence of regularization parameters in the data processing techniques are discussed. Moreover, the degradation of super resolution reconstruction goodness by the choice of experimental parameters such as laser line width or number of measurements is shown. The application of the super resolution results in a spatial resolution enhancement of approximately a factor of four which leads to a better separation of two closely spaced defects. T2 - 46th Annual Review of Profress in Quantitative Nondestructive Evaluation CY - Portland, OR, USA DA - 14.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser PY - 2019 AN - OPUS4-48591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Ziegler, Mathias T1 - Thermal wave field engineering using structured 1D laser illumination N2 - Thermal waves are solutions of the heat diffusion equation for periodic boundary conditions and can be seen analogously to strongly damped waves. Although the underlying differential equation differs from the wave equation, the essential property for analogy between both equations is linearity such that superposition applies. This linearity is maintained even after a linear transformation, such as the Fourier transform from time to frequency domain. It follows that the temporal superposition principle is already used in active thermography, e.g. in pulsed thermography, as a superposition of many individual frequencies. However, the systematic spatial superposition has not yet been fully exploited, mainly due to a lack of suitable energy sources. As a first step, we are investigating how thermal wave fields of arbitrary space-time structures can be engineered using structured laser illumination. The proof of principle was shown using a laser coupled projector. Unfortunately, the available optical output power was limited due to the thermal stress limit of the device. That is why we are working towards a more sophisticated moving 1D array of high-power diode lasers. We characterized the novel light source and believe that apart from the benefit of spatial and temporal illumination it can combine the temporal regimes of impulse and lock-in thermography. In a second step, we investigate moving and oscillating line sources with different line shapes. We use a Green’s Function ansatz to analytically model the thermal wave propagation of structured 1D laser illumination in isotropic materials. Furthermore, we show some methods how they can be implemented. With this technique, we were able to accelerate our detection method firstly presented in for vertical narrow defects by factor three. Generally, we believe that this technique opens up similar opportunities than in other NDE methods. High-resolution ultrasound, for example, is also based on the superposition of single emitters and a recent concept suggests an option to deal with the diffusion wave character of the thermal waves. T2 - 62. International School of Quantum Electronics die Tagung “Progress in Photoacoustic & Photothermal Phenomena” CY - Erice, Italy DA - 06.09.2018 KW - Thermal wave KW - Thermal wave field KW - Thermal engineering KW - Structured laser illumination KW - 1d laser KW - Laser array KW - Laser thermography PY - 2018 AN - OPUS4-46193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Ziegler, Mathias T1 - Two-dimensional interference of photothermally generated moving thermal waves N2 - Structured illumination using high-power diode lasers generates a two-dimensional interference of thermal waves. In addition, the sources and the sample are moving relative to each other. Using different configurations, we investigate the validity of the temporal and spatial superposition principle of the heat diffusion equation for these cases both experimentally and by numerical-analytical modelling. Furthermore, we investigate the potential of this approach for non-destructive testing. T2 - 14th Quantitative Infrared Thermography Conference CY - Berlin, Germany DA - 24.05.2018 KW - Thermography KW - Thermal Wave KW - VCSEL KW - Laser KW - Thermal diffusion PY - 2018 AN - OPUS4-45621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Thiel, Erik A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane T1 - Benefits & peculiarities of using highpower lasers for lock-in thermography N2 - Optical lock-in thermography is a completely contactless and very sensitive NDE technique. As an optical source of energy, incandescent (i.e. halogen) lamps are most commonly used because they are relatively inexpensive, do not need any work safety measures and offer high irradiances at the test site. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowatt-class laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. Altogether using lasers considerably increases the application range of lock-in thermography, since especially for metals with a high reflectance and high thermal diffusivity a high irradiance is vitally important to allow for lock-in testing [1, 2]. We report on the mentioned benefits of using such high-power lasers and analyze the range of materials to be tested using lock-in thermography in dependence on the laser irradiance, the modulation frequency, the infrared camera as well as the optical and thermal material parameters. In this context, we also address a number of systematic errors caused by the use of ideal and non-ideal heat sources. For example, the measured phase angle in lock-in thermography depends on the irradiance and the modulation bandwidth of the source. This in turn has a decisive influence on the uncertainty in the quantification of, e.g. layer thicknesses. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Laser thermography KW - Lock-in thermography KW - NDT PY - 2018 AN - OPUS4-46282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -