TY - JOUR A1 - Denkler, Tilman T1 - Accreditation in Europe: Benchmarking the operations of European accreditation bodies using an innovative management tool N2 - Accreditation is one of the pillars of a national Quality Infrastructure, as the competence of conformity assessment bodies is assured through accreditation performed by accreditation bodies. To compare the operation of accreditation bodies in Europe and to identify best practices, a management tool, the Process Maturity Benchmarking Tool, was developed and validated by applying it to European accreditation bodies. The benchmarking project comprised two major phases: In the first phase, the processes of accreditation bodies were systematically analyzed. A process map was developed, and processes of special relevance were identified and underpinned by indicators. In the second phase, the practical applicability of the theoretical model was demonstrated by analyzing the processes of eight European accreditation bodies. The results of this comparative assessment were subsequently discussed in a workshop with experts from those accreditation bodies, giving the opportunity to identify best practices. This article has a twofold objective. First, to present a method to benchmark European accreditation bodies, based on the European Foundation for Quality Management excellence model. The successful application of the Process Maturity Benchmarking Tool gives evidence that it is a suitable and capable management tool to assess the processes of the European accreditation bodies and to benchmark them. Second, the article presents the results of the first adaption of the Process Maturity Benchmarking Tool. A general trend of process maturity was identified: While processes based on stakeholder involvement tend to have an overall lower maturity on average, internal processes are more mature. KW - Accreditation KW - Benchmarking KW - Quality Infrastructure KW - EFQM Excellence Modell KW - Total Quality Management KW - Akkreditierung PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521706 DO - https://doi.org/10.1007/s00769-021-01459-7 VL - 26 IS - 1 SP - 47 EP - 57 PB - Springer Nature CY - Jersey City, NJ 07302, USA AN - OPUS4-52170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudek, Gabriele A1 - Koch, Claudia T1 - Accreditation, conformity assessment and national Quality Infrastructure - The system in Germany and areas of research N2 - The presntation gives an overview of the QI System in Germany and Europe, especially accreditation and conformity assessment. It further highlights some areas of research conducted in BAM with regard to elements of QI. T2 - National Quality Infrastructure • Beijing Forum CY - Peking, People's Republic of China DA - 08.01.2019 KW - QI KW - Accreditation KW - Quality infrastructure KW - Qualitätsinfrastruktur KW - Conformity assessment KW - Konformitätsbewertung KW - Akkreditierung PY - 2019 AN - OPUS4-49123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Dudek, Gabriele T1 - Accreditation, conformity assessment and national quality infrastructure - The system in Germany and areas of research N2 - The presentation gives an overview and some examples of research projects conducted at BAM (Department S.2) in the field of QI T2 - National Quality Infrastructure • Beijing Forum CY - Peking, People's Republic of China DA - 08.01.2019 KW - QI KW - Qualitätsinfrastruktur KW - Quality infrastructure KW - Conformity assessment KW - Konformitätsbewertung KW - Standardization KW - Normung KW - Akkreditierung KW - Accreditation PY - 2019 AN - OPUS4-49124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena A1 - Sachse, René A1 - Beck, Uwe T1 - Accuracy, traceability, and standardization in spectroscopic ellipsometry N2 - Ellipsometry has been an extremely successful and fast expanding method in the past decades along with other related techniques using polarisation sensitive measurements. Opening new fields of application for a successful measurement technique brings some requirements and issues that have to be solved. From a metrological point of view, ellipsometry has the problem that uncertainties are difficult to determine for model-based analysis techniques in general. In this presentation, we will explore how the usefulness of polarimetric methods like ellipsometry can be increased. Ellipsometry as a method could profit from several current developments which will be discussed in this presentation: • Standardisation initiatives on national and international level developing standards for best practice when using ellipsometry. A series of at least six standards is currently developed on national German and international level covering different levels of sample complexity. • Projects on traceability of ellipsometry and structured surface spectrometry as well as new dielectric function database initiatives. • Metadata handling and data ontology providing a better framework for exchange and collaborative use of research data. We will also explore the quantification of measurement uncertainty using examples from projects in which BAM is involved. Examples will be presented of multilayer and non-ideal materials as well as the determination of layer properties for technical applications such as thin layer catalysts and complex polymers. The definition of reference materials will be discussed. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Ellipsometry KW - Uncertainty KW - Surface analytics KW - Data science PY - 2021 AN - OPUS4-53295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieu, D.T. A1 - Kosslick, H. A1 - Riaz, M. A1 - Schulz, A. A1 - Springer, A. A1 - Frank, M. A1 - Jäger, Christian A1 - Minh Thu, N.T. A1 - Son, L.T. T1 - Acidity and Stability of Bronsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol N2 - Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 ◦C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 ◦C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 ◦C. Although a part of the clinoptilolite framework is maintained up to 600 ◦C, a loss of crystallinity is already observed starting from 450 ◦C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 ◦C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 ◦C. A part of the Brønsted sites is lost after calcination specifically at 500 ◦C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1 -C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 ◦C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 ◦C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. KW - Etherification KW - Glycerol KW - Zeolite KW - Clinoptilolite KW - Bronsted acidity KW - Dehydroxylation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546982 DO - https://doi.org/10.3390/catal12030253 VL - 12 IS - 3 SP - 1 EP - 24 PB - MDPI AN - OPUS4-54698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bühling, Benjamin T1 - Acoustic and flow data of an ultrasonic fluidic switch and an ultrasonic piezoelectric transducer N2 - This dataset contains acoustic and flow data of an ultrasonic fluidic switch, which have been acquired using a microphone, a hot-wire anemometer and a pitot tube. Furthermore, acoustic data of a commercial piezoelectric transducer is provided. KW - Fluidics KW - Air-coupled ultrasound KW - Ultrasound KW - Non-destructive testing KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2020 DO - https://doi.org/10.7910/DVN/OQYPC9 PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-52392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Niemz, P. A1 - Baensch, Franziska A1 - Brunner, A. J. ED - Pavalache-Ilie, M. ED - Curtu, A. L. T1 - Acoustic Emission Analysis And Synchrotron-based Microtomography of glued shear strength samples from spruce wood N2 - To better understanding the failure of adhesive joints tensile tests were carried out on miniature test specimens from Norway spruce in the synchrotron. Urea-formaldehyde resin was used as adhesive. e. For comparison purposes, tensile tests were carried out on solid wood and on bonded miniature tensile shear samples with acoustic emission. The acoustic emission signals of all the experiments occurred with classified pattern recognition. This resulted in two classes of signals for each two frequency peaks. One class consisted of the low-frequency and the other of the higher-frequency peak of higher intensity, but this was essentially independent from the structure (solid wood or plywood) and size scale of the test specimens. The influence of the adhesive layers was determined on wood test specimens on laboratory scale and on miniature test specimens with an adhesive layer and selected fiber orientations. This gave evidence that the sound emission signals from the failure of the adhesive layer presumably of the class with low frequency signals peak in the range of services can be assigned. KW - Wood KW - Bondline KW - In-situ test KW - Acoustic emission KW - Synchrotron tomography PY - 2020 DO - https://doi.org/10.31926/but.fwiafe.2020.13.62.1.7 VL - 13 IS - 62 Part 1 SP - 81 EP - 88 PB - Transilvania University Press, Brasov, Romania CY - Brasov AN - OPUS4-51010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustic emission by self-organising effects of micro-hollow cathode discharges N2 - We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investi-gated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well. KW - Micro hollow cathode discharge KW - Atmospheric pressure plasma KW - Gas discharges KW - Plasma acoustics PY - 2018 DO - https://doi.org/10.1063/1.5024459 SN - 0003-6951 VL - 112 IS - 15 SP - Article 154102, 1 EP - 4 PB - AIP Publishing AN - OPUS4-44659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska T1 - Acoustic Emission Monitoring of materials, production processes, infrastructures N2 - Acoustic Emission testing is a usable tool for failure Analysis of materials as well as to monitor infrastructurs or production processes. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Acoustic Emission (AE) KW - Laser Metal Deposition (LMD) KW - Pipeline KW - NDT Monitoring PY - 2019 AN - OPUS4-49696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska T1 - Acoustic emission of fibre reinforced AlSi12CuMgNi alloy under compression N2 - Typically, the near-eutectic Al-Si alloys consist of highly interconnected three-dimensional network of the eutectic Silicon (Si) and intermetallics embedded into Aluminium (Al) matrix. For further improvement of the mechanical properties of such alloys, often, one single ceramic reinforcement phase, e.g. silicon carbide (SiC) or aluminium oxide (Al2O3) in the form of fibres or particles is added. However, hybrid reinforcements (fibres and particles) can further improve wear resistance and fracture toughness, and additionally, reduce anisotropy of the material. The engineering of metal matrix composites (MMC) for specific application requirements benefits from a comprehensive knowledge of the failure behaviour. Therefore, damage evolution under compression was investigated on: - pure near-eutectic AlSi12CuMgNi matrix alloy - type I: matrix reinforced with random-planar oriented Al2O3 short fibres (15 vol.%) - type II: matrix reinforced with random-planar oriented Al2O3 short fibres (7 vol.%) and additional SiC particles (15 vol.%) The analysis of damage mechanism was carried out in two rather independent but complementary studies. First, selected sister samples of every material were exposed to quasi-static compression (traverse control). The compression tests were interrupted at different strain levels. Miniature cylinders with a diameter of 1mm were extracted from the pre-strained samples and investigated by synchrotron computed tomography (SX-µCT) with a spatial resolution of about 0.7 µm. For the pure matrix alloy, microcracks are confined to the intermetallic particles and to the eutectic Si, hence no damage was observed in the Aluminium. The composite type II revealed a more effective strain accumulation (less damage) than type I at low plastic strain (up to 5 %), but a more catastrophic damage development due to cracking of the SiC clusters at higher strain levels. The second approach to study the damage initiation and accumulation in the materials subjected to compressive load was Acoustic Emission (AE) analysis. In this case the in-situ monitoring of the acoustic emission signal was performed during compression tests on specimens with dimension of several mm. For all three material types, AE activity set at 2% strain. Differences in AE behaviour of the three materials was proven based on AE hitrate, signal peak amplitudes as well as weighted peak frequencies (WPF). Future work focuses on combination of AE and SX-µCT aiming for more detailed knowledge on damage mechanism of metal matrix composites. T2 - Schall21 CY - Online meeting DA - 24.02.2021 KW - AlSi12CuMgNi KW - Al-Si alloys KW - Acoustic emission KW - Tension PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534268 UR - https://www.dgzfp.de/seminar/schall21 AN - OPUS4-53426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Homann, Tobias A1 - Prager, Jens A1 - Stajanca, Pavol A1 - Habib, Abdel Karim A1 - Zauner, Michaela A1 - Sause, Markus G. R. A1 - Vergeynst, Lidewei A1 - Brunner, Andreas J. A1 - Niemz, Peter T1 - Acoustic emission testing N2 - The phenomenon of acoustic emission (AE) and fundamentals of AE testing procedures are presented. AE based failure analysis of reinforced concrete beam under bending load, steel pipe segments under bending load and wood based materials under tension load are discussed. T2 - INFRASTAR, Training Week #03 at AAU CY - Aalborg, Denmark DA - 04.06.2018 KW - Acoustic emission PY - 2018 AN - OPUS4-45147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens T1 - Acoustic-structure interaction in the scaled boundary finite element method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Acoustic-structure interaction PY - 2019 AN - OPUS4-48846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Prager, Jens T1 - Acoustic-structure interaction in the Scaled Boundary Finite Element Method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Ultrasound KW - Acoustic-Structure Interaction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497364 UR - https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9 SN - 978-3-86219-5093-9 DO - https://doi.org/10.19211/KUP9783737650939 SP - 347 EP - 350 AN - OPUS4-49736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Hansen, L. A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustical analysis of DCSBD and MHC discharges N2 - Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are the surface or material modification and acting as an ion source for mass spectroscopy applications. Since atmosphere plasma generates a massive amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder), which is called thermoacoustic effect. This talk presents an overview of the experimental acoustic analysis of surface dielectric barrier and micro hollow cathode discharges. Regarding other methods of acoustic excitation, the thermoacoustic approach benefits of its massless working principle and the proper impedance matching. In addition to the characterisation, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented. T2 - DPG Frühjahrstagung (SAMOP) CY - Erlangen, Germany DA - 04.03.2018 KW - Gas discharges KW - Micro hollow cathode discharge KW - Surface dielectric barrier discharge KW - Atmospheric pressure plasma PY - 2018 AN - OPUS4-44443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Acquiring and Documenting Reproducible Spectra, Depth Profiles and Images: XPS, AES and SIMS N2 - In this talk sample prep/handling, instrument calibration and data acquisition methods with examples from XPS, Auger and SIMS will be addressed in terms of their contributions to the reproducibility of data delivered by the methods. Active parties in the field are VAMAS TWA 2 “Surface chemical analysis” (http://www.vamas.org/twa2/index.html), ISO/TC 201 “Surface chemical analysis” (https://www.iso.org/committee/54618.html) and the Surface Analysis Working Group (SAWG) at the International Meter Convention (https://www.bipm.org/en/ committees/cc/wg/sawg.html). The tools to improve the reproducibility of spectra, depth profiles and images at these international platforms are inter-laboratory comparisons, validated SOPs, standards and certified reference materials (CRM) as well as uncertainty budgets and establishment of traceability chains. The last point is of specific importance because all the methods, XPS, Auger and SIMS, are not primary methods. To address quantitative XPS, AES and SIMS results of relevant inter-laboratory comparisons organized by SAWG considering measurands as alloy surface composition and thickness of thin films will be introduced. These comparisons delivered results which are viewed to be benchmarking, some of them resulted in ISO/TC 201 standards. For quantitative XPS and AES the principal outline of an uncertainty budget will be discussed together with the audience. Another issue of quantitative XPS which definitely needs consideration are valid methods for a determination of the transmission function of the instruments and even for the emission angle in the respective experiments. Concerning the field of depth profiling it has to be investigated together with the audience whether the ISO (or ASTM) standards we have are sufficient to guarantee comparable results. Having in mind the number of different sputter ion species available today and range of samples of interest (metals, semiconductors, organic films) this might be questionable. And, how do depth profiling by AR-XPS and variable excitation energy XPS compete here? For imaging surface chemical analysis, the characterization of the imaging system is an issue to be investigated. Here the determination of lateral resolution is a relevant topic. Finally, the future needs to develop metrology for new applications e.g., ambient-pressure XPS, bio samples, and core-shell nanoparticles, will be issues raised for a discussion with the audience. T2 - 17th Topical Conference on Quantitative Surface Analysis (QSA 17) CY - Long Beach, CA, USA DA - 21.10.2018 KW - Depth Profiles and Images KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - SIMS KW - Reproducible Spectra PY - 2018 AN - OPUS4-46470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Maierhofer, Christiane A1 - Wachtendorf, Volker A1 - Fischer, C. T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Active thermography with flash and halogen light excitation is used as a method for non-destructive testing of 3D-printed polymer components. Test specimens with artificial defects have been generated, using laser sintering and fused layer modeling. These test specimens have been investigated in different measurement configurations with both excitation methods. Afterwards, the different measurement conditions were compared regarding their capability to detect the defects. Furthermore, advanced analysis methods are used, to fully exploit the capabilities of these techniques. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 AN - OPUS4-45387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering (LS) as well as of acrylnitril-butadien-styrol (ABS) by Fused Layer Modeling (FLM), were tested with active thermography. For this, two different excitation methods (flash and impulse excitation) were used and compared, regarding the suitability for the detection of constructed and imprinted defects. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier-Transformation were applied. Furthermore, the long-term stability of the probes towards environmental stress, like UV-radiation, heat, water contact and frost is being investigated in the presented project with artificial weathering tests. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453919 SP - Tu.3.A.2, 1 EP - 9 AN - OPUS4-45391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, T. A1 - Giese, S. A1 - Wang, S. A1 - Muth, Thilo A1 - Renard, B.Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides N2 - Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. KW - Mass spectrometry KW - Machine learning KW - Deep learning KW - Peptide identification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547580 DO - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 SP - 378 EP - 388 PB - Springer Nature CY - London AN - OPUS4-54758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Adaption of fluidic devices for SHM of hydrogen tanks N2 - Frequency analysis of the tank during every filling Passive actuator is integrated inside filling nozzle/ pressure vessel Frequency from 5 kHz to 150 kHz Frequency sweep (Chirp) can be performed Works with every fluid: air, hydrogen, oxygen, argon, water. T2 - H2Safety Kompetenzzentrum CY - BAM Berlin, Germany DA - 07.07.2021 KW - Fluidic device KW - Structural health monitoring KW - Hydrogen tank KW - Ultrasound PY - 2021 AN - OPUS4-52930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Prager, Jens T1 - Adaptive TFM approach for turbine blade testing in an NDE 4.0 environment N2 - Turbine blades for gas turbines are exposed to extreme working conditions in a demanding environment. In-service inspection, maintenance and refurbishment of the heavily stressed parts is necessary to ensure both safety and efficiency, e.g. based on immersion ultrasound testing (UT). In the course of NDE 4.0, the European project MRO 2.0 aims to innovate the maintenance, repair and overhaul of turbine blades by linking these with modern digital methods. For this, the goal of this project is to go beyond conventional automated and manual UT testing techniques. The aim is to measure the actual geometry and wall thickness of the complex shaped parts by applying an adaptive TFM that takes into account the refraction of the ultrasonic waves at the transition from the coupling material (water) to the inspected part (steel). In this setup the phased array probe is held by a robotic arm that allows the part to be scanned while remaining mainly perpendicular to the inspected surface. In this way, even complex geometries can be inspected and a 3D model of the actual condition of the part can be created. The laboratory setup is equipped with a Vantage 64 phased array instrument from Verasonics Inc. and an industrial robot from ABB. A 64 element linear array probe operating at 10 MHz is attached to the robot. The focus is on optimizing resolution, reliability and inspection speed, as the reconstructed model will be fed to the digital twin at a later stage of the project and used for targeted repairs. In addition to enhancing the reconstruction algorithms, required probe geometry and the parameters needed to inspect turbine blades with partially thin walls and anisotropic materials will also be investigated. This talk will describe the 3-year project and present the results of the first year. The main focus will be on the development of the reconstruction algorithms used and the experimental setup. T2 - 48th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE 2021) CY - Online meeting DA - 28.07.2021 KW - Utrasound testing KW - Turbine blade KW - Maintenance KW - Phased array KW - Automation PY - 2021 AN - OPUS4-54313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abraham, O. A1 - Niederleithinger, Ernst A1 - Chapeleau, X. A1 - Klikowicz, P. A1 - Brühwiler, E. A1 - Bassil, A. A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bayane, I. A1 - Leduc, D. A1 - Salamak, M. A1 - Katunin, A. A1 - Sørensen, J.D. T1 - Addressing the need to monitor concrete fatigue with nondestructive testing: Results of infrastar European project N2 - Fatigue is one of the most prevalent issues, which directly influences the service life expectancy of concrete structures. Fatigue has been investigated for years for steel structures. However, recent findings suggest that concrete structures may also be significantly subjected to fatigue phenomena that could lead to premature failure of certain structural elements. To date, fatigue of reinforced concrete has been given little focus. Knowledge on the influence factors and durability/capacity effects on this material should be improved. Current technological means to measure fatigue in civil structures like bridges and wind turbines (both onshore and offshore) are outdated, imprecise and inappropriate. Meanwhile, this topic has got much more attention as time-variant loading on concrete structures plays an increasing role, e.g. in bridges with increasing traffic and heavier trucks, and for wind turbines for renewable energy production, e.g. for offshore wind turbine support structures affected by wind and waves. The European Innovative Training Networks (ITN) Marie Skłodowska-Curie Actions project INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of Structures - Training for Assessment of Risk) provides research training for 12 PhD students. The project aims to improve knowledge for optimizing the design of new structures as well as for more realistic verification of structural safety and more accurate prediction of the remaining fatigue lifetime of existing concrete structures. First, the INFRASTAR research framework is detailed. Then it will be exemplified through the presentation of the major results of the four PhD students involved in the work package dealing with auscultation and monitoring. This includes the development and improvement of Fiber Optics (FO) and Coda Wave Interferometry (CWI) for crack sizing and imagery, new sensor technologies and integration, information management, monitoring strategy for fatigue damage investigation and lifetime prediction. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Concrete KW - Fatigue KW - Crack KW - Monitoring KW - Non-destructive testing PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 2 EP - 13 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Hidde, Gundula A1 - Lange, Thorid A1 - Weise, Matthias A1 - Lerche, D. A1 - Rietz, U. T1 - Adhesion of Coatings vs. Strength of Composite Materials – A Review of Applications Evaluated by Centrifugal Adhesion Testing (CAT) N2 - Sufficient adhesion/tensile strength are basic requirements for any coating/composite material. For coatings, adhesive strength in N/mm2 is of Major interest for various applications such as decorative and water-repellent coatings on wood (paints and varnishes), optical coatings on glass and polymers (reflectors and filters), electrical coatings on semiconductors, glass and polymers (conducting and bondable layers), mechanical coatings on metals and polymers (wear-reduction, scratch-resistance) and adhesion-promoting layers. For composite materials, tensile strength in N/mm2 is also a key quantity for carbon fiber reinforced composites (CFC), laminates and adhesive-bonded joints. Centrifugal adhesion testing (CAT) transfers the single-sample tensile test from a tensile or universal testing machine into an analytical centrifuge as multiple-sample test of up to eight test pieces. The one-sided sample support instead of a two-sided sample clamping and the absence of mounting- and testing-correlated shear forces provides fast and reliable results both for adhesive strength and bonding strength by means of bonded test stamps. For bonding strength, the evaluation of failure pattern from microscopic inspection is required in order to determine the failure pattern according to ISO 10365 such as adhesive failure (AF), delamination failure (DF) and cohesive failure (CF). Hence, one test run by CAT-technology provides either statistics or ranking of up to eight samples at once. For adhesive strength of coatings, a variety of examples is discussed such as ALD-Al203 layers as adhesion promoters, evaporated Ag-layers on N-BK7 glass, sputtered Cr- and Al-layers on Borofloat 33 glass, evaporated Au-films on N-BK7 glass and sputtered SiO2 -layers on CR39 Polymer. Provided adhesive or bonding strength are high enough, the substrate or the joining part may also fail. T2 - Special PSE 2020 CY - Online meeting DA - 07.09.2020 KW - Centrifugal adhesion testing (CAT) KW - Adhesive strength KW - Pull-off test KW - Failure pattern KW - Compound strength PY - 2020 AN - OPUS4-51231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Samaitis, V. A1 - Yilmaz, Bengisu A1 - Jasiuniene, E. T1 - Adhesive bond quality classification using machine learning algorithms based on ultrasonic pulse-echo immersion data N2 - In this study, we explored the detection of weak bonds (WBs) due to contamination and faulty curing (FC) using linear ultrasound and machine learning. For this purpose, aluminium single-lap adhesive joints containing three variants of bonding quality were investigated: perfect bond, WB due to release agent (RA) contamination, and WB due to FC. The data, according to the deviation of the bonding protocol, were arranged in two groups, creating two datasets: distinct and complete. Each dataset included all bonding conditions (perfect, RA, and FC), although the distinct dataset contained only marginal cases, which were expected to be well separable, whereas the complete dataset included data with minor deviations from the bonding protocol. Pulse-echo C-scan images were acquired for all prepared samples in the immersion tank, and 45 features were initially extracted from the time traces representing each bonding group. The initial data were analysed via a t-test and pairwise correlation analysis to reveal statistically significant features. Then, we performed dimensionality reduction using tree-based, recursive, sequential, and linear discriminant analysis (LDA) feature selectors to explore feature importance and classification accuracy with different feature subsets. Finally, the important features identified with the different feature selectors were fed to support vector machine (SVM) classifiers, and the classification accuracies were compared amongst the different feature subsets. The classification accuracy using a distinct dataset in some cases demonstrated nearly 99% accuracy, indicating that significant bonding protocol deviations could be easily detected. It was demonstrated that classification accuracy increased with the number of features. However, even in the case of the 2D feature space obtained using linear discriminant analysis, the bonding quality classification accuracy remained higher than 84%. The feature subspace reduction with LDA demonstrated sufficient classification accuracy and an improvement of nearly 40% in training time compared with that for the initial feature set. Thus, the classical ultrasonic pulse-echo C-scan with an LDA feature transformation and SVM classifier could be used to identify the deviations in the bonding protocol in aluminium single-lap adhesive joints. KW - Adhesive bonding KW - Defect characterisation KW - Machine learning KW - Ultrasonic imaging PY - 2023 DO - https://doi.org/10.1016/j.jsv.2022.117457 VL - 546 SP - 1 EP - 18 PB - Journal of Sound and Vibration AN - OPUS4-56569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Z.-Jan, G.-A. A1 - Hanke, T. A1 - v. Hartrott, P. A1 - Fliegener, S. A1 - Kryeziu, J. A1 - Waitelonis, J. A1 - Sack, H. A1 - Skrotzki, Birgit T1 - Adopting FAIR data practices in materials science: Semantic representation of a quantitative precipitation analysis N2 - Many metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminium alloys, the strengthening mechanism is based on the controlled formation of nanometre-sized precipitates, which represent obstacles to dislocation movement and consequently increase the strength. Precise tuning of the material microstructure is thus crucial for optimal mechanical behaviour under service condition of a component. Therefore, analysis of the microstructure, especially the precipitates, is essential to determine the optimum parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in the first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and thereafter quantify their relevant dimensions. Often, these evaluations are still performed by manual image analysis, which is very time-consuming and to some extent also poses reproducibility problems. Our work aims at a semantic representation of an automatable digital approach for this material specific characterization method under adaption of FAIR data practices. Based on DF-TEM images of different precipitation states of a wrought aluminium alloy, the modularizable, digital workflow of quantitative analysis of precipitate dimensions is described. The integration of this workflow into a data pipeline concept will also be discussed. Using ontologies, the raw image data, their respective contextual information, and the resulting output data of the quantitative image analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure data reproducibility. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Semantic Representation KW - FAIR data management KW - Quantitative Precipitation Analysis KW - Knowledge graph and ontologies PY - 2023 AN - OPUS4-58199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtsch, Mona T1 - Adoption of the information security management system standard ISO/IEC 27001 - A study among German organizations N2 - Against the backdrop of numerous security breaches and cyber-attacks, organizations need to take measures to secure their data and information. However, the well-known management system standard ISO/IEC 27001 for information security has shown a lower adoption rate – in terms of annual ISO survey data – than was previously expected by scholars and practitioners. Through the lens of Rogers' diffusion of innovation theory, we consider the adoption of ISO/IEC 27001 as a 'preventive innovation' and aim to identify factors that help gain a better understanding of its adoption. Therefore, we conducted a survey among German organizations on the use and impact of management system standards, explicitly distinguishing between organizations that implement ISO/IEC 27001 and those that are additionally certified against this standard. This study provides insights and contributes to an advanced understanding of motives, impacts, barriers, and useful measures to increase adoption of ISO/IEC 27001. Our findings may be useful to organizations considering the adoption of this management system standard, to certification bodies providing certification services, and to policymakers seeking means to improve information security in organizations. KW - Management science and operations research KW - ISO/IEC 27001 KW - Management system standard KW - Information security KW - QI-FoKuS KW - Certification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594704 UR - http://ijqr.net/paper.php?id=1098 DO - https://doi.org/10.24874/ijqr17.03-08 SN - 1800-6450 SN - 1800-7473 VL - 17 IS - 3 SP - 747 EP - 768 PB - Center for Quality, University of Montenegro CY - Podgorica AN - OPUS4-59470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Junge, Florian A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Gehrenkemper, Lennart A1 - Zoister, Christian A1 - Nickl, Philip A1 - Koch, Matthias A1 - Meermann, Björn A1 - Haag, Rainer T1 - Adsorber Charge Dominates over Hydrophobic or Fluorophilic Functionalization in Influencing Adsorption of PFCA onto Polystyrene Resins N2 - A systematic series of industrial-relevant polystyrene-based anion exchange resins that are functionalized with hydro- or fluorocarbon chains are compared regarding their adsorption behavior toward perfluorocarboxylic acids (PFCA) in respect to their charge, chain length, and type of chain. The results clearly show the dominance of electrostatic interactions in the adsorption process as uncharged adsorber materials showed no adsorption at all. In contrast, the charged adsorber materials showed in general a PFCA removal of 80% to 30% over the experiment depending on effluent fraction. Unexpectedly, for perfluorobutanoic acid (PFBA) the highest removal rate is found with consistently >90%. Despite observing significant benefits in the adsorption of PFCA for fluoroalkylated adsorbers in comparison to their non-fluorinated counterparts, this effect of fluoroalkylation is comparatively small and can not be clearly attributed to fluorophilic interactions between the fluoroalkyl chains. These findings help clarifying that the introduction of fluorocarbon moieties in adsorber materials is not necessary in order to remove fluorocarbon molecules from the environment. KW - PFAS KW - Remediation KW - Adsorption KW - Fluorophilic interactions PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601883 DO - https://doi.org/10.1002/admi.202400199 SN - 2196-7350 SP - 1 EP - 10 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-60188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, Jeffey Paulo H. A1 - Tobler, Dominique J. A1 - Thomas, Andrew N. A1 - Freeman, Helen M. A1 - Dideriksen, Knud A1 - Radnik, Jörg A1 - Benning, Liane G. T1 - Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite N2 - Iron (oxyhydr)oxides play an important role in controlling the mobility and toxicity of arsenic (As) in contaminated soils and groundwaters. However, dynamic subsurface geochemical conditions can potentially impact As sequestration since this is highly dependent on the dominant iron mineral phases present and the pathways through which they form. In this study, we investigated the Fe2+-induced transformation of As(V)-bearing ferrihydrite (As-FH) to more crystalline phases under relevant anoxic subsurface conditions. Specifically, we examined the influence of varying Fe2+(aq)/Fe(III)solid¬ ratios on the behavior and speciation of the mineral-bound As species during the mineralogical transformation of As-FH at pH 6.5 for 24 h. At lower Fe2+(aq)/Fe(III)solid¬ ratios (0.5 to 1), goethite, green rust sulfate (GR¬SO4) and lepidocrocite formed within the first 2 hours of the reaction, but only goethite and some unreacted FH remained after 24 h. At Fe2+(aq)/Fe(III)solid¬ ratio = 2, GRSO4 remained stable throughout the 24 h reaction, alongside goethite and unreacted FH. Despite >82% of the As-FH being transformed to goethite  GRSO4 in these reactions, no significant As release (>99.9% removal) was observed. However, while As remained mineral-bound, partial oxidation of the initially added As(V) was reduced to As(III), most likely, by the goethite-Fe2+(aq) redox couple. The extent of As(V) reduction increased from ~40% to ~50%, as the Fe2+(aq)/Fe(III)solid¬ ratio increased from 0.5 to 2. Overall, these results provide important insights into transformation pathways of iron (oxyhydr)oxide minerals in As contaminated, anoxic soils and sediments, and also demonstrate the great impact these can have on As oxidation state and, hence, toxicity and mobility in these environments. KW - Ferrihydrite KW - Mineral tranformation KW - XPS KW - Green rust KW - Goethite KW - XAS PY - 2019 DO - https://doi.org/10.1021/acsearthspacechem.9b00031 SN - 2472-3452 VL - 3 IS - 6 SP - 884 EP - 894 PB - ACS AN - OPUS4-48436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Magkos, Sotirios T1 - Advanced algorithms for image reconstruction in Computed Tomography N2 - This PhD project is part of the Marie Skłodowska-Curie International Training Network MUMMERING. The overarching goal of MUMMERING is the creation of a research tool that exploits the wealth of 3D imaging modalities applied in materials engineering. The focus of this work is advanced reconstruction algorithms. The primary objective is the development and implementation of the DIRECTT algorithm. Due to restrictions introduced by the sample or the imaging setup during a measurement, it is not always possible to acquire data that fulfil the Nyquist sampling criterion. The DIRECTT algorithm is intended to produce reconstructions of superior quality for such cases of limited data sets, compared to those of other available algorithms, such as algebraic iterative ones. Although DIRECTT has been developed primarily for the reconstruction of volumes from data acquired by an X-ray Computed Tomography scanner, it can also be applied to the different modalities, such as laminography. The talk describes the reconstruction principle of DIRECTT. Furthermore, reconstructions of measured data are presented and compared to reconstructions produced by other established algorithms. T2 - Doktorandenseminar CY - BAM Berlin, Germany DA - 16.12.2019 KW - Computed Tomography KW - Reconstruction KW - DIRECTT PY - 2019 AN - OPUS4-50066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Advanced characterization of nanomaterials N2 - The rational synthesis and use of nanomaterials require the characterization of many different properties, ranging from particle size and size distribution over surface chemistry to more applicationrelevant features like optical, electrochemical, and magnetic properties. In the following, several methods for the characterization of functional groups on nanomaterials, like polymer and silica nanoparticles, semiconductor quantum dots, and lanthanide-based upconversion nanocrystals are presented. Additionally, procedures for the measurement of the key spectroscopic performance parameters of nanomaterials with linear and nonlinear photoluminescence, such as the photoluminescence quantum yield, are presented for the UV/vis/NIR/SWIR. T2 - Summerschool CY - Bad Honnef, Germany DA - 22.07.2019 KW - Quantum yield KW - Nanoparticle KW - Fluorescence KW - Quantum dot KW - NIR KW - SWIR KW - Quality assurance KW - Calibration PY - 2019 AN - OPUS4-48630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geissbühler, M. A1 - Dietz, G. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - Advanced codicological studies of Cod. germ. 6 (Hamburg, Staats- und Universitätsbibliothek): Part 2 N2 - The work presented here follows the article Combining Codicology and X-Ray Spectrometry to Unveil the History of Production of Codex germanicus 6 (Staats- und Universitätsbibliothek Hamburg), published in 2014.1 It confirms the main result of the previous article: the Artusnotiz, the fourth text in the bound manuscript, must have been introduced as the last one. This paper offers further details of the codex production, based on the composition of the black and red inks collected in four measurement campaigns. Furthermore, using imaging μ-XRF, we succeeded in understanding the strong variation of the composition of the red inks in the initials of all the texts except for Parzival and Jeanne d’Arc. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 133 EP - 139 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Paciornik, S. A1 - Bruno, Giovanni T1 - Advanced Deep Learning-Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites N2 - The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models. KW - Computed tomography KW - Convolutional neural networks KW - Deep learning KW - Metal matrix composites KW - Segmentations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504261 DO - https://doi.org/10.1002/adem.201901197 SN - 1438-1656 VL - 22 IS - 4 SP - 1901197 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Salge, T. A1 - Wäsche, Rolf A1 - Hodoroaba, Vasile-Dan T1 - Advanced light element and low energy X-ray analysis of a TiB2 – TiC – SiC ceramic material using EDS spectrum imaging N2 - The accurate EDS microanalysis of light elements such as boron and carbon by spectrum imaging will be demonstrated using a sintered hard ceramic material composed of the three major phases titanium boride (TiB2), titanium carbide (TiC), silicon carbide (SiC) and minor phases, sub-μm in size. The combination of these three materials leads to improved mechanical and tribological properties. Silicon carbide is a material used for mechanical seals. It has the disadvantage of reduced failsafe running functions, causing increased wear when running dry. The added titanium components (TiC and TiB2) improve the failsafe running functions. This technology has already been transferred to industrial applications. KW - EDS KW - Spectrum imaging KW - Ceramic KW - Phase analysis KW - Light elements PY - 2018 UR - https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/Microanalysis_EBSD/LabReports/App_eds_10_LE_keramik_Rev1_1_lores.pdf SP - 1 EP - 5 CY - Berlin AN - OPUS4-44622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Advanced spectroscopic methods for fluorine microanalysis in lithium-ion batteries N2 - To address the challenges of the climate crisis, multiple solutions for sustainable energy sources and storage systems are needed. One such solution is lithium-ion batteries (LIBs). Currently, 5 to 30 % of LIBs are discarded immediately after manufacturing. The homogeneous distribution of all materials used in the coating of cathodes and anodes is critical for the quality of LIBs. Furthermore, during formation i.e., the first steps of the charge/discharge cycling, the solid-electrolyte interphase forms on the anode particles, which has a huge impact on the performance. The same happens to some extent on the cathode, forming the cathode-electrolyte interphase. Fluorinated polymers and electrolytes are used in the manufacturing of LIBs. The electrolyte in particular is prone to degradation during formation and aging of the batteries. The interface of the cathode material with the aluminum current collector is also a critical point where degraded fluorine components cause pitting corrosion and at the same time promote passivation of the metal foil. Monitoring the spatial distribution of fluorine on these surfaces and interfaces is essential for sustainable LIB production. T2 - SALSA Kick-Off Meeting CY - Berlin, Germany DA - 11.04.2024 KW - Lithium Ion Batteries KW - solid microanalysis KW - depth-profiling KW - fluorine PY - 2024 AN - OPUS4-60199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic imaging for concrete: Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448704 SP - Mi.3.A.4, 1 EP - 10 PB - DGZfP AN - OPUS4-44870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Xin A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic instrumentation for interferometric monitoring N2 - Main aim is to improve ultrasonic sensor networks to monitor concrete structures under dynamic loads. Novel algorithms have to be developed and tested to separate the influence of various effects for field data. Ways to quantify the interpretation of ultrasonic data e.g. in terms of degree of damage or capacity, have to be found. Improve and simplify imaging techniques, extend them to arbitrary structures, to foster field applications. T2 - Implementation day of INFRASTAR CY - BASt, Bergisch Gladbach, Germany DA - 20.03.2018 KW - CODA wave interferometry KW - NDT KW - Sensor KW - Cracks KW - Embedded ultrasonic sensor PY - 2018 AN - OPUS4-44585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar welds KW - Nondestructive testing KW - Ultrasonic testing PY - 2018 SN - 978-0-7354-1644-4 SN - 0094-243X VL - 1949 SP - UNSP 110002, 1 EP - 9 AN - OPUS4-44148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar Welds KW - Nondestructive Testing KW - Ultrasonic Testing PY - 2018 AN - OPUS4-44151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Advances and Applications of Molecular Absorption Spectrometry: from Non-Metals to Isotope Analysis N2 - Wie kann Nicht-Messbares messbar gemacht werden? Die Antwort der Dissertation auf diese zentrale Frage der analytischen Chemie lautet: die Anwendung der hochauflösenden optischen Spektroskopie der diatomischen Moleküle. In der Arbeit wird in einem ersten Schritt in Grafitöfen, die wie Chemiereaktoren funktionieren, und durch die Anwendung verschiedener analytischer Methoden die diatomische Molekülbildung nachvollzogen. In einem zweiten Schritt werden die aufgedeckten Mechanismen auf die Bestimmung von Nichtmetallen und die Analyse von Isotopen angewendet. Die Isotopenanalytik ist das zukunftsweisendes Herzstück der Dissertation und von alltäglicher und politischer Relevanz: Mittels dieser Technik lässt sich die Herkunft von Lebensmitteln aber auch Chemiewaffen kostengünstiger und wesentlich schneller bestimmen als mit bisherigen Methoden der Massenspektrometrie. Möglich ist die Bestimmung, da alles um uns herum aus Atomen verschiedener Elemente besteht und die meisten Elemente mehrere Isotope haben. Isotope unterscheiden sich hinsichtlich ihres Gewichts, da sie über eine unterschiedliche Anzahl an Neutronen verfügen. Die Informationen über das Verhältnis von schweren und leichten Isotopen lässt sich nutzen, um zu bestimmen wo etwas entstanden ist. Jeder Ort auf unserem Planeten hat seinen persönlichen Element- und Isotopenanteil (Isotopenfingerabdruck). Das in der Arbeit angewandte Instrument misst das Verhältnis indirekt und nutzt hierzu die Interaktion zwischen Licht und Materie. Für das schwerere Isotop wird mehr Licht/Energie benötigt, um es in Bewegung zu bringen, als für das leichtere. Diese kleinen Unterschiede an Energie, die wir dafür aufwenden müssen, werden gemessen und ermöglichen die Herkunftsbestimmung. Damit leistet die Arbeit nicht nur einen wichtigen Beitrag zur Grundlagenforschung in der analytischen Chemie, sondern kann mit den aufgezeigten Ergebnissen auch Anwendung in den Bereichen Verbraucherschutz, Umweltforschung und Waffenkontrolle finden. N2 - The present work covers two main aspects of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS), an analytical technique for elemental trace analysis. First, a comprehensive mechanistic study of molecule formation in graphite furnaces is presented, which is a key step into the recovery of analytical signals. For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in HR-CS-GFMAS. A zirconium coating catalyzes the CaF formation, and its structure was investigated. The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. Here a mechanism is proposed, where ZrO2 works as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, analytical methods were developed by using HR-CS-MAS as detector for non-metals and isotope analysis. Therefore, the determination of organic absorbable chlorine in water, the quantification of fluorine in consume care products with declared perfluorinated ingredients, and the determination of sulfur content in crude oils were investigated. Finally, the high resolution of the instrumentation allows to measure isotopic shifts with high precision in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of boron and magnesium were investigated, establishing so the potential of HR-CS-MAS for the accurate and precise determination of isotopic amount ratios. T2 - Applied Photonics Award 2020 CY - Jena, Germany DA - 22.09.2020 KW - Herkunftsbestimmung KW - Isotopenanalyse KW - Isotope KW - Optischer Spektroskopie PY - 2020 AN - OPUS4-51996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Abad Andrade, Carlos Enrique T1 - Advances and Applications of Molecular Absorption Spectrometry: from Non-Metals to Isotope Analysis N2 - The present work covers two main aspects of high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS), an analytical technique for elemental trace analysis. First, a comprehensive mechanistic study of molecule formation in graphite furnaces is presented, which is a key step into the recovery of analytical signals. For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in HR-CS-GFMAS. A zirconium coating catalyzes the CaF formation, and its structure was investigated. The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. Here a mechanism is proposed, where ZrO2 works as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, analytical methods were developed by using HR-CS-MAS as detector for non-metals and isotope analysis. Therefore, the determination of organic absorbable chlorine in water, the quantification of fluorine in consume care products with declared perfluorinated ingredients, and the determination of sulfur content in crude oils were investigated. Finally, the high resolution of the instrumentation allows to measure isotopic shifts with high precision in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of boron and magnesium were investigated, establishing so the potential of HR-CS-MAS for the accurate and precise determination of isotopic amount ratios. Zusammenfassung Die vorliegende Arbeit befasst sich mit zwei zentralen Aspekten der High-Resolution-Continuum-Source-Molekülabsorptionsspektrometrie mit Graphitrohrtechnik (HR-CS-GFMAS), einer Analysetechnik für elementare Spurenanalyse. Der erste Teil der Arbeit umfasst eine mechanistische Studie zur Molekülbildung auf Graphitoberflächen. Dies ist ein wichtiger Schritt, um analytische Signale zu entdecken. Dazu wurde die Molekülbildung von CaF analysiert, welches für die indirekte, analytische Bestimmung von Fluor in HR-CS-GFMAS genutzt wird. Die CaF Bildung wurde mittels einer Beschichtung aus Zirconium katalysiert und deren Struktur analysiert. Die Kinetik dieser Reaktion wurde durch Beobachtung des jeweiligen Molekülspektrums bei verschiedenen Atomisierungstemperaturen beobachtet. Ein Arrheniusplot zeigte für Fluor (n = 1) eine Reaktion Pseudo-erster Ordnung. Ein Übergangszustand wurde über die mit Zirconium überzogene Grafitoberfläche isoliert und seine Struktur mittels spektroskopischer Methoden Energiedispersive Rasterelektronenmikroskopie / Röntgenspektroskopie (REM-EDX), Röntgenphoto¬elektronenspektroskopie (XPS), Röntgenabsorptionsspektroskopie (XAS) und Raman Spektroskopie untersucht. Auf Grundlage dieser Ergebnisse wird ein Mechanismus vorgeschlagen, bei dem ZrO2 als heterogener Katalysator fungiert; in Folge einer Pyrolysestufe wird ein Übergangszustand des ZrO(OCaF) aktiviert, welcher bei höheren Temperaturen CaF(g) an der Zirconium-Graphitoberfläche freisetzt. Im zweiten Teil der Arbeit werden Analysemethoden entwickelt, in dem HR-CS-MAS als Detektor für Nichtmetalle und Isotopanalyse angewandt wird. Hierfür wurde organisch gebundenes Chlor im Wasser bestimmt, der Fluorgehalt in Pflegeprodukten mit perfluorierten Inhaltsstoffen quantifiziert und der Schwefelgehalt in Erdöl untersucht. Weiterhin ermöglicht die hohe Auflösung der Messgeräte eine präzise Bestimmung der Isotopenverschiebung einiger untersuchter Molekülspektren. Daher wurden die Molekülspektren angereicherter Bor- und Magnesiumisotope untersucht. Auf diese Weise wurde das Potential von HR-CS-MAS für die akkurate und präzise Bestimmung von Isotop-Mengenverhältnissen nachgewiesen. KW - Isotope analysis KW - Non-metals analysis KW - Molecular absorption spectrometry KW - Boron KW - Fluorine KW - Graphite furnace KW - HR-CS-MAS KW - Applied optical spectroscopy PY - 2019 UR - https://hu-berlin.hosted.exlibrisgroup.com/permalink/f/jl2ii5/HUB_UB_ALMA_DS21669801300002882 SP - X EP - 118 CY - Berlin, Germany AN - OPUS4-49891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grager, J.-C. A1 - Kotschate, Daniel A1 - Gamper, J. A1 - Gaal, Mate A1 - Pinkert, K. A1 - Mooshofer, H. A1 - Goldammer, M. A1 - Grosse, C. U. T1 - Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts N2 - Air-coupled ultrasound (ACU) is increasingly used for automated and contactless inspection of large-scale composite structures as well as for non-destructive testing (NDT) of water-sensitive or porous materials. The major challenge to overcome using ACU in NDT is the enormous loss of ultrasonic energy at each solid-air interface caused by the high acoustic impedance mismatch. Resonant low-frequency piezoceramic transducers are specially designed to achieve high sound pressure levels. For an expanded use of this technique, however, the spatial resolution needs to be increased. Recent studies of our collaborative research group demonstrated the successful application of a resonance-free, highly sensitive receiver that uses a Fabry-Pérot etalon instead of piezoceramic materials or membranes. However, to reach the full potential of this broadband small-aperture optical microphone, novel transmitter concepts have to be developed and evaluated for advanced NDT applications. Different types of transmitter were tested in combination with the optical microphone acting as receiver and they were compared to conventional piezoceramic transducers in through-transmission mode. Monolithic carbon fiber-reinforced plastics (CFRP) and CFRP sandwich structures containing different defect types were inspected. Presented results are processed as C-scan images and further evaluated for spatial resolution, signal-to-noise ratio and sensitivity of each measurement setup. Novel transmitter concepts, such as ferroelectret and thermoacoustic emitters, show promising findings with a considerably improved time and spatial resolution for ACU-NDT. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Optical microphone KW - Thermoacoustic KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452114 SP - ECNDT-0166-2018, 1 EP - 10 AN - OPUS4-45211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Hufschläger, Daniel A1 - Bente, Klaas T1 - Advances in air-coupled ultrasonic transducers for non-destructive testing N2 - Commercially available air-coupled transducers applied in non-destructive testing consist of a piezocomposite material and matching layers to reduce the impedance mismatch between the transducer and air. This contribution is an overview of innovative approaches using new piezoelectric materials and other physical principles to transmit and receive an ultrasonic pulse in air. Capacitive and piezoelectric micromachined ultrasonic transducers (CMUTs and PMUTs) produce high pressure levels, but they exhibit a very narrow bandwidth. Optical laser-based methods for transmitting and receiving ultrasound promise a higher bandwidth, but do not achieve the same sensitivity as conventional air-coupled transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties, having a very small acoustic impedance well matched to air. Ferroelectret transducers achieve about the same bandwidth as the most broadband conventional air-coupled transducers, having a higher sensitivity. Thermoacoustic transducers use heat to initiate an acoustic wave, acting as transmitters in ultrasonic range. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. The newest member of the family of air-coupled ultrasonic transmitters is the plasma-based transducer, using both the thermoacoustic effect and the movements of the ions (so called ionic wind) to create acoustic waves. T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Air-coupled transducers KW - Ferroelectret KW - Thermoacoustics KW - Plasma acoustics KW - Non-destructive testing PY - 2019 DO - https://doi.org/10.1121/2.0001072 SN - 1939-800X N1 - Geburtsname von Hufschläger, Daniel: Kotschate, D. - Birth name of Hufschläger, Daniel: Kotschate, D. VL - 38 IS - 1 SP - 030003-1 EP - 030003-7 PB - American Institute of Physics CY - Lancaster, Pa. AN - OPUS4-50103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel A1 - Bente, Klaas T1 - Advances in air-coupled ultrasonic transducers for non-destructive testing N2 - Conventional ultrasonic testing involves the application of a fluid couplant for impedance matching. Increasing use of lightweight structures, composite materials and adhesive joints mostly in aerospace and automotive industry created an increasing interest in air-coupled ultrasonic testing methods, to protect sensitive surfaces and simplify maintenance. Commercially available air-coupled transducers consist of a piezocomposite material and matching layers to reduce the impedance mismatch between the transducer and air. This contribution is an overview of innovative approaches using new piezoelectric materials and other physical principles to transmit and receive an ultrasonic pulse in air. Capacitive and piezoelectric micromachined ultrasonic transducers (CMUTs and PMUTs) produce high pressure levels, but they exhibit a very narrow bandwidth. Optical laser-based methods for transmitting and receiving ultrasound promise a higher bandwidth, but do not achieve the same sensitivity as conventional air-coupled transducers. Ferroelectrets are charged cellular polymers exhibiting piezoelectric properties, having a very small acoustic impedance well matched to air. Ferroelectret transducers achieve about the same bandwidth as the most broadband conventional air-coupled transducers, having a higher sensitivity. Thermoacoustic transducers use heat to initiate an acoustic wave, acting as transmitters in ultrasonic range. Thermoacoustic transducers enable excitation of extremely broadband pulses while producing high pressure levels, which opens new possibilities for advanced signal processing. The newest member of the family of air-coupled ultrasonic transmitters is the plasma-based transducer, using both the thermoacoustic effect and the movements of the ions (so called ionic wind) to create acoustic waves. T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Air-coupled transducers KW - Non-destructive testing KW - Ferroelectret KW - Thermoacoustics KW - Plasma acoustics PY - 2019 AN - OPUS4-48963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Evsevleev, Sergei A1 - Plotzki, David T1 - AdvanCT Virtual CT N2 - Simulation becomes more and more important in modern CT imaging. It is increasingly used to optimize techniques for complex applications, and for educational purposes. Simulation can also be used for uncertainty estimation of dimensional CT measurements. The radiographic simulator aRTist is a modelling tool which simulates X-ray imaging using a hybrid analytical and Monte-Carlo method to efficiently model the radiation transport. In addition to the relevant physical effects such as absorption and scattering, simplified fast models are employed to describe the characteristics of the X-ray source and the detector. aRTist is well equipped to model realistic X-ray imaging setups due to the ability to load exported CAD object descriptions. By repetitive simulation runs aRTist can function as virtual CT device. A simple CT scan module is contained in aRTist which allows the simulation of standard (circular cone beam) scanning trajectories. AdvanCT is a module for aRTist which allows to set up more complex scanning trajectories by attaching geometrical modification functions to the objects in the radiographic scene. In this way, advanced scanning modes can be realized. In addition to deterministic motion, also random variations can be introduced. By combining random variations with deterministic motion, non-ideal (realistic) CT scan geometries can be simulated, e.g. focal spot drift and mechanical instability of the axis of rotation. The AdvanCT module conveniently allows to construct these scenarios in a graphical interface and provides a preview before starting the (potentially long running) batch job. Therefore, deviations from ideal CT scan trajectories can be easily adjusted which is a necessary step towards uncertainty determination from simulation. T2 - dXCT conference 2021 CY - Online meeting DA - 17.05.2021 KW - X-ray Virtual Computer Tomography Simulation PY - 2021 AN - OPUS4-52953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander T1 - Advantages of N2-MICAP-MS for Trace Metal Analysis in Steel N2 - The climate and energy crisis are extreme challenges. One possible solution could be hydrogen technology. Safety is a big concern. Steel used for pipelines and storage is under permanent stress from low temperatures and high pressures. The content of different alloyed metals determines the performance of the steel. Nitrogen microwave inductively coupled atmosphere pressure plasma mass spectrometry (N2-MICAP-MS) is a promising method for trace metal analysis in steel. Nitrogen is cheap and can be generated on site. It has fewer interferences than argon. Additionally, MICAP-MS is very matrix tolerant, proving the matrix-matched calibration expendable. Safety in technology and chemistry is the mission of BAM. Providing reference methods and materials can create trust in future technologies like hydrogen. T2 - SALSA Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - Trace analysis KW - Steel KW - Microwave plasma KW - Mass spectrometry KW - Safety PY - 2022 AN - OPUS4-55792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Aerial-based Gas Source Localisation using an Open-Path Gas Detector N2 - Presentation of the aerial robotic platform to localise gas sources with an open-path gas detector based on the tunable diode laser absorption spectroscopy (TDLAS) and project overview. T2 - Seminarserie an der Universität Örebro CY - Örebro, Sweden DA - 28.11.2018 KW - Gas Source Localisation KW - Gas Spectroscopy KW - UAV KW - TDLAS PY - 2018 AN - OPUS4-46870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537632 DO - https://doi.org/10.3390/polym13132112 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Potopnyk, M. A1 - Mech-Piskorz, J. A1 - Angulo, G. A1 - Ceborska, M. A1 - Luboradzki, R. A1 - Andresen, Elina A1 - Gajek, A. A1 - Wisniewska, A. A1 - Resch-Genger, Ute T1 - Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms N2 - Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in the solid states, and dye-doped polymer films. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 56% in pure dye samples and 86% in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i.e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement. KW - Spectroscopy KW - Dye KW - Luminescence KW - Sensor KW - Fluorescence KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597426 DO - https://doi.org/10.1002/chem.202400004 SN - 0947-6539 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - AI-based analysis of eddy current and ultrasonic rail testing data N2 - Non-destructive testing of rail tracks is carried out by using rail inspection cars equipped with ultrasonic and eddy current measurement. The evaluation of test data is mainly done manually, supported by a software tool which pre-selects relevant indications shown to the evaluators. The resulting indications have to be checked on-site using hand-held testing equipment. Maintenance interventions are then derived on the basis of these on-site findings. Overall aim of the AIFRI (Artificial Intelligence For Rail Inspection) project - funded by the German Federal Ministry of Digital and Transport (BMDV) as part of the mFUND programme under funding code 19FS2014 – is to increase the degree of automation of the inspection process from the evaluation of the data to the planning of maintenance interventions. The accuracy of defect detection shall be increased by applying AI methods in order to enable an automated classification of detected indications into risk classes. For this purpose, data from both eddy current inspections and ultrasonic inspections will be used in combination. Within the framework of this data-driven project, relevant defect patterns and artefacts present in the rail are analysed and implemented into a configurable digital twin. With the help of this digital twin virtual defects can be generated and used to train AI algorithms for detection and classification. With the help of reliability assessment trained AI algorithms will be evaluated with regard to the resulting quality in defect detection and characterisation. A particular aspect of the development of AI methods is the data fusion of different NDT data sources: Thereby, synergies are used that arise from linking eddy current and ultrasonic inspection data in a combined model. In the course of the project a demonstrator consisting of the developed IT-tool and an asset management system will be implemented and tested in the field using real-world data. T2 - NDT in Railway CY - Berlin, Germany DA - 26.09.2022 KW - NDT KW - Eddy current KW - Ultra sound KW - Simulation KW - Machine learning PY - 2022 UR - https://www.dgzfp.de/seminar/railway/#5 AN - OPUS4-57236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - AI/ML starts with data, …a practical example N2 - A brief introduction to the efforts we have done in our lab towards AI/ML analysis of SAXS data. For this, we need to extend the data with an extensive, structured hierarchy of metadata and associated data. A practical look into the information stored in our files, and the organization of the files in a data catalog is presented. T2 - Benchmarking for AI for Science at the Exascale A2 Workshop for Materials Science CY - Online meeting DA - 23.11.2020 KW - Small angle scattering KW - Machine learning KW - Data organization KW - Data curation KW - Metadata structuring PY - 2020 AN - OPUS4-51660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmitt, M. A1 - Altmann, Korinna A1 - Fengler, Petra A1 - Gehde, M. T1 - Air-based polyethylene fragmentation with high yield to form microplastic particles as reference material candidates N2 - Microplastic particles with sizes between 1 to 1000 μm are widely distributed worldwide. Origin, transport pathways and fate are poorly known, as sampling, sample preparation and detection methods are major challenges. In addition, reference materials that mimic environmental particles are lacking. Most challenging is the yield of MP particle production and the need for resource-intensive grinding with liquid nitrogen. In this paper, a machine is designed to produce aged microplastic particles as reference material candidates with high yield. The machine is based on ultraviolet aging of a thin foil and mechanical fragmentation using clean air. An example of aging and fragmentation of high density polyethylene with additional physical and chemical characterization of shape, size, aging state by carbonyl index and density is presented. KW - Microplastics KW - Degradation of polyethylene KW - Air fragmentation KW - Microplastics reference material PY - 2023 DO - https://doi.org/10.1002/appl.202200121 SP - 1 EP - 18 PB - Wiley online library AN - OPUS4-57203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood in through transmission and reflection mode N2 - The necessity and demand for nondestructive testing of wood-based materials which can automatically scan huge areas of wood is increasing. Air-coupled ultrasound (ACU) is used to detect defects and damage without altering the structure permanently. Using through transmission it is possible to detect even small holes and missing adhesive. If only one side of an object is accessible the reflection mode is preferred at the expense of a reduced resolution and penetration depth. Novel ferroelectret transducers with a high signal-to-noise ratio (SNR) enable a high-precision structure recognition. The transducers made of cellular polypropylene (PP) are quite suitable for ACU testing due to their extremely low Young’s modulus and low density which result in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, defects such as delamination, rot, and cracks can be detected. Promising results were obtained under laboratory conditions with frequencies from 90 kHz to 200 kHz. The advantage of these ACU transducers is that they do not require contact to the sample, are accurate, and cost effective. Ultrasonic quality assurance for Wood is an important attempt to increase the acceptance of wooden structures and towards sustainability in civil engineering in general. T2 - International Conference on Sustainable Materials, Systems and Structures CY - Rovinj, Croatia DA - 20.03.2019 KW - Air-coupled ultrasound KW - Cellular polypropylene KW - Wood KW - Nondestructive Testing KW - Defect detection PY - 2019 SP - 28 EP - 33 AN - OPUS4-47682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood in through transmission and reflection mode N2 - The necessity and demand for nondestructive testing of wood-based materials which can automatically scan huge areas of wood is increasing. Air-coupled ultrasound (ACU) is used to detect defects and damage without altering the structure permanently. Using through transmission it is possible to detect even small holes and missing adhesive. If only one side of an object is accessible the reflection mode is preferred at the expense of a reduced resolution and penetration depth. Novel ferroelectret transducers with a high signal-to-noise ratio (SNR) enable a high-precision structure recognition. The transducers made of cellular polypropylene (PP) are quite suitable for ACU testing due to their extremely low Young’s modulus and low density which result in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, defects such as delamination, rot, and cracks can be detected. Promising results were obtained under laboratory conditions with frequencies from 90 kHz to 200 kHz. The advantage of these ACU transducers is that they do not require contact to the sample, are accurate, and cost effective. Ultrasonic quality assurance for wood is an important attempt to increase the acceptance of wooden structures and towards sustainability in civil engineering in general. T2 - International Conference on Sustainable Materials, Systems and Structures CY - Rovinj, Croatia DA - 20.03.2019 KW - Air-coupled ultrasound KW - Cellular polypropylene KW - Wood KW - Nondestructive Testing KW - Defect detection PY - 2019 AN - OPUS4-47683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaal, Mate A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Vössing, Konrad A1 - Kupnik, M. T1 - Air-coupled ultrasonic ferroelectret receiver with additional bias voltage N2 - High sensitivity is an important requirement for air-coupled ultrasonic sensors applied to materials testing. With a lower acoustic impedance than any piezoelectric material, charged cellular polypropylene (PP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric properties of charged cellular PP originate from their polarization, creating permanent internal voltage. The sensitivity of the sensor can be increased by applying additional dc bias voltage, as it has been done already for transmitters. This work presents the first ultrasonic sensor based on charged cellular PP including a high-voltage module providing dc bias voltage up to 2 kV. This bias voltage led to an increase in the signal-to-noise ratio of up to 15 ± 1 dB. The measurement of the received signal depending on the applied bias voltage is proposed as a new method of determining the internal voltage of ferroelectrets. The sensor combined with a cellular PP transmitter was applied to nondestructive testing of a rotor blade segment and glued-laminated timber, enabling imaging of the internal structure of these specimens with a thickness around 4 cm. KW - Acoustic sensors KW - Ferroelectret KW - Nondestructive testing KW - Ultrasonic imaging KW - Ultrasonic transducers PY - 2019 DO - https://doi.org/10.1109/TUFFC.2019.2925666 SN - 0885-3010 SN - 1525-8955 VL - 66 IS - 10 SP - 1600 EP - 1605 PB - IEEE AN - OPUS4-49131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Rotor blade PY - 2018 AN - OPUS4-46656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Transducers PY - 2018 SP - 1 EP - 6 AN - OPUS4-46657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Bente, Klaas A1 - Hufschläger, Daniel T1 - Air-coupled ultrasonic sensors N2 - We present an overview of air-coupled ultrasonic transducers. T2 - Workshop BAM-IWF CY - Berlin, Germany DA - 25.11.2019 KW - Air-coupled transducers KW - Ferroelectret KW - Thermoacoustics KW - Plasma PY - 2019 AN - OPUS4-49806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dominguez-Macaya, A. A1 - Gaal, Mate A1 - Gómez Álvarez-Arenas, T. E A1 - Aurrekoetxea, J. A1 - Iturrospe, A. T1 - Air-coupled ultrasonic testing with Lamb waves for straight and curved GFRP plates N2 - The use of composite materials has been steadily growing during the last decades, as well as the requirements on quality, mechanical properties and geometries of the parts. Some processes, like the 3D UV pultrusion process, manufacture parts that are long and thin, whilst having a varying curvature radius along the same part or even no curvature at all. Studying their mechanical properties along the main fiber direction, which is of foremost interest, is not an easy task nor efficient with most nondestructive methods. The use of air-coupled ultrasonics to evaluate the properties of composite materials has been widely proved by several authors, mainly using guided waves that provide information on the orthotropic properties of this kind of materials. Most of this work has focused on analyzing straight plate-like geometries, due to the simplicity to generate desired Lamb modes in the plate and analyze the behavior of guided waves inside the plate. In our contribution, the differences in the propagation of Lamb waves for straight and curved geometry glass fiber reinforced polymers (GFRP) have been analyzed. A GFRP test sample cured with UV light with one straight and one curved area has been evaluated. The responses of the generated Lamb wave modes for the straight and curved geometries have been compared, accounting for variations in the transducer characteristics, e.g. resonance behavior and focusing. T2 - International Congress on Ultrasonics CY - Bruges, Begium DA - 03.09.2019 KW - Air-coupled KW - Guided waves KW - Composites PY - 2019 DO - https://doi.org/10.1121/2.0001072 VL - 38 SP - 045005 AN - OPUS4-50104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Essig, W. A1 - Bernhardt, Y. A1 - Döring, D. A1 - Solodov, I. A1 - Gautzsch, T. A1 - Gaal, Mate A1 - Hufschläger, Daniel A1 - Sommerhuber, R. A1 - Marhenke, T. A1 - Hasener, J. A1 - Szewieczek, A. A1 - Hillger, W. T1 - Air-coupled ultrasound - emerging NDT method N2 - This paper deals with the state of the art of air-coupled ultrasonic testing. KW - Air-coupled KW - Ultrasonic testing KW - Transducers PY - 2021 SN - 1616-069X VL - 173 SP - 32 EP - 43 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-52231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiitta, M. A1 - Tiitta, V. A1 - Gaal, Mate A1 - Heikkinen, J. A1 - Lappalainen, R. A1 - Tomppo, L. T1 - Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors N2 - Air-coupled ultrasound was used for assessing natural defects in wood boards by through-transmission scanning measurements. Gas matrix piezoelectric (GMP) and ferroelectret (FE) transducers were studied. The study also included tests with additional bias voltage with the ferroelectret receivers. Signal analyses, analyses of the measurement dynamics and statistical analyses of the signal parameters were conducted. After the measurement series, the samples were cut from the measurement regions and the defects were analyzed visually from the cross sections. The ultrasound responses were compared with the results of the visual examination of the cross sections. With the additional bias voltage, the ferroelectret measurement showed increased signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like wood. When comparing the defect response of GMP and FE sensors, it was found that FE sensors had more sensitive dynamic range, resulting from better s/n ratio and short response pulse. Classification test was made to test the possibility of detecting defects in sound wood. Machine learning methods including decision trees, k-nearest neighbor and support vector machine were used. The classification accuracy varied between 72 and 77% in the tests. All the tested machine learning methods could be used efficiently for the classification. KW - Air-coupled transducers KW - Wood KW - Ultrasound KW - Ultrasonic imaging KW - Ferroelectret KW - Machine learning PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509503 DO - https://doi.org/10.1007/s00226-020-01189-y SP - 1 EP - 14 PB - Springer AN - OPUS4-50950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel A1 - Wendland, Saskia T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Transducers KW - Ferroelectret KW - Thermoacoustic KW - Plasma KW - Polymer testing PY - 2018 AN - OPUS4-46655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Wendland, Saskia A1 - Gaal, Mate T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Air-coupled ultrasonic testing KW - Polymer KW - Plasma acoustics KW - Gas discharges KW - Atmospheric pressure plasma PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465609 VL - 168 SP - Th.6.C.1, 1 EP - 7 AN - OPUS4-46560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air‑coupled ferroelectret ultrasonic transducers for nondestructive testing of wood‑based materials N2 - Air-coupled ultrasound (ACU) is used in through transmission to detect delamination, rot, and cracks in wood without altering the structure permanently. Novel ferroelectret transducers with a high signal-to-noise ratio enable high-precision structure recognition. Transducers made of cellular polypropylene are quite suitable for ACU testing due to their extremely low Young’s modulus and low density resulting in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, structures with great dimensions, with a thickness of up to 300 mm and material densities below 500 kg/m3, can be inspected. Promising results were obtained under laboratory conditions with frequencies ranging from 90 to 200 kHz. The advantage of ACU transducers is that they do not equire contact to the sample; they are accurate and cost-effective. Ultrasonic quality assurance for wood is an important avenue to increase the acceptance of wooden structures and toward sustainability in civil engineering in general. KW - Ultrasound KW - Wood KW - Defect KW - Air-coupled PY - 2018 DO - https://doi.org/10.1007/s00226-018-1052-8 VL - 52 IS - 6 SP - 1527 EP - 1538 PB - Springer AN - OPUS4-46653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hiebl, B. A1 - Ascher, Lena A1 - Luetzow, K. A1 - Kratz, K. A1 - Gruber, C. A1 - Mrowietz, C. A1 - Nehring, M. E. A1 - Lendlein, A. A1 - Franke, R.- P. A1 - Jung, F. T1 - Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro N2 - Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat- denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the Problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG- supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250mW and 1500mW was utilized. The Albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and Primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1mmaround the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native blood vessel. These in-vitro results confirmed the beneficial effects of solder reinforcement by carrier membranes, and suggest LTS with covalently bound solders on PEI substrates for further studies in animal models. KW - Tissue soldering KW - Albumin KW - Polymer membrane KW - Laser PY - 2018 DO - https://doi.org/10.3233/CH-189108 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 1-2 SP - 317 EP - 326 PB - IOS Press AN - OPUS4-45149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Demeyer, S. A1 - Le Diouron, V. A1 - Fallot, C. A1 - Vaneeckhoute, H. A1 - Philipp, Rosemarie A1 - Lippa, K. A1 - Toman, B. T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The presentation provides an overview of the EMPIR project ALCOREF “Certified forensic alcohol reference materials”. Results of an EURAMET intercomparison of ethanol in water reference materials developed in the project are presented, and two different statistical models for the key comparison reference function are discussed, the Frequentist approach and a Bayesian approach. T2 - CCQM Organic Analysis Working Group Meeting CY - Online meeting DA - 04.05.2021 KW - Certified reference material KW - EMPIR project KW - Interlaboratory comparison PY - 2021 AN - OPUS4-52852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Vaslin-Reimann, S. A1 - Philipp, Rosemarie T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The poster presents the main achievements of the capacity building project ALCOREF “Forensic alcohol reference materials”. The project was part of the European Metrology Programme for Innovation and Research (EMPIR). Altogether 43 certified ethanol in water reference materials (CRMs) in the mass fraction range of 0.1 to 7 mg/g were developed by project partners. These CRMS are suitable for the calibration and verification of evidential breath alcohol analysers according to the requirements of the International Organisation of Legal Metrology (OIML). Furthermore, 10 new or improved Calibration and Measurement Capability (CMC) claims for purity assessment of ethanol and ethanol quantification were prepared. Newly established measurement capabilities and the new CRMs were successfully tested in three intercomparisons conducted as official intercomparisons of EURAMET Technical Committee for Metrology in Chemistry. T2 - 20th International Metrology Congress CIM CY - Lyon, France DA - 07.09.2021 KW - Certified reference material KW - EMPIR project KW - Evidential breath alcohol measurement PY - 2021 AN - OPUS4-53288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Raza, M. H. A1 - Ye, M.-Y. A1 - Sachse, René A1 - Paul, B. A1 - Gunder, R. A1 - Pinna, N. A1 - Kraehnert, R. T1 - ALD-coated mesoporous iridium-titanium mixed oxides: Maximizing iridium utilization for an outstanding OER performance N2 - With the increasing production of renewable energy and concomitant depletion of fossil resources, the demand for efficient water splitting electrocatalysts continues to grow. Iridium (Ir) and iridium oxides (IrOₓ) are currently the most promising candidates for an efficient oxygen evolution reaction (OER) in acidic medium, which remains the bottleneck in water electrolysis. Yet, the extremely high costs for Ir hamper a widespread production of hydrogen (H₂) on an industrial scale. Herein, the authors report a concept for the synthesis of electrode coatings with template-controlled mesoporosity surface-modified with highly active Ir species. The improved utilization of noble metal species relies on the synthesis of soft-templated metal oxide supports and a subsequent shape-conformal deposition of Ir species via atomic layer deposition (ALD) at two different reaction temperatures. The study reveals that a minimum Ir content in the mesoporous titania-based support is mandatory to provide a sufficient electrical bulk conductivity. After ALD, a significantly enhanced OER activity results in dependency of the ALD cycle number and temperature. The most active developed electrocatalyst film achieves an outstanding mass-specific activity of 2622 mA mg(Ir)⁻¹ at 1.60 V(RHE) in a rotating-disc electrode (RDE) setup at 25 °C using 0.5 m H₂SO₄ as a supporting electrolyte. KW - Acidic oxygen evolution reaction KW - Atomic layer deposition KW - Electrocatalysis KW - Iridium oxide KW - Soft-templated mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542651 DO - https://doi.org/10.1002/admi.202102035 SN - 2196-7350 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon T1 - Already producing or still assembling? – Perspectives towards modular production and quality control in a digitized process industry N2 - The CLEAN ENERGY Flagship is an initiative designed to utilize recent game changing developments in digital, materials and manufacturing technologies to catalyze a radical paradigm shift towards clean, reliable, efficient and cost-optimal energy. Unifying and drastically accelerating radically new energy material design, processing and integration across the entire value chain addressing energy production, conversion, storage and systems. CLEAN ENERGY participants are all distinguished research organisations that each benefit from their own industry networks and contacts with regions and state-level activities and have a long history of collaborating with each other (for 10 years now under the umbrella of EERA) within a European collaborative framework. Through EERA, CLEAN ENERGY aims to become a crucial partner in the SET-Plan, supporting long-lasting approaches through its established networks and internal collaborations. T2 - Clean Energy Workshop on Autonomous Materials Development Platforms CY - Brussels, Belgium DA - 02.10.2018 KW - Digitization KW - Energy production KW - Energy storage KW - Energy systems KW - Clean energy technology PY - 2018 AN - OPUS4-46135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Already Producing or Still Calibrating? – Advances of Model-Based Automation for Online NMR Spectroscopy N2 - The transition from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute comparison method”, independent of the matrix, it runs with very short set-up times in combination with “modular” spectral models. These are based on pure component NMR spectra without the need for tedious calibrations runs. We present approaches from statistical, (i.e., Partial Least Squares Regression) to physically motivated models (i.e., Indirect Hard Modelling). Based on concentration measurements of reagents and products by the NMR analyser a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - 2nd Reaction Monitoring Symposium CY - Bath, UK DA - 28.01.2019 KW - Process Analytical Technology KW - NMR Spectroscopy KW - Modular Production PY - 2019 AN - OPUS4-47309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Analytical Chemists Meeting, Syngenta Crop Protection Monthey SA CY - Monthey, Switzerland DA - 23.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy KW - Direct loop control PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. Industry 4.0, IIoT, or Lab 4.0 will enable us to handle more complex processes in shorter time. Intensified production concepts require for adaptive analytical instruments and control technology to realize short set-up times, modular control strategies. They are based on a digitized Laboratory 4.0. T2 - GA-Conference CY - BASF, Ludwigshafen, Germany DA - 16.05.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Industrie 4.0 KW - Indirect Hard Modeling KW - Laboratory 4.0 KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Alternative imaging conditions for reverse-time migration N2 - Poster on the evaluation of several imaging conditions for reverse time migration, applied to ultrasonic echo data, tested with synthetic (simulated) dat and real data from a polyamide model. T2 - Jahrestagung der Deutschen geophysikalischen Gesellschaft CY - Leoben, Austria DA - 12.2.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete KW - Polyamide PY - 2018 AN - OPUS4-44583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titschack, J. A1 - Baum, D. A1 - Matsuyama, K. A1 - Boos, K. A1 - Färber, C. A1 - Kahl, W.-A. A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Soriano, C. A1 - Stock, S.R. T1 - Ambient occlusion – A powerful algorithm to segment shell and skeletal intrapores in computed tomography data N2 - During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AOderived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources. KW - Micro-computed tomography KW - Pore segmentation KW - Skeletal classification KW - Image analysis PY - 2018 DO - https://doi.org/10.1016/j.cageo.2018.03.007 SN - 0098-3004 SN - 1873-7803 VL - 115 SP - 75 EP - 87 PB - Elsevier Ltd. AN - OPUS4-44511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hinrichs, R. A1 - Zen Vasconcellos, M.A. A1 - Österle, Werner A1 - Prietzel, C. T1 - Amorphization of graphite flakes in gray cast iron under tribological load N2 - A gray cast iron disc, which had been submitted to a heavy duty automotive brake test, was examined with energy filtered transmission electron microscopy. A graphite flake in a convenient angular position showed the shear interaction of graphite layers with the iron matrix in nano-scale resolution. Atomic layers of graphite were wedged into the ferritic bulk, allowing the entrance of oxygen and the subsequent formation of magnetite. The exfoliated few-layer graphene batches deformed heavily when forced into the matrix. When Raman spectra from the disc surface, which show distinctive carbonaceous bands, were compared with Raman spectra from graphite subjected to deformation in a shaker mill with different milling times, it could be seen that the shear stress on the brake surface was much more effective to induce disorder than the milling, where compressive and impact forces had been additionally exerted on the sample. During shear load the high anisotropy of elastic modulus in the graphite crystalline structure and the low adhesion between graphite basal planes allowed the exfoliation of wrinkled few-layer grapheme batches, causing the formation of more defect related Raman bands than the mechanical stress during high-energy milling. KW - Graphite KW - Shear load KW - Amorphization KW - EFTEM KW - Raman spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469227 DO - https://doi.org/10.1590/1980-5373-MR-2017-1000 SN - 1516-1439 SN - 1980-5373 VL - 21 IS - 4 SP - e20171000, 1 EP - 6 PB - Universidade Federal de São Carlos CY - São Carlos AN - OPUS4-46922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubwoski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using pe frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS:: porous material, thermo plastic (melting point >100oC), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 104 cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits whith increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S whit a correlation coefficient r2 of 0.9987 and sensitivy of 3.4x104 cpsµg-1 for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using PE frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS: porous material, thermo plastic (melting point >100°C), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits with increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a correlation coefficient r2 of 0.9987 and sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry 2018 CY - Amelia Islands, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - Sulfur quantification PY - 2018 AN - OPUS4-43996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moraleja, I. A1 - Mena, M. L. A1 - Lázaro, A. A1 - Neumann, B. A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M. M. A1 - Esteban-Fernández, D. T1 - An approach for quantification of platinum distribution in tissues by LA-ICP-MS imaging using isotope dilution analysis N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been revealed as a convenient technique for trace elemental imaging in tissue sections, providing elemental 2D distribution at a quantitative level. For quantification purposes, in the last years several approaches have been proposed in the literature such as the use of CRMs or matrix matched standards. The use of Isotope Dilution (ID) for quantification by LA-ICP-MS has been also described, being mainly useful for bulk analysis but not feasible for spatial measurements so far. In this work, a quantification method based on ID analysis was developed by printing isotope-enriched inks onto kidney slices from rats treated with antitumoral Pt-based drugs using a commercial ink-jet device, in order to perform an elemental quantification in different areas from bio-images. For the ID experiments ¹⁹⁴Pt enriched platinum was used. The methodology was validated by deposition of natural Pt standard droplets with a known amount of Pt onto the surface of a control tissue, where could be quantified even 50 pg of Pt, with recoveries higher than 90%. The amount of Pt present in the whole kidney slices was quantified for cisplatin, carboplatin and oxaliplatin-treated rats. The results obtained were in accordance with those previously reported. The amount of Pt distributed between the medullar and cortical areas was also quantified, observing different behavior for the three drugs. KW - Isotopic dilution KW - LA-ICP-MS KW - Quantification KW - Imaging KW - Kidney KW - Pt-based drugs PY - 2018 DO - https://doi.org/10.1016/j.talanta.2017.09.031 SN - 0039-9140 VL - 178 SP - 166 EP - 171 PB - Elsevier AN - OPUS4-43627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Lugovtsova, Yevgeniya A1 - Nicolai, Marcel A1 - Prager, Jens A1 - Henning, Bernd ED - Jumar, U. T1 - An approach to adhesive bond characterisation using guided acoustic waves in multi-layered plates N2 - An approach for the non-destructive characterisation of adhesive bonds using guided ultrasonic waves is presented. Pulsed laser radiation is used to thermoacoustically excite broadband ultrasonic waves in a multi-layered sample, consisting of a metal plate adhesively joined to a polymeric layer using synthetic resin. The resulting signals are received by a purpose-built piezoelectric transducer. Varying the distance between excitation and detection yields spatio-temporal measurement data, from which the dispersive properties of the propagating waves can be inferred using a two-dimensional Fourier transform, assuming the plates to act as coupled waveguides. Coupled multi-layered waveguides show an effect referred to as mode repulsion, where the distance between certain modes in the frequency-wavenumber domain is assumed to be a measure of coupling strength. Measurements at different stages of curing of the adhesive layer are performed and evaluated. A comparison of the results shows changes in the dispersive properties, namely an increased modal bandwidth for the fully cured sample as well as an increased modal distance. KW - Adhesive bonding KW - Guided waves KW - Non-destructive testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.1515/auto-2021-0089 VL - 69 IS - 11 SP - 962 EP - 969 PB - De Gruyter CY - Berlin/Boston AN - OPUS4-53762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghigo, Tea A1 - Bonnerot, Olivier A1 - Buzi, P. A1 - Krutzsch, M. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - An Attempt at a Systematic study of inks from Coptic manuscripts N2 - It is well documented that throughout Antiquity, ancient Egyptians used mostly carbon inks as a writing material. In Late Antiquity, some metals started to be added to carbon based inks. We have records of five manuscripts from the Dead Sea Scrolls collection whose carbon inks were found to contain copper Also, lead was recently found as an additive in carbon inks on a charred fragment from Herculaneum. Furthermore, the earliest evidence of iron-gall ink was found in the Book of Proverbs (Codex Ms. Berol. orient. oct. 987) dating to the third fourth centuries ce. It has been suggested that along with carbon and iron-gall inks, there is no reason to think that purely tannin inks were not also in use in Egypt. However, so far, we just have evidence of a copper-tannin ink identified in a number of documents from Egypt in the first third centuries bce. In an attempt to fill this gap in this extremely fragmented scenario during our studies of the socio-geographic history of inks, we arrived at the conclusion that the continuous production of Coptic manuscripts from Late Antiquity to the Middle Ages offers a unique opportunity for the historical study of inks across a large geographic area. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 157 EP - 163 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Von der Au, M. A1 - Schwinn, M. A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Kuhlmeier, K. A1 - Wichmann, K. A1 - Tremel, W. T1 - An automated single algae-ICP-ToF-MS Approach for the Investigation of Metal Uptake in Diatoms N2 - Entwicklung neuer ökotoxikologischer Bewertungsmethoden auf der Basis der automatisierten single cell-ICP-ToF-MS T2 - CANAS CY - Freiberg, Germany DA - 23.09.2019 KW - Automated single cell-ICP-ToF-MS KW - Diatoms KW - Ecotoxicological Assessment PY - 2019 AN - OPUS4-49744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Von der Au, M. A1 - Borovinskaya, O. A1 - Flamigni, L. A1 - Kuhlmeier, K. A1 - Büchel, C. T1 - An automated single algae-ICP-ToF-MS approach for the Investigation of Metal Uptake in Diatoms N2 - Entwicklung einer automatisierten single cell-ICP-ToF-MS Methode zur Analyse von metallexponierten Diatomen. T2 - CANAS CY - Freiberg, Germany DA - 23.09.2019 KW - Single cell-ICP-ToF-MS KW - Multivariate Datenauswertung KW - Diatom PY - 2019 AN - OPUS4-49748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Given, Joseph T1 - An automatic system for categorizing and quantifying human factors N2 - Human factors (HF) are little understood, and particularly in non-destructive testing (NDT) experimental data is rare, samples are often small, and statistical methods are rarely used to evaluate results. HF have been widely implicated in major occurrences of technical failure, for example at North Anna Power Plant and on United Airlines Flight 232. Understanding HF is vital for reliable detection and prevention of failures. Reliability assessments, though known to be affected by intrinsic capability, application factors, and HF, have thus far only concentrated to a sufficient degree on intrinsic capability. The addition of HF to that assessment has proven difficult due to the lack of a method of quantifying HF. This paper presents the first attempt from a psychological perspective to quantify HF from qualitative data. HF data was derived from qualitative human-oriented Failure Modes and Effects Analysis (Human-FMEA) workshops for visual inspection of tunnels by laser scanning and for ultrasonic testing of welds. Data was collected on human failure modes, causes, consequences and preventive measures, as well as eliciting a risk priority number (RPN). Using this data, a system of quantitative weightings was created to allocate errors to inductively derived HF categories for further allocation to existing HF categorisation models. This weighting model proved useful for creating quantitative summaries of HF, informing and validating qualitative FMEA results, and comparing existing HF categorisation models. Further potential lies within a planned interface to quantitative reliability assessment methods such as POD (Probability of Detection). While providing quantifications, the method retains a qualitative and holistic nature, can, thus, bridge the gap between psychological and engineering concerns of HF and reliability, contributing to future interdisciplinary work. T2 - SPIE Smart Structures + Nondestructive Evaluation, 2023 CY - Long Beach, CA, USA DA - 12.03.2023 KW - Quantification KW - Human-FMEA KW - Human Factors PY - 2023 DO - https://doi.org/10.1117/12.2658407 SN - 0277-786X VL - 12491 SP - 1 EP - 15 PB - SPIE (The International Society for Optical Engineering) CY - Bellingham, Wash. AN - OPUS4-57928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Baloh, P. A1 - Bauer, L. A1 - Bendová, A. A1 - Čermák, P. A1 - Fellner, K. A1 - Ghanathe, M. A1 - Hernández Alvarez, O. E. A1 - Hricov, Š. A1 - Jochum, J. K. A1 - Kotvytska, L. A1 - Kumar, S. A1 - Labh, A. A1 - Machovec, P. A1 - Pauw, Brian Richard A1 - Ramszová, K. A1 - Walz, E. A1 - Wild, P. T1 - An exercise in open data: Triple axis data on Si single crystal N2 - Efforts are rising in opening up science by making data more transparent and more easily available, including the data reduction and evaluation procedures and code. A strong foundation for this is the F.A.I.R. principle, building on Findability, Accessibility, Interoperability, and Reuse of digital assets, complemented by the letter T for trustworthyness of the data. Here, we have used data, which was made available by the Institute Laue-Langevin and can be identified using a DOI, to follow the F.A.I.R.+T. principle in extracting, evaluating and publishing triple axis data, recorded at IN3. KW - Open data KW - Neutron diffraction KW - Analysis KW - Open science PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562257 DO - https://doi.org/10.48550/arXiv.2010.12086 SN - 2331-8422 SP - 1 EP - 4 PB - Cornell University CY - Ithaca, NY AN - OPUS4-56225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - ESAS - CSSC CY - Brno, Czech Republic DA - 04.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - SALSA - Communicating Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFASs using HR CS GFMAS via GaF detection N2 - Introduction Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. Methods For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. In our study we used high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) which is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Results Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a modifier pretreatment step using a mixture of Mg, Pd and Zr and a correction measurement using perfluorooctanoic acid. The combination of both resulted in increased accuracy and precision as well as overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analysed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for extractable organically bound fluorine (EOF) determination in soils. Innovative aspects • Highly sensitive and selective method for fluorine/PFASs analysis based on HR-CS-GFMAS • Increased accuracy for the determination of EOF • Reduction of PFAS species-specific responses by optimized modifier conditions T2 - ANAKON23 CY - Vienna, Austria DA - 11.04.2023 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2023 AN - OPUS4-57409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - An interlaboratory comparison on measuring the chemical composition of functionalized graphene nanoplatelets N2 - The results of the international interlaboratory comparison ""Chemical Composition of functionalized graphene with X-ray photoelectron spectroscopy (XPS) under the auspice of VAMAS TWA 2 (Surface Chemical Analysis) will be presented. T2 - Kratos German User Meeting 2023 CY - Berlin, Germany DA - 25.10.2023 KW - Graphene KW - Interlaboratory Comparison KW - X-ray photoelectron spectroscopy PY - 2023 AN - OPUS4-58683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Weller, Michael G. T1 - An LC-MS/MS based reference method candidate for the clinical assessment of the promising iron biomarker hepcidin-25 in serum N2 - Hepcidin-25 has attracted much attention ever since its discovery in 2001. It is widely recognized that this peptide hormone plays a major role in the regulation of iron levels in mammals and can reveal important clinical information about several iron-related disorders. However, the development of a reliable assay to quantify hepcidin proved to be problematic and serum hepcidin-25 concentrations determined by various assays differ substantially. Challenges arise in the MS analysis of hepcidin due to the “sticky” character of the peptide and the lack of suitable standards. With the aim to tackle the current difficulties in hepcidin quantification and improve the status of this promising biomarker in the clinical field, we developed a rapid and robust analytical strategy for the quantification of hepcidin-25 in human samples based on HPLC-MS/MS (QqQ) as a reference method candidate to be implemented in routine laboratories. The novelty of the method is the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces. Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions where the use of acidic mobile phases was compared with a novel approach involving solvents at high pH containing 0.1% of ammonia. Both methods were carefully validated and applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with very good correlation of the results. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Validation KW - LC-MS/MS peptide quantification KW - Clinical samples PY - 2018 AN - OPUS4-44616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bintz, Thilo A1 - Munsch, Sarah Mandy A1 - Stelzner, Ludwig A1 - Lauinger, R. A1 - Schmidt, Wolfram A1 - Kruschwitz, Sabine T1 - An NMR tomograph for building materials - applications , experimental studies and limitations N2 - Introduction of the NMR Tomograph of Department 8.0 at BAM, the applications, technical limitations, and uses in laboratory studies. T2 - International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA) 2021 CY - Kiel, Germany DA - 26.07.2021 KW - NMR relaxometry KW - NMR imaging KW - Sensitivity KW - Building materials PY - 2021 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. AN - OPUS4-53043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bintz, Thilo A1 - Munsch, Sarah Mandy A1 - Stelzner, Ludwig A1 - Lauinger, Robert A1 - Schmidt, Wolfram A1 - Kruschwitz, Sabine T1 - An NMR tomograph for building materials - applications, experimental studies and limitations - N2 - A summary of the possibilities, technical limitations and application examples for a unique NMR tomograph at BAM. T2 - 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), 2021 CY - Kiel, Germany DA - 27.06.2021 KW - Relaxation time distribution KW - NMR imaging KW - Capillary suction PY - 2021 SN - 978-1-7281-8738-9 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. SP - 106 EP - 110 PB - IEEE AN - OPUS4-53116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno Torres, Benjamí A1 - Völker, Christoph A1 - Munsch, Sarah Mandy A1 - Hanke, T. A1 - Kruschwitz, Sabine ED - Tosti, F. T1 - An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering N2 - Although measurement data from the civil engineering sector are an important basis for scientific analyses in the field of non-destructive testing (NDT), there is still no uniform representation of these data. An analysis of data sets across different test objects or test types is therefore associated with a high manual effort. Ontologies and the semantic web are technologies already used in numerous intelligent systems such as material cyberinfrastructures or research databases. This contribution demonstrates the application of these technologies to the case of the 1H nuclear magnetic resonance relaxometry, which is commonly used to characterize water content and porosity distri-bution in solids. The methodology implemented for this purpose was developed specifically to be applied to materials science (MS) tests. The aim of this paper is to analyze such a methodology from the perspective of data interoperability using ontologies. Three benefits are expected from this ap-proach to the study of the implementation of interoperability in the NDT domain: First, expanding knowledge of how the intrinsic characteristics of the NDT domain determine the application of semantic technologies. Second, to determine which aspects of such an implementation can be improved and in what ways. Finally, the baselines of future research in the field of data integration for NDT are drawn. KW - Ontology Engineering KW - Interoperability KW - Data-integration KW - NMR relaxometry KW - materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529716 DO - https://doi.org/10.3390/rs13122426 SN - 2072-4292 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 13 IS - 12 SP - 2426 PB - Multidisciplinary Digital Publishing Institute (MDPI) CY - Basel, Switzerland AN - OPUS4-52971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -