TY - CONF A1 - Hahn, Marc Benjamin T1 - Radiation biophysics N2 - We give an overview about our work related to radiation damage to DNA, proteins, and DNA-protiren complexes damage. Hereby the focus lies on the combination of experiments and Geant4 particle scattering simulations to understand effects in plasmid DNA pUC19, Oligos, and G5P protein. T2 - Project overview CY - Berlin, Germany DA - 27.09.2023 KW - DNA KW - Dosimetry KW - Proteins KW - Radiation damage KW - G5P KW - Microdosimetry KW - Ionizing radiation KW - Geant4 KW - TOPAS KW - TOPAS-nBio KW - Geant4-DNA KW - LEE KW - OH KW - Hydroxyl radical PY - 2023 AN - OPUS4-58742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco Vélez, Juan Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - In the face of rising energy demand and the impending climate change the development of a sustainable, fossil-free fuel and chemical production is of global importance. One possible goal is the development of electrochemical conversion processes using catalysts. Porous materials play an important role in such energy applications. The activity and stability of each catalyst is highly dependent on the properties of the coating, i.e., phase composition, crystallinity, accessible surface area, and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physico-chemical properties. However, the complex morphology of such catalysts constitutes a challenge even for modern analytical techniques. Spectroscopic ellipsometry (SE) is a versatile method for studying material properties by using appropriate models (e.g., film thickness, optical and electronic properties). Ellipsometric models need to be validated in order to produce accurate results. In a first step, the model for the ellipsometric fit studies of a calcination series of mesoporous iridium oxide films (300 – 600 °C) was investigated and validated with respect to their material properties.[4] The information on electronic structure of the catalysts shows a direct correlation with electrochemical activities. The development of an environmental electrochemical cell offers the possibility of investigations under operando conditions. Thus, changes in optical and electronic properties can be induced and monitored during the electrocatalytic oxygen evolution reaction. T2 - 9th International Conference on Spectroscopic Ellipsometry CY - Beijing, China DA - 22.05.2022 KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis KW - Oxygen evolution reaction KW - Spectroscopic ellipsometry PY - 2022 AN - OPUS4-54915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Xps/Haxpes at (core shell) nanoparticles N2 - The principles of (Hard) X-ray photoelectron spectroscopy and some application in the field of (core-shell) nanoparticles will be presented. The presentation should answer hoe to get reliable results. Furthermore, examples of the correlation between physical-chemical measurments and toxicological results are given which are crucial for the risk assessment of nanoparticles. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - X-ray photoelectron spectroscopy KW - Core-shell nanoparticles KW - Reliabiilty KW - Risk assessment PY - 2023 AN - OPUS4-59496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Solomun, Tihomir A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - The change of dna and protein radiation damage upon hydration: in-situ observations by near-ambient-pressure xps N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. Furthermore, first data about the degradation of single-stranded DNA binding-proteins (G5P / GV5 and hmtSSB) under vacuum and NAP-XPS conditions are presented. T2 - AVS69 CY - Portland, USA DA - 05.11.2023 KW - Base damage KW - Base loss KW - Cancer treatment KW - DNA KW - Protein KW - Proteins KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - NAP-XPS KW - Xray photo electron spectrocopy KW - Radiation damage KW - Geant4-DNA KW - G5P KW - GVP KW - Hydroxyl radical KW - LEE KW - DEA KW - DET KW - ROS KW - Prehydrated electron KW - TOPAS KW - Near ambient pressure xray photo electron spectroscopy KW - SSB KW - DSB KW - Single-strand break (SSB) KW - ESCA KW - Single-stranded DNA-binding proteins KW - Reactive oxygen species PY - 2023 AN - OPUS4-58761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - How to measure the chemical composition of industrial graphene - New insights from an interlaboratory comparison N2 - International standards describing reliable protocols will facilitate the commercialization of graphene and related 2D materials. One physico-chemical key property next to flake size and thickness is the chemical composition of the material. Therefore, an ISO standard is under development with X-ray photoelectron spectroscopy having a prominent role. With its information depth of around 10 nm which is the similar length scale as the thickness as of particles of 2D materials consisting of a few monolayer XPS seems to be highly suitable for this purpose. Different sample preparation methods like pressing the powders onto adhesive tapes, into recesses, or into solid pellets result in inconsistencies in the quantification. For the validation of the quantification with XPS an interlaboratory comparison was initiated under the auspice of the “Versailles Project on Advanced Materials and Standards” (VAMAS). First results confirm that the sample preparation method (pellet vs. powder) influences the quantification results clearly. T2 - Characterization of Nanomaterials Colloquium CY - Berlin, Germany DA - 04.07.2023 KW - X-ray photoelectron spectroscopy KW - Functionalized graphene KW - Interlaboratory comparison PY - 2023 AN - OPUS4-57897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Radiation biophysics: a journey N2 - We give an overview about recent work concerning ionizing radiation damage to Oligonucleotides, plasmid DNA, DNA binding proteins (G5P), and DNA-protein complexes. We focus on combining new experimental setups with Geant4/TOPAS particle scattering simulations to understand the effets of ionizing radiation. T2 - Project update CY - Online meeting DA - 09.10.2023 KW - DNA KW - Proteins KW - G5P KW - Geant4 KW - Geant4-DNA KW - TOPAS KW - TOPAS-nBio KW - LEE KW - Dosimetry KW - Microdosimetry KW - Magnetism KW - Protein PY - 2023 AN - OPUS4-58744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - An interlaboratory comparison on measuring the chemical composition of functionalized graphene nanoplatelets N2 - The results of the international interlaboratory comparison ""Chemical Composition of functionalized graphene with X-ray photoelectron spectroscopy (XPS) under the auspice of VAMAS TWA 2 (Surface Chemical Analysis) will be presented. T2 - Kratos German User Meeting 2023 CY - Berlin, Germany DA - 25.10.2023 KW - Graphene KW - Interlaboratory Comparison KW - X-ray photoelectron spectroscopy PY - 2023 AN - OPUS4-58683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Muench, S. A1 - Okruss, M. A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Chemometric analysis of High resolution spectra for precise and accurate isotope amount ratio determination N2 - Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope amount ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, an optical spectrometric method has been proposed as faster and low-cost alternative for the analysis of isotope ratios: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). For the determination of Mg isotope ratios in selected rock reference materials, the high-resolution molecular absorption spectrum of in-situ generated MgF molecule was studied applying multivariate analysis and the results compared with MC-ICP-MS. Samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectra were recorded for MgF for the electronic transition X 2Σ → B 2Σ+. The MgF spectrum is described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS). A PLS model was built and calibrated with enriched isotope spikes and certified reference materials. Spectra data was preprocessed by a derivate of second order and venetian blinds cross-validation was employed for finding the optimum latent variables. Finally, the model was refined by a genetic algorithm which identified the best subset of variables for a precise and accurate regression. Results are compatible with those obtained by MC-ICP-MS with an accuracy of ± 0.3‰ with uncertainties ranging between 0.02 to 0.6‰. T2 - Colloquium Analytische Atomspektroskopie CANAS 2019 CY - Freiberg, Germany DA - 23.09.2019 KW - Isotope analysis KW - Chemometric KW - Multivariate analysis KW - HR-CS-MAS KW - Molecular spectrum KW - Magnesium PY - 2019 AN - OPUS4-49878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Radnik, Jörg A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Progress Talk 3 / Non-destructive depth profiling of core-shell nanoparticles by ER-XPS N2 - This presentation deals with the progress between month twenty and twenty-nine of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.11.2018 KW - ER-XPS KW - Synchrotron KW - Core-shell nanoparticles KW - Depth-profiling PY - 2018 AN - OPUS4-46676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The state of fresh concrete is predominantly determined by the rheological properties of the cement paste. In order to control performance spectra and requirements of novel concretes and to better understand macroscopic phenomena, comprehensive knowledge of the material behavior of fresh cement suspensions as well as of the complex relationships of mechanisms at the nano and micro scale are necessary. This work focuses on micro and nano rheology of suspensions of cementitious model systems and the influence of polycarboxylate-based admixtures on the rheology. The phenomena are driven by multiple parameters such as adsorption and particle interactions. Hence, the first part examines the interaction between polycarboxylate ether (PCE) and synthesized clinker phases and hydration products as model systems with regard to early hydration products. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Early hydration KW - Polycarboxylate ether (PCE), PY - 2018 AN - OPUS4-46980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A comparative analysis of optical spectrometry methods and MC-ICP-MS for stable isotope analysis of magnesium in geological samples N2 - Society for Applied Spectroscopy (SAS) Atomic Section Student Award. Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS), and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope ratios in selected rock reference materials, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied and their results compared with MC-ICP-MS. By HR-CS-MAS, samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi, and X 2Σ → B 2Σ+. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A 2Πi → X 2Σ, as well as direct analysis by the MgO molecule for the electronic transition A 1Π+ → X 1Σ. The MgF and MgO spectra are described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Results were accurate with precisions ranging between 0.2 ‰ and 0.8 ‰ (2 SD, n= 10) for HR-CS-GFMAS. No statistically significant differences were observed for samples w/o matrix extraction. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of direct analysis, however the precision is lower due the lack of solid isotopic calibration standards. T2 - SciX 2019. 46th Annual North American Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Palm Springs, CA, USA DA - 13.10.2019 KW - Isotope analysis KW - Diatomic molecule KW - Magnesium KW - MC-ICP-MS KW - HR-CS-MAS KW - LIBS PY - 2019 AN - OPUS4-49883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Separation of polystyrene nanoparticles with different coatings using 2D off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important1,2. In this presentation, a two-dimensional separation approach based on AF4 and CE was showed and used to separate NPs with similar sizes but different coatings. Standard reference polystyrene NPs having comparable core sizes but different coatings were investigated. Different migration time and profiles were compared. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. Future investigations will be focussed on inorganic NPs with differently charged coatings. There, AF4-CE coupling can be coupled with inductively coupled plasma mass spectrometry (ICP-MS) to enhance the sensitivity of this method. T2 - 6th FFF-MS Tagung CY - Berlin, Germany DA - 22.11.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Meermann, Björn A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - ESAS-CANAS Konferenz CY - Berlin, Germany DA - 21.03.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Nanoparticles separation using capillary electrophoresis (CE) and asymmerical flow-field flow fractionation (AF4) N2 - Nowadays, different nanoparticles have been developed for commercial applications. However, since data on toxicity are barely available, their increasing application in cosmetic products, food and their release in the environment might cause severe problems. An accurate separation, identification and characterization of nanoparticles becomes increasingly important. A common method for nanoparticle separation, which was introduced in 1976 by Giddings, represents asymmetrical field-flow fractionation (AF4). It is a flow based separation method, which can be theoretically used to separate particles range from 1 nm to 50 µm. However, when the particles are smaller than 10 nm, separation with AF4 will become difficult to perform. Because in this case strong separation force, which induces aggregation of particles, should be applied. This will decrease recoveries of analytes and limit its application in accurate quantitative analysis. Capillary electrophoresis (CE) is another well-developed separation technique, in which samples will be separated in relation to their electrophoretic mobility. In recent years, CE has been used to separate different kinds of nanoparticles like, gold colloids or CdSe Quantum dots. However, till now only separation of particles smaller than 50 nm was reported. Because large size distribution of bigger particles will result in strong peak broadening and long separation time. A two-dimensional coupling of AF4 and CE might provide us a new separation method, which can extend the separation ranges of both methods and be a way to characterise particles with large size distributions. T2 - BAM PhD seminar CY - PhD seminar, Berlin, Germany DA - 22.06.2018 KW - Nanoparticles separation capillary electrophoresis asymmetrcial flow field flow fractionation PY - 2018 AN - OPUS4-47187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - XPS at BAM - Some insights into our activities N2 - Some examples will be given showing the application of XPS in different fields, like polymers, nanoparticles, solar cells and inorganic thin films. T2 - Besuch beim GFZ Potsdam CY - Potsdam, Germany DA - 18.05.2018 KW - XPS KW - Surface analytics KW - Nanoparticles KW - Polymers KW - Solar cells PY - 2018 AN - OPUS4-44981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Müller, Anja T1 - Introduction to photoelectronspectroscopy N2 - A short introduction to XPS/ESCA with the focus on nanoparticles and the preparation of such particles for the measurements T2 - Meeting of ACE Nano CY - Berlin, Germany DA - 18.02.2019 KW - ESCA/XPS KW - Nanoparticles KW - Preparation PY - 2019 AN - OPUS4-47437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Geant4: A universal Monte-Carlo toolkit for Particle scattering simulations N2 - Particle scattering simulations are an useful tool to plan experiments, design detectors, estimate doses in irradiated materials and medical treatment planning. Geant4 is a Monte-Carlo toolkit for the simulation of of particles scattering in matter. Photons, electrons, ions etc can be simulated with energies in the eV to GeV range. Their interactions with matter in arbitrary scattering geometries be studied. Scattering models, cross sections and material parameters can be set to cover interactions in gas, liquid and solid state. The import of geometries from computer aided design files or the protein data base is possible. It is currently being applied in high energy and nuclear physics, accelerator and detector design, space application, dosimetry and medical sciences. In this first part of the talk a brief overview over the structure, functionality and possible applications of Geant4 will be given. In the second part an example application will be presented: The determination of the microscopic dose-damage relations in aqueous environment for electron irradiated plasmid DNA will be explained. Therefore, we combine electron scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We present, how to combine these simulational results and experimental data via a generalized damage model to determine the microscopic dose-damage relation at a molecular level. T2 - Department 6 Seminar CY - Berlin, Germany DA - 04.04.2019 KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Radiation damage KW - Electron irradiation KW - Monte-Carlo Simulation KW - Monte-Carlo Simulations KW - DNA KW - Computer simulation KW - Geant4-DNA PY - 2019 AN - OPUS4-47819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - DNA based Reference Materials: In Biodosimetry and Pharmaceutical Quality Control N2 - Applications of plasmid DNA base reference materials in dosimetry and pharmaceutical research. T2 - Physical and Chemical Analysis of Polymers seminar CY - Online meeting DA - 29.03.2021 KW - Analytic KW - Certification KW - DNA KW - Dosimetry KW - Homogeneity KW - Quality testing KW - Reference material KW - Referenzmaterialien KW - Stability KW - Dose KW - Radiation KW - Pharmacy KW - Electrohpresis PY - 2021 AN - OPUS4-52361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Reference Materials at BAM N2 - A introduction into reference materials, the certification process and brief over current reference projects at BAM is given. T2 - AK-Postdoc seminar CY - BAM Berlin, Germany DA - 02.02.2021 KW - Referenzmaterialien KW - Reference material KW - Homogeneity KW - Stability KW - Quality testing KW - Analytic KW - DNA KW - Dosimetry KW - Certification PY - 2021 AN - OPUS4-52060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Data processing and nonlinear curve Fitting with fityk N2 - A brief introduction into fityk is given. The introduction is followed by a pratical session. Fityk is a versatile data processing tool for nonlinear curve fitting. T2 - AFM Data analysis seminar CY - Online meeting DA - 23.02.2021 KW - Fityk KW - Curve fitting KW - Analysis KW - Raman KW - IR KW - XPS PY - 2021 AN - OPUS4-52154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich T1 - Analytical Sciences: From Ostwald's maid to enabling science N2 - The talk will address the paradigm shift in Analytical Sciences in regard to chemistry as a discipline. To illustrate this metamorphose examples from spectroschemical analysis, ufluidics, bioanalysis, and the didgital transformation of analytical sciences are discussed. T2 - GDCh-Wissenschaftsforum 2019 CY - Aachen, Germany DA - 15.09.2019 KW - Spectrochemical analysis KW - Analytical Sciences PY - 2019 AN - OPUS4-51471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kunz, Valentin A1 - Schneider, Markus A1 - Nymark, Penny A1 - Grafström, Roland A1 - Unger, Wolfgang T1 - Combining surface analytic and toxicity data for safer nanomaterials N2 - Nanomaterials are present in our everyday life. Paint coats, sunscreens, catalysts and additives for tyres are good examples for the use of such materials in mass-market products. The problem of the safety of nanomaterials is recognized as a problem for health and environment, which lead to the special registration of nanomaterials according to an annex of REACH as of 2020. But a great problem for the risk assessment of nanomaterials that several factors could influence the hazardous nature of them. Additional to composition, crystal structure, size and shape the surface properties of such particles belong to these parameters for risk assesment. The reason for the relevance of the surface is obvious: the smaller the particle, the higher is the share of the surface. Additionally, the surface is the region of the particle which interacts with the surrounding which is another crucial factor for the understanding the effect of a nanomaterial on health and environment. In the OECD Testing Programme on Manufactured Nanomaterials exists consequently an Endpoint 4.30 Surface Chemistry in Chapter 4. PHYSICAL AND CHEMICAL PROPERTIES. In summary, there is obviously a need for a correlation between surface chemical analytic data and toxicity. To fill in this gap, we present surface analytic results obtained with X-ray photoelectron spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry and correlate them with cytotoxic data gain by high-throughput screening experiments. It must be noted, that these experiments were done at the same set of titania materials taken from the JRC (Joint Research Centre of the European Union) Nanomaterials Repository. As material TiO2 was chosen due to its widespread use in consumer products, e.g. paint coats and sunscreens. With this new approach a better understanding of the influence of surface properties on the toxicity can be expected leading to a better risk assessment of these materials. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Risk assessment KW - Nanomaterials KW - Surface analytic KW - Toxicology PY - 2019 AN - OPUS4-49090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this talk presents experimental results about the influence of delayed addition of PCEs on the Hydration of alite and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3S and C3A-gypsum pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and Hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - Alite KW - C3S KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 AN - OPUS4-49103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Pflüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Hertwig, Andreas A1 - Kraehnert, Ralph T1 - Operando electrochemical spectroscopic ellipsometry: Material properties of highly active mesoporous IrO IrOxfilms revealed under realistic OER conditions N2 - Rising energy demand and the impending climate change require the development of a sustainable, fossil-free fuel and chemical production on a global scale. Hydrogen production via water electrolysis will be a fundamental cornerstone in this endeavor. The activity and stability of respective electrode coatings strongly depends on the coating's properties, i.e. phase composition, crystallinity, electrical conductivity, accessible surface, wettability and many other factors. The key to the development of improved catalysts is a better understanding of the relations between their performance, stability and physicochemical properties. However, those relations can be complex, and are strongly influenced also by the reaction environment. Hence, operando analysis of the catalyst material during catalysis at realistic potentials and current densities is highly desirable. Yet, many analytical techniques cannot be applied in liquid environments at realistic potentials and current densities. We propose environmental ellipsometric analysis in a dedicated electrochemical flow cell as a new method to evaluate gas evolution reactions operando under realistic working conditions. Figure 1 illustrates schematically the developed technique. Key factors to success are highly active model-type catalysts with template-controlled porosity, a suitable sample environment, a deep understanding of the spectroscopic method and respective model development, as well as concise cross validation with numerous other analytical techniques. The method was developed and validated by analyzing a calcination series (300 - 600°C) of mesoporous templated IrOx films ex-situ and operando under oxygen evolution reaction (OER) conditions. The employed environmental electrochemical spectroscopic ellipsometric analysis (ECSE) revealed during OER the change of optical and electronic properties, i.e. the dielectric functions (real ε1 and imaginary part ε2), electrical and electronic properties such as resistivity (ρ) and band-to-band transitions (p-d band transitions). Film thickness and porosity were validated by means of scanning electron microscopy (SEM), X-ray reflectometry (XRR) or ellipsometric porosimetry (EP), electrical and electronic properties by means of conductivity measurements, X-ray photoelectron spectroscopy (XPS) or UV-Vis-NIR absorption spectroscopy. The electronic structures of the catalysts from valence electron energy loss spectra (VEELS) derived from the real (ε1) and imaginary part (ε2) of the dielectric function from SE measurements reveal a direct correlation with electrochemical activities in OER. In the presentation reversible and irreversible potential-dependent changes of the catalyst properties during operation will be discussed along with the dynamics of gas formation, transport and dissolution T2 - E MRS 2021 SPRING MEETING CY - Online meeting DA - 31.05.2021 KW - Spectroscopic ellipsometry KW - Ectrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive operando analysis PY - 2021 AN - OPUS4-52929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Weigert, Florian A1 - Häusler, I. A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Correlating HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSE/CdS semiconductor quantum dots N2 - Controlling the thickness and tightness of surface passivation shells is crucial for many applications of core-shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the application-relevant functionality like a high photoluminescence (PL) quantum yield. This calls for a whole nanoobject approach. Moreover, the thickness of the organic coating remains often unclear. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. The results of the different methods match very well within the different measurement uncertainties. Additionally, results obtained with energy-resolved XPS using excitation energies between 200 eV and 800 eV are discussed with respect to a potential core/shell intermixing. Moreover, the future application potential of this approach correlating different sizing and structural methods is discussed considering the method-inherent uncertainties and other core/multi-shell nanostructures. T2 - E-MRS Fall Meeting CY - Online meeting DA - 20.09.2021 KW - Core-shell nanoparticles KW - Quantum dots KW - High-resolution transmission electron microscopy KW - X-ray Photoelectron Spectroscopy PY - 2021 AN - OPUS4-53365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz A1 - Fischer, D. A1 - Fischer, F. A1 - Ivleva, N. A1 - Witzig, C. A1 - Zumbülte, N. A1 - Braun, U. T1 - Results of the Plastic in the environment comparative test N2 - The talk describes the sturcture and the results of the "plastics in the environment" comparative test of 2019. T2 - Symposium "Challenges of microplastic analysis – Bridging state of the art and policy needs” CY - Online meeting DA - 09.09.2021 KW - Microplastic KW - Comparative test KW - ILC PY - 2021 AN - OPUS4-53236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Elucidating core shell nanostructures with surface analytics N2 - XPS is a versatile tool for elucidating core shell structures. XPS can obtain information for organic compounds (polymer particle, organic coating ) which are hardly or not detectable with other Methods. XPS is an important tool for the risk assessement of nanoparticles T2 - Kratos German User Meeting CY - Online meeting DA - 26.05.2021 KW - Core-shell nanoparticles KW - X-ray photoelectron spectroscopy KW - Complementary methods PY - 2021 AN - OPUS4-52717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Gonzalez, J. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Critical evaluation of optical spectrometry vs mass spectrometry for stable isotope analysis N2 - Mass spectrometric Methods MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. Optical spectrometric methods are proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) and laser ablation molecular isotopic spectrometry (LAMIS). First, stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated heteronuclear diatomic molecules (MH or MX) in graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. Finally, the application of molecular spectrometry via emission by LAMIS is compared and discussed. T2 - European Winter Conference on Plasma Spectrochemistry EWCPS 2019 CY - Pau, France DA - 03.02.2019 KW - Isotope analysis KW - HR-CS-MAS KW - LIBS KW - MS-ICP-MS KW - Optical spectroscopy KW - Mass spectrometry PY - 2019 AN - OPUS4-49874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Krietsch, Arne A1 - Rühle, Bastian A1 - Bresch, Harald T1 - Perspective of BAM on Advanced Materials N2 - A brief perspective of BAM on advanced materials is presented including examples for nanomaterials and other systems presenting advanced materials with special emphasis on characterization methods used in different division of BAM for the determination of functional or safety parameters of such materials. In this respect, also ongoing activities of the capacity building project nanoplatform of BAM aiming at the development of nanometer-sized reference materials are briefly summarized. T2 - BfR Workshop zu Advanced Materials CY - Online meeting DA - 04.11.2020 KW - Quality assurance KW - Risk assessment KW - Safety KW - Core/shell particle KW - Characterization KW - Measurement uncertainty KW - Method KW - Nano particle PY - 2020 AN - OPUS4-51620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Bennet, Francesca A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - Reference material for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces. For evaluating the quality of such microstructures, it is crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. The aperture has a major influence on the signal-contribution from the outside. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize the FoV: The signal-contribution from the outside is reduceable down to lower than 50 %, when the aperture is 30 % of the structure dimension for our Kratos AXIS Ultra DLD system. T2 - Kratos User's Meeting 2020 CY - Online meeting DA - 21.09.2020 KW - Small-area XPS KW - Field of View KW - Imaging XPS KW - Reference Material PY - 2020 AN - OPUS4-51412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Analytical & Characterisation Excellence in nanomaterial risk assessment: A tiered approach N2 - The work packages of the EU H2020 project ACEnano are presented and their activities in standardization and guidance for regulators and SMEs. T2 - ISO/TC 229 Strategy meeting CY - Online meeting DA - 10.11.2020 KW - Nanomaterials KW - Standardization KW - Risk assessment PY - 2020 AN - OPUS4-51611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - Surface chemical analysis surface chemical analysis of cells and biofilms N2 - The status of the planned technical report "Surface characterization of biomaterials" will be presented. T2 - ISO TC201 Meeting CY - Online meeting DA - 05.09.2020 KW - X-ray photoelectron spectroscopy KW - X-ray spectroscopy KW - Biomaterials KW - Standardization PY - 2020 AN - OPUS4-51197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ToF-SIMS at advanced materials - from nano to energy N2 - The basic principles of ToF-SIMS will be explained. Examples of the use of ToF-SIMS for the investigation of titania and core-shell nanoplastic will be given. Furhtermore, 3d reconstruction is explained for nanoparticle research and energy-related materials. T2 - BUA Summer School Mass Spectrometry CY - Berlin, Germany DA - 04.10.2022 KW - ToF-SIMS KW - Nanomaterials KW - Imaging PY - 2022 AN - OPUS4-55897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Gawek, M. A1 - Madkour, S. A1 - Szymoniak, Paulina A1 - Omar, Hassan A1 - Schönhals, Andreas T1 - Energy-resolved x-ray photoelectron spectroscopy measurements on the concentration profile of thin blended poly(vinyl methyl ether)/polystyrene films N2 - The composition of thin films of polymer blends in vertical direction is still under discussion. For explaining the thickness dependence of some properties like the thermal glass transition temperature, a three-layer model has been introduced consisting of an adsorbed layer with a reduced segmental mobility at the substrate, a bulk-like layer in the middle of the film and an outermost surface layer with a higher molecular mobility. X-ray photoelectron spectroscopy (ER-XPS) measurements with a varying excitation energy from 400 eV to 1486.6 eV and, herewith, an information depth from 1.5 nm to 10 nm were performed at PVME/PS films with compositions of 25/75 wt% and 50/50 wt% and thicknesses between 15 nm and 190 nm. As expected, it was found that the PVME concentration decreases with increasing information depth. Secondly, a complex correlation between the PVME concentration at the surface and the film thickness was found. The PVME concentration increases with decreasing film thickness until a maximum at 30 nm. For thinner films, the PVME concentration decreases. These data agree with previous investigations obtained with specific heat spectroscopy. We thank BESSY II (HZB) for the allocation of beamtime at the HE-SGM beamline and for technical support. DFG (Project number 124846229) is acknowledged for financial support. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities (SNI2022) CY - Berlin, Germany DA - 05.09.2022 KW - X-ray photoelectron spectroscopy KW - Miscible polymer films KW - Depth profiling PY - 2022 AN - OPUS4-55654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Reed, B.P. A1 - Pollard, A. A1 - Clifford, C. A1 - Chemello, Giovanni T1 - XPS of GR2M N2 - The activities of ISO-G-Scope are presented. The influence of the sample preparation and the results of XPS/HAXPES measurements are discussed. T2 - Graphene Workshop @ ISO TC 229 Meeting CY - Teddington, UK DA - 16.11.2022 KW - Graphene related materials KW - X-ray photoelectron spectroscopy KW - Sample preparation KW - Hard X-ray photoelectron spectroscopy PY - 2022 AN - OPUS4-56434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan T1 - Characterization of functionalized graphene particles with comparative XPS/HAXPES investigations N2 - The different chmemistry of graphitic nanoplatelets between the outermost surface and the bulk of the samples was investigated with comparative XPS/HAXPES measurements. T2 - PHI User Meeting CY - Grenoble, France DA - 18.04.2023 KW - X-ray photoelectron spectroscopy KW - Hard-energy X-ray photoelectron spectroscopy KW - graphene related 2D materials PY - 2023 AN - OPUS4-57649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - Projektmeeting CY - Bremen, Germany DA - 18.04.2018 KW - Single cell ICP-MS KW - LA-ICP-MS with cellular resolution KW - Nanoparticles PY - 2018 AN - OPUS4-44851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - ACS Annual Meeting CY - New Orleans, LA, USA DA - 18.03.2018 KW - Single cell ICP-MS KW - LA-ICP-MS with cellular resolution KW - Nanoparticles PY - 2018 AN - OPUS4-44799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Wanka, Antje A1 - Kneipp, J. T1 - Method development for metal detection at cellular levels by ICP-MS N2 - An overview about different analytical approaches will be presented of how to detect metals in individual biological cells by use of ICP-MS. For this purpose, we are using different sample introduction systems for ICP-MS for detection, imaging and quantification of metals at cellular levels. By use of laser ablation, we have studied the up-take by and distribution of nanoparticles in single cells. Recently we have developed staining techniques to measure protein and DNA content of cells and identifying the cell status by immunoassays using metal-tagging of antibodies. New research based on cell arrays will be shortly discussed. Using pneumatic nebulization and microdroplet generation, we have also studied the up-take of nanoparticles and toxic metals as well as essential elements in single cells using different ICP-MS mass spectrometric concepts (sector field instrument, triple-quad instrument, time of flight (CyTOF) instrument). The different ICP-MS based methods will be compared concerning their analytical figures of merit and their strengths and weaknesses will be evaluated. T2 - 16th Czech-Slovak Spectroscopic Conference CY - Luhacovice, Czech Republic DA - 27.05.2018 KW - Single cell analysis KW - ICP-MS KW - Nanoparticles PY - 2018 AN - OPUS4-45161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Following fluorinated drugs by molecular absorption spectrometry – from cancer cells to body fluids N2 - Fluorine has been widely introduced into pharmaceutical drugs. Due to the high C-F bond strength, a single atom substitution with fluorine produces drastic desirable and tunable changes in the molecular properties. However, the clinical monitoring of these drugs is not straightforward. Organofluorine compounds are elusive for a non-targeted analysis; a significant problem in fluorine determination is the lack of suitable detection techniques. Standard atomic absorption and emission spectrometers cannot access fluorine, because their resonance lines lie in the VUV spectral range below 100 nm. In the case of conventional inductively coupled argon plasmas (ICP), the plasma energy is too low to generate a significant population of excited fluorine atoms. Recently, our group introduces high-resolution continuum source absorption spectrometry (HR-CS MAS) as a new way for the indirect monitoring of fluorinated compounds. Main benefits of HR-CS-MAS includes low limits of detection, complete analyte recovery, simple to no sample preparation, and short time analysis. T2 - 16th Annual Congress of International Drug Discovery Science and Technology 2018 CY - Cambridge, MA, USA DA - 16.08.2018 KW - Fluorine KW - Anti-cancer KW - Capecitabine KW - Fluorouracil KW - HR-CS-MAS PY - 2018 AN - OPUS4-45822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Development of a standard procedure for the irradiation of biomolecules N2 - The damage caused by ionizing radiation to DNA and proteins is the reason to treat cancer by radiation therapy. A better understanding of the molecular processes and quantification of the different damaging mechanisms is the prerequisite to develop more efficient therapies. Hereby the understanding of the processes involved in the damage to DNA are of key interest due to its central role in reproduction and mutation. For radiation with low linear energy transfer (LET), most of the damage is caused by the secondary particles produced by scattering of the ionizing radiation with water. Thereby a multitude of species are produced, whereby especially kinetic low energy electrons, prehydrated electrons, OH-radicals and ions are of importance. With higher LET the relative amount of the direct damaging effects increases. This is especially important considering the increased usage of high LET nucleons in radiation therapy. Therefore, the quantification of the contribution to DNA damage of direct and indirect effects and the different secondary species is of high interest due to the increase of radio biological efficiency when applying high LET radiation. Here we present an approach to investigate the relative contributions to DNA strand break yield for radiation of different LET within a single electron microscope in combination with electron scattering simulations. T2 - IRPA 2018 CY - Havanna, Cuba DA - 16.04.2018 KW - DNA KW - Radiation damage KW - Ionizing radiation KW - Linear energy transfer KW - IRPA KW - LET KW - Electrons KW - SEM KW - Cancer therapy KW - OH radicals KW - LEE KW - Geant4 PY - 2018 AN - OPUS4-44821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - DNA strand break yields by OH-radicals, low energy electrons and prehydrated electrons N2 - Universität Berlin Radiation damage to biomolecules such as DNA, is the reason to treat cancer via radiation therapy. The understanding of the molecular processes and the quantification of the underlying damaging mechanisms is necessary to develope more efficient irradiation protocols for cancer therapy. Thereby damage to DNA is of key interest due to its central role in reproduction and mutation. Due to the high amount of water in biological tissue, most of the damage is caused by the secondary particles which are produced by the interaction of ionizing radiation with water. Thereby a multitude of species are produced, e.g. kinetic low energy electrons, prehydrated electrons, OH-radicals and ions. The quantification of the contribution to DNA damage by the various species is of interest. Here we present an experimental approach to disentangle their relative DNA strand break yields. Plasmid DNA (pUC19 ) is irradiated in water with electrons under the presence of different scavengers. The presented preliminary results reveal the relative contributions of OH-radicals, low energy electrons and prehydrated electrons and their DNA single and double strand break yields. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - DNA KW - Radiation damage KW - Dosimetry KW - Low energy electrons KW - Hydroxyl radicals KW - Geant4 KW - Prehydrated electrons KW - Scavenger KW - Radiation damage to DNA KW - Plasmid DNA KW - Strand breaks KW - Double strand breaks KW - Single strand breaks PY - 2018 AN - OPUS4-44566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kastania, Eleni A1 - Sturm, Heinz A1 - Özcan Sandikcioglu, Özlem T1 - Spectro-Electrochemical Investigation of the Effects of Flavin Electron Transporters in Artificial and Bacterial Biofilms N2 - Bacterial biofilms have the capacity to develop and thrive in virtually all circumstances and surfaces, even in the most challenging environmental conditions. The pervasive and recalcitrant existence of biofilms renders them to be a significant safety risk and economical encumbrance in a wide array of industries and technologies, and therefore is a priority area of research. It is essential to develop an improved understanding of the mechanisms implicated during biofilm formation, such as in the case of the diffusion of bacterial-secreted extracellular electron transporters, which are purported to play an important role during biocorrosion by exoelectrogenic bacteria. Hence, a fundamental understanding of electron transfer mechanisms between bacteria and extracellular electron acceptors will contribute insight to our understanding of charge transport and chemistry at the biofilm – external insoluble electron acceptor interface. In the present work, Attenuated Total Reflection - Fourier transform-infrared (ATR-FTIR) spectroscopy has been coupled to electrochemical techniques for the nondestructive, in situ spectro-electrochemical monitoring of biofilms in real-time. Shewanella sp. have been selected for this investigation due to their adaptable exoelectrogenic respiratory capacities and their notable ability to reduce metals via several different mechanisms of extracellular electron transfer mechanisms, including self-secreted flavin shuttles. Gold-thin film model substrates have been used due to their inert nature and for their ability to permit precise manipulation of the substrate surface polarization. Additionally, hydrogels comprised of calcium cross-linked alginate have been used to mimic the architectural features of extracellular polymeric substances which are integral to a bacterial biofilm, to allow the study of electron-transporting flavin molecules in an artificial biofilm. The results will demonstrate patterns of diffusion, akin to how flavins would diffuse in a naturally occurring biofilm, and how polarization affects this process. Furthermore, insight will be gained on how the redox behavior of flavins can influence the development and evolution of a biofilm. This interdisciplinary approach should shed light on bacterial electron transfer mechanisms which could contribute towards emerging technologies which seek to better understand such mechanisms for novel antifouling strategies, renewable energies, and bioremediation. T2 - ECEE 2019 Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage CY - Scottish Events Campus (SEC), Glasgow, Scotland DA - 21.07.2019 KW - Biofilms KW - Raman Spectroscopy KW - Electrochemistry KW - Biocorrosion KW - Fourier Transform Infra Red Spectroscopy KW - Spectroelectrochemical Techniques KW - Surface Enhanced Raman Spectroscopy PY - 2019 UR - http://ma.ecsdl.org/content/MA2019-04/8/397.abstract AN - OPUS4-49766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nymark, P. A1 - Hongisto, V. A1 - Radnik, Jörg A1 - Unger, Wolfgang A1 - Kohonen, P. A1 - Haase, A. A1 - Jensen, K. A. A1 - Grafström, R. T1 - Grouping of representative nanomaterials is efficiently executed by combining high-throughput-generated biological data with physicochemical data N2 - Grouping of nanomaterials (NM) promises to serve effectively to reduce the extensive safety testing needs associated with regulatory risk assessment. Key challenges in this task are how to rapidly and cost-efficiently generate the needed data, and how to best combine structural material characteristics with biological effects data. Herein, we performed NM grouping from combining existing physiochemical data with high-throughput screening (HTS)-derived hazard assessment data generated in the human lung epithelial cell line BEAS-2B. Twenty-one NMs from the European Joint Research Centre´s Representative Nanomaterials Repository (diverse nanoforms of substances ZnO, SiO2 and TiO2) and five reference chemicals were analyzed by HTS assays for cytotoxicity/cell viability (CellTiterGlo, Dapi-staining), oxidative stress (8-OHdG), apoptosis (Caspase-3), and DNA damage repair (γH2AX). Additionally, physicochemical data relevant for grouping of NMs under REACH (ECHA, 2017 Appendix R.6-1) were collated for 15 of the NMs, including from EU-funded projects (NanoReg2, caLIBRAte) and the OECD Testing Programme of Nanomaterials. The diverse data types were scaled, normalized and integrated using a newly developed scoring pipeline inspired by the US-EPA Toxicological Prioritization Index (ToxPi). Results demonstrated that the in vitro-derived hazard data permitted substance-based grouping of the selected NMs, whereas integration of physicochemical data deepened the grouping of specific nanoforms within each substance group. Furthermore, a case study on 10 TiO2 NMs showed that hazard-based grouping allowed for read across of physicochemical data between 6 NMs acting as source nanoforms and 4 NMs acting as target nanoforms. The ToxPi tool and scoring pipeline permitted transparent visualization of the final grouping, while giving equal weight to different types of data/results related to structure and biology. Overall, this study aligns fully with the ECHA recommendations for grouping of NM (Appendix R.6-1), i.e. i) to aim at identification of criteria for grouping nanoforms (and non-nanoforms) within one substance, and ii) to provide additional information beyond physicochemical data to support read across between nanoforms. T2 - Eurotox 2019 CY - Helsinki, Finland DA - 08.09.2019 KW - Grouping KW - Nanomaterials KW - Regulatory risk assesment KW - High-throughput screening PY - 2019 AN - OPUS4-49439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Benettoni, P. A1 - Stryhanyuk, H. A1 - Wagner, S. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Tentschert, J. T1 - Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach Task2.5 N2 - The final results of Task 2.5 "Optimization of sample preparation for characterization of ENPs using TOF-SIMS under real-life conditions (a.) UfZ: polymer template; b.) BAM: pressing of pellets)" were presented. T2 - ACEnano General Meeting CY - Amsterdam, The Netherlands DA - 05.03.2020 KW - Nanoparticles KW - ToF-SIMS KW - Preparation PY - 2020 AN - OPUS4-50572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Importance of Radiation Damage to DNA-Protein Complexes N2 - The formation of DNA-protein complexes ocurrs during replication and repair within cells. They are assumed to modify the damage caused by ionization radiation during radaition therapy. Hereby the assumption is, that the underlying damaging channels in DNA and proteins are modified, especially when compared to single molecules. T2 - Scientific online presentations workshop CY - Online meeting DA - 03.12.2021 KW - DNA KW - Proteins KW - Radiation damage KW - Ionizing radiation KW - Hydroxyl radicals PY - 2021 AN - OPUS4-53894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Khanipour, Peyman T1 - Real time mass spectrometry - From Unravelling Electrochemical Reaction Mechanism to Trace Analysis of Impurities in Hydrogen Gas N2 - Climate change and related energy policies, exacerbated by unforeseen geopolitical developments, pose new challenges for gas analytics, such as the use of hydrogen, hydrogen-containing alternative gaseous fuels (NH3, etc.), the use of alternative methane-based energy gases (LNG, LPG, etc.) or decarbonisation via CCSU. In all topics, the quality, i.e. the actual chemical composition of the gases, naturally plays a decisive role. BAM is meeting this strategic importance with the further development of hydrogen analytics and is continuing to develop the methods used in order to support the German economy and research landscape with traceability, reference materials and analytical procedures as quickly as possible. Mass spectrometry plays an important role for trace analysis in hydrogen matrix. The presentation shows first experimental results from the application of PTR-TOF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry). T2 - 11th International GAS Analysis Symosium & Exhibition CY - Paris, France DA - 17.05.2022 KW - Gas Analysis KW - Hydrogen KW - Metrology KW - Mass Spectrometry KW - Trace Analysis PY - 2022 AN - OPUS4-56589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Characterization of Graphene using HAXPES N2 - Since its discovery, graphene has got growing attention in the industrial and application research due to its unique properties . However, graphene has not been yet implemented into the industrial market, in particularly due to the difficulty of properly characterizing this challenging material. As most of other nanomaterials, graphene’s properties are closely linked to its chemical and structural properties, such as number of layers, flake thickness, degree of functionalisation and C/O ratio. For the commercialization, suitable procedures for the measurement and characterization of the ultrathin flakes, of lateral dimensions in the range from µm to tens of µm, are essential.Surface chemical methods, especially XPS, have an outstanding role of providing chemical information on the composition. Thereby, one well-known problem for surface analytical methods is the influence of contamination on the composition as in the case of adventitious carbon. The differentiation between carbon originated from the contamination or from the graphene sample itself is often not obvious, which can lead to altered results in the determination of the composition. To overcome this problem, Hard Energy X-ray Photoelectron Spectroscopy (HAXPES) offers new possibilities due to its higher information depth. Therefore, XPS measurement obtained with Al Kα radiation (E = 1486. 6 eV) were compared with analyses performed with a Cr Kα (E = 5414. 8 eV) excitation on functionalized graphene samples. Differences are discussed in terms of potential carbon contamination, but also of oxygen on the composition of the samples. Measurements are performed on O-, N- and F-functionalized graphene. Different preparation procedures (powder, pellet, drop cast from liquid suspension) will be also discussed, correlation of the results with the flakes morphology as well as their validation with other independent methods are in progress. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Graphene KW - Functionalized graphene KW - Depth profiling PY - 2022 AN - OPUS4-56814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Panglisch, S. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efrain, R. A1 - Nir, O. A1 - Chaudhary, M A1 - Futterlieb, M. T1 - Detection, Quantification and Treatment of Per and Polyfluoroalkyl substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 AN - OPUS4-60328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrer, Christian T1 - Primer caps (primer, cap type) - clarification of assignment N2 - Diese Präsentation stellt die gegenwärtige Situation zur Einstufung von primer caps (Anzündhütchen) gemäß Richtlinie 2014/28/EU und UN Model Regulations Rev.23 (Volume I) dar. Spezifische Eigenschaften und Gefährdungen werden dargestellt und eine Abgrenzung zur Richtlinie 2013/29/EU aufgezeigt. T2 - Group of Experts on Pyrotechnic Articles - EU KOM CY - Brussels, Belgium DA - 18.06.2024 KW - Primer caps KW - Anzündhütchen KW - Munition KW - Explosivstoff KW - Pyrotechnik PY - 2024 AN - OPUS4-60317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Riedel, Jens A1 - Wander, Lukas T1 - Integrated and networked systems and processes – A perspective for digital transformation of our chemical and pharmaceutical production N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. At the same time, we need to move towards knowledge-based production that takes into account all essential equipment, process and control data from plants and laboratories and makes valuable expertise available and transferable. The potential of data from production together with its contextual information is often not yet consistently used today for a comprehensive understanding of production. By giving examples this paper outlines a possible more holistic approach to digitalisation and the use of machine-based methods in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - GDCh Science Forum 2021 - GDCh Wissenschaftsforum 2021 CY - Online meeting DA - 29.08.2021 KW - Process analytical technology KW - Online NMR spectroscopy KW - Process industry KW - Industry 4.0 KW - Digital transformation KW - Autonomous chemistry PY - 2021 AN - OPUS4-53171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubwoski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using pe frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS:: porous material, thermo plastic (melting point >100oC), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 104 cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits whith increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S whit a correlation coefficient r2 of 0.9987 and sensitivy of 3.4x104 cpsµg-1 for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - SI traceability KW - Measurement uncertainty PY - 2018 AN - OPUS4-44642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Vogl, Jochen A1 - Panne, Ulrich T1 - High-resolution optical isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Current activities on Department Analytical Chemistry, Reference Materials about optical isotopic spectrometry as a tool for aging studies of Li-ion batteries. T2 - Adlershofer Kolloquium - FB 1.6 CY - Online meeting DA - 18.05.2021 KW - High-resolution KW - Battery aging KW - Storage Technologies KW - Optical isotopic spectrometry KW - Lithium-ion batteries KW - Inorganic Reference Materials KW - Pouch cell KW - Anode KW - Cathode KW - Electrochemistry KW - Isotope PY - 2021 AN - OPUS4-53712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Mao-Dong, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of isotope ratios by molecular absorption spectrometry N2 - Boron and Magnesium present two and three stable isotopes respectevely. It is due to their relatively large mass difference (~ 10%) that isotope fractionation leads to considerable isotope amount ratio variations in the nature. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Traditionally, isotope ratio variations have been determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) for boron and Magnesium monofluoride (MgF) for magnesium in a graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) were evaluated. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements T2 - Analytik Jena Days CY - Idstein, Germany DA - 26.06.2019 KW - Isotope anaylsis KW - HR-CS-MAS KW - Boron KW - Magnesium KW - Optical spectroscopy KW - Diatomic molecule PY - 2019 AN - OPUS4-49877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - An alternative approach of using PE frits for the quantification of sulfur in copper metals and its alloys by isotope dilution LA-ICP-MS N2 - This is the first time that PE frits were used to quantify sulfur in copper and its alloys by isotope dilution combined with LA-ICP-MS: an alternative approach for sample preparation. The following properties of the PE frit meet the requirements for isotope dilution LA-ICPMS: porous material, thermo plastic (melting point >100°C), chemical resistance (nitric acid >70%) and high adsorption efficiency. The breakthrough, however, as a support material, especially when comparing the PE frit with other materials such gelatin or sodium silicate is the low blank, which is only two times of the gas flow blank (2.3-4.0 x 10⁴ cps). Additionally, the porosity of the frit was considered, as it directly affects the adsorption efficiency for the sample solution, which is present in the cavities of the frit. Adsorption efficiency was studied by depositing sulfur standards with varying sulfur amounts (0, 2, 5, 10, 20, 40 and 80 µg S) on the frits. The remaining sulfur which was not absorbed by the frit was rinsed off and was measured by ICP-MS. This indirect method shows that more than 99.5 % of the loaded sulfur was absorbed by the frit. Such high absorption efficiency is completely sufficient for a support material to be used in LA-ICP-IDMS. The so prepared frits with increasing sulfur amount were measured by LA-ICP-MS showing a good linearity between 0 µg S and 40 µg S with a correlation coefficient r2 of 0.9987 and sensitivity of 3.4x10⁴ cps µgˉ¹ for 32S. Three copper reference materials produced by BAM were selected to develop and validate the LA-ICP-IDMS procedure. The IDMS technique was applied to these samples as follows: the samples were spiked, dissolved, digested and then the digest was adsorbed on the frits. T2 - Winter Conference on Plasma Spectrochemistry 2018 CY - Amelia Islands, FL, USA DA - 08.01.2018 KW - Laser ablation KW - Isotope dilution mass spectrometry KW - Sulfur quantification PY - 2018 AN - OPUS4-43996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Tatzel, Michael A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis of magnesium by optical spectrometry N2 - Magnesium (Mg) is a major element in a range of silicate and carbonate minerals, the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg with natural abundances of 79 %, 10 %, and 11 %, respectively. It is due to their relatively large mass difference (~8% between 24Mg and 26Mg) that isotope fractionation leads to slight variations of isotope amount ratios n(26Mg)/n(24Mg) in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods and isotope ratios are expressed as deviation from an internationally agreed upon material, i.e. the zero-point of the δ-value scale. Drawbacks of this method include the high costs for instruments and their operation, experienced operators and elaborate, time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high- resolution continuum source graphite furnace molecular absorption spectrometry (HR- CS-GFMAS) and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope amount ratios, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied. In the case of HR-CS-GFMAS, the absorption spectrum was recorded for MgF for the electronic transitions X2Σ → A2Πi and X 2Σ → B2Σ+ around wavelengths 358 nm and 268 nm, respectively. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A2Πi → X2Σ as well as the MgO molecule for the electronic transition A1Π+ → X1Σ around 500 nm. The MgF and MgO spectra are described by the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO (F is monoisotopic, and the isotope composition of O is assumed as constant). By HR-CS-GFMAS the analysis of Mg was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Isotope amount ratios in rock samples with and without matrix separation were analyzed. Calculated δ-values were accurate and obtained with precisions ranging between 0.2 ‰ and 0.5 ‰ (1 SD, n = 10). On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of in-situ analysis. Main advantages, limitations, and scopes of both optical techniques are going to be discussed and compared to MC-ICP-MS. T2 - Seminars Earth Surface Geochemistry- Deutsches GeoForschungsZentrum GFZ CY - Potsdam, Germany DA - 06.08.2019 KW - Isotope analysis KW - Magnesium KW - HR-CS-MAS KW - LIBS KW - Diatomic KW - Optical spectroscopy PY - 2019 AN - OPUS4-49904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -