TY - CONF A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Determination of plant essential nutrients in soils using DP-LIBS N2 - In respect of an efficient cultivation of agricultural cropland, a site-specific fertility management is necessary. Therefore, affordable and extensive mapping methods are needed. The research projects I4S (intelligence for soil) has the goal to develop a system for this purpose. I4S is one of ten interdisciplinary research project associations of the innovation programme called BonaRes, which is funded by the German Federal Ministry of Education and Research (BMBF). The system includes a sensor platform, which contains different sensors, like XRF, VIS-NIR, Gamma and LIBS. The main task of LIBS measurements in this project is the real-time determination of the elemental contents of major and minor nutrients in soils, like calcium, magnesium, potassium. LIBS (laser-induced breakdown spectroscopy) is known as a fast and simultaneous multi-element analysis with little or no sample preparation. The main task of LIBS measurements in this project is the real-time determination of the elemental contents of nutrients in soils, like calcium, magnesium, potassium. For this purpose, a special setup has been designed. The sample uptake operates with the help of a rotatable sample plate which circulates with different velocities to simulate the application on the field. To provide a higher intensity and a better reproducibility of the obtained signal, a double-pulse Nd:YAG laser (1064 nm)was used. In order to minimize dust formation from the soil during the operation of the laser, a dust removal by suction has been integrated. When using relative methods such as LIBS, a suitable calibration curve is needed for absolute quantification. The complex matrix of soils, as well as the influence of moisture and grain size in soils makes the absolute quantification by LIBS challenging. To overcome these influences, chemometric methods were used. With the principal component analysis (PCA) a classification of soils into different soil types was performed and a calibration curve based on partial least squares regression (PLSR) was generated. With this calibration model’s elemental distribution maps for different German agricultural fields were created. T2 - ESAS CANSAS CY - Berlin, Germany DA - 20.03.2018 KW - LIBS KW - Soil KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißsler, Daniel A1 - Behnke, Thomas A1 - Schneider, Ralf T1 - Simple and versatile methods for quantifying functional groups, ligands, and biomolecules on nanomaterials N2 - Many applications of nanomaterials in the life sciences require the controlled functionalization of these materials with ligands like polyethylene glycol (PEG) and/or biomolecules such as peptides, proteins, and DNA. This enables to tune their hydrophilicity and biocompatibility, minimize unspecific interactions, improve biofunction-nalization efficiencies, and enhance blood circulation times and is the ultimate prerequisite for their use as reporters in assays or the design of targeted optial probes for bioimaging. At the core of these functionalization strategies are reliable and validated methods for surface group and ligand quantification that can be preferably performed with routine laboratory instrumentation, require only small amounts of substances, and are suitable for many different types of nanomaterials. We present here versatile and simple concepts for the quantification of common functional groups, ligands, and biomolecules on different types of organic and inorganic nano-materials, using different types of optical reporters and method validation with the aid of multimodal reporters and mass balances. T2 - RSC Symposium on Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - PEG ligands KW - Surface group analysis KW - Upconverting nanoparticles KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescence decay kinetics PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Dohányosová, P. A1 - Müller, P. A1 - López-Vidal, S. T1 - Controlled electrospray deposition of nanoparticles for improved analysis by electron microscopy N2 - Of many experimental techniques for measuring particle sizes and size distributions, electron microscopy (EM) is considered as the gold standard, especially in the nano range (1–100 nm). Furthermore, high-resolution X-ray spectroscopy (EDX) in conjunction with EM can be applied to individual NPs. Preparation of an EM sample for generic particulate materials is a difficult task. Usually, the particles in a suspension are deposited on a support. However, this procedure includes the drying of larger solvent amounts on the substrate itself, and this can affect the spatial distribution of the deposited particles. One possibility to overcome this is the use of an electrospray system, where the suspension of particles is sprayed onto the substrate in charged droplets that are so small that they either dry off on the substrate immediately without affecting the position of particles, or even already during their flight time to the substrate. Additionally, the charging of particles minimizes agglomeration and aggregation, maximizing the collection of the EM grids. The prototype of an electrospray deposition system from RAMEM under its trademark IONER (www.ioner.eu) was tested. Electrospray is theoretically described since a long time, but no dedicated commercial instruments are available for the preparation of TEM grids yet, apart from electrostatic deposition of aerosols. Several materials have been sprayed onto TEM grids and the resulting particle distributions were evaluated. Operation parameters such as the sample flow-rate, capillary – substrate distance, electric field strength and sampling period length have been optimized. It was found that the particles deposited by electrospray generally show a much more homogeneous spatial distribution on the substrate and a substantial increase of the number of single particles (suited to automatic analysis). The project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 604347. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Electrospray KW - Electron microscopy PY - 2018 AN - OPUS4-44994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bosse, H. T1 - Improved traceability chain of nanoparticle size measurements – the new EMPIR project nPSize N2 - Coming as response to the needs expressed by The European Commission mandating CEN, CENELEC and ETSI to develop European standards for methods that can characterize reliably manufactured nanomaterials, a new European metrology research project ‘nPSize - Improved traceability chain of nanoparticle size measurements’ has received funding for the next three years. The project will develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility for nanoparticle size measurements to support standardization. nPSize has selected only those nanoparticle sizing techniques which are able to provide traceable results: electron microscopy (SEM, TSEM and TEM), AFM and SAXS. Metrologists from national metrological or designated institutes (PTB, LNE, LGC, VSL, SMD and BAM) will work together with scientists with know-how in development of new nano reference nanoparticles (CEA, University of Turin, LGC, BAM) and with experts in advanced data processing, e.g. by machine learning (POLLEN). With the support of DIN, the project outcomes will be channelized to standardization bodies such as ISO/TC 229 ‘Nanotechnologies’/JWG 2 ‘Nanoparticle Measurement and Characterization’ (SEM, TSEM and TEM), CEN/TC 352 ‘Nanotechnologies’ (SEM, TSEM and TEM), ISO/TC 201/SC 9 (AFM), ISO/TC 24/SC 4 (SAXS). Three technical work packages will ensure input for impact to standardization community, nanoparticle manufacturers, instrument manufacturers, and (accredited) service laboratories: - WP1 Performance and traceability of characterization methods - WP2 Reference materials - Preparation and Characterization - WP3 Modelling and development of measurement procedures Well-defined non-spherical nanoparticles shapes such as cubes, platelets, bipyramids, rods/acicular will be developed, with mono- and polydisperse size distribution, as well as with accurate particle number concentration (by SAXS and isotopically enrichment for ICP-MS). Physical modelling of the signal for TSEM, SEM, 3D-AFM and SAXS will be used to feed machine learning modeling from a-priori measurement data. Further, data fusion will be developed for hybrid sizing techniques: SEM with TSEM/TEM, SEM/TSEM with AFM, SEM/TSEM with SAXS with the final aim of improving the true shape and size of non-spherical nanoparticles by a better estimation of the measurement uncertainties. In the second half-time of the project dedicated workshops (focused on method improvement and reference materials development) will be organized to disseminate the gained knowledge to end-users. Further, a data library with relevant tagged measurement data is planned to be organized and made publicly available. Inter-laboratory comparisons based on the newly developed multi-modal nano reference materials will be organized preferably within VAMAS/TWA 34 ‘Nanoparticle populations’. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Size KW - Shape KW - Traceable size PY - 2018 AN - OPUS4-44995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saleh, Maysoon I. A1 - Kembuan, C. A1 - Rühle, Bastian A1 - Graf, C. A1 - Resch-Genger, Ute T1 - Synthesis and systematic characterization of core-muti-shell NaYF4:Er3+, Yb3+@SiO2@Au nanoparticles for the enhancement of fluorescence emission N2 - The aim of this work is to investigate the Synthesis of core-shell upconverting nanoparticles (UCNP). The UCNP are coated with a Gold Shell to plasmonically enhance the fluorescence emision. The distance between the UCNP core and the plasmonic structure is tuned by the aid of a silica at different Shell thicknesses. T2 - Work shop on Refer ence Nanomaterials jointly organized by BAM and PTB CY - Berlin, Germany DA - 14.05.2018 KW - Upconversion nanoparticles KW - Silica coating KW - Plasmonic enhancement PY - 2018 AN - OPUS4-45067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Joschko, M. A1 - Willms, M. A1 - Barkusky, D. A1 - Franko, U. A1 - Beblek, A. A1 - Fritsch, G. A1 - Illerhaus, Bernhard T1 - Relationship between soil structure and carbon dynamics in agricultural soils : potential for a farmer`s tool ? N2 - Soil structure, the spatial arrangement of soil elements, integrates a variety of drivers in agricultural soil (parent material, tillage, crop rotation, organic fertilizer, below ground biodiversity). It is related to almost all soil functions. Relationships between soil structure and the carbon sequestration potential of soil are known from the comparison of different land use systems (grassland vs. tilled soils ) and are expected to be a general phenomenon. Therefore , we expect soil structure assessed by modern non - destructive methods to be a valuable tool for the optimization of soil organic matter management in agricultural soils T2 - Soil organic matter management in agriculture – International Symposium CY - Brunswick, Germany DA - 29.05.2018 KW - Computed tomography KW - Carbon dynamics KW - Soil PY - 2018 AN - OPUS4-45068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Merk, V. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Studying nanoparticle-cell interaction by LA ICP-MS N2 - The interaction of nanoparticles (NPs) with cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the NPs determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an established quantitative multi-elemental analysis and mapping technique. In recent years, it was shown that LA-ICP-MS can provide quantitative as well as distribution information of NPs in cell samples. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. Additionally, the local distribution of naturally occurring elements in cells like P was measured to indicate cell morphology. The cells were incubated with different types of NPs under varying experimental conditions. For LA analysis, the cells were fixed and dried. Our findings show, that LA-ICP-MS is suitable for the localisation of nanoparticle aggregates within cellular compartments. The studied NPs accumulate in the perinuclear region in the course of intracellular processing, but do not enter the cell nucleus. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into NP uptake, intracellular distribution and cell-to-cell variation dependent on experimental parameters. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Imaging KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Rühlmann, Madlen A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Comparison between uni- and multivariate data Analysis for the determination of nutrients in soils using XRF N2 - As part of the BonaRes research initiative funded by the German Federal Ministry of Education and Research (BMBF), strategies are being developed to use soil as a sustainable resource in the bioeconomy. The interdisciplinary subproject I4S - “Intelligence for soil” - is responsible for the development of an integrated system for site-specific management of soil fertility. For this purpose, a platform is constructed and various sensors are installed. Real-time data will be summarized in models and decision-making algorithms will be used to control fertilization and accordingly improve soil functions. This would allow investigations in close meshed dynamic grid and fast analysis of large areas to generate higher yields. This is important given that the distribution of minor and trace elements varies widely. Aim of the Federal Institute for Materials Research and Testing (BAM) in the frame of I4S is the characterization of an X-ray fluorescence (XRF) based sensor for robust online-analysis of arable land. The non-destructive and contactless XRF is suitable for rapid in-situ analysis on the field due to minimal sample preparation and simultaneous multi-element analysis. Soils are already considered as a complex matrix due to their wide range of elements in different contents, especially light elements with low atomic numbers (Z<19). Problems by measuring soil samples also arise from heterogeneity of the sample and matrix effects. Large grain size distribution causes strong inhomogeneity and matrix effects occur through physical properties related to high concentration of main components. Matrix-specific calibration strategies for determination of total major and minor plant essential nutrients are particularly important regarding these difficulties. For accurate calibration, data treatment and evaluation must also be considered. Univariate and multivariate data analysis were compared regarding their analytical figures of merit. Using principal component analysis (PCA) it was possible to classify German soils in different groups as sand, clay and silt. Calibration models were obtained by partial least squares regression (PLSR) and the content of macro- and micronutrients in German soils was predicted. Elemental distribution maps for different German arable lands were created and the results compared to reference measurements. The correlation between predicted values and reference values were in good agreement for most major and minor nutrients. T2 - ESAS/CANAS CY - Berlin, Germany DA - 20.03.2018 KW - Soil KW - XRF KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühlmann, Madlen A1 - Büchele, Dominique A1 - Ostermann, Markus A1 - Schmid, Thomas T1 - Determination of plant essential nutrients in soils using DP-LIBS N2 - In respect of an efficient cultivation of agricultural cropland, a site-specific fertility management is necessary. Therefore, affordable and extensive mapping methods are needed. For this purpose, the research project I4S (intelligence for soil) has the goal to develop an integrated system. This system includes a sensor platform, which contains different sensors, like XRF, VIS-NIR, Gamma and LIBS. LIBS (laser-induced breakdown spectroscopy) is known as a fast and simultaneous multi-element analysis with little or no sample preparation. The main task of LIBS measurements in this project is the real time determination of the elemental contents of nutrients in soils, like calcium, magnesium, potassium. For this purpose, a special setup has been designed. The sample uptake operates with the help of a rotatable sample plate which circulates with different velocities to simulate the application on the field. To provide a higher intensity and a better reproducibility of the obtained signal, a double-pulse Nd:YAG laser (1064 nm) was used. In order to minimize dust formation from the soil during the operation of the laser, a dust removal by suction has been integrated.[1] When using relative methods such as LIBS, a suitable calibration curve is needed for absolute quantification. The complex matrix of soils, as well as the influence of moisture and grain size in soils makes the absolute quantification by LIBS challenging. To overcome these influences, chemometric methods were used. With the principal component analysis (PCA) a classification of soils into different soil types was performed and a calibration curve based on partial least squares regression (PLSR) was generated. With this calibration model’s elemental distribution maps for different German agricultural fields were created. T2 - Bonares Conference CY - Berlin, Germany DA - 26.02.2018 KW - LIBS KW - Soil KW - PCA KW - PLSR PY - 2018 AN - OPUS4-45011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Feuchtemessverfahren N2 - Discussion and presentation of different methods for moisture measurements in civil Engineering. T2 - Vorlesung Diagnostik und Ertüchtigung von Bauwerken CY - TU Berlin, Germany DA - 16.05.2018 KW - Material moisture KW - Moisture measurements PY - 2018 AN - OPUS4-44944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses JF - Angewandte Chemie International Edition N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Álvarez, L. A1 - González-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags JF - Microchimica Acta N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS).Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Metal nanoclusters KW - Fluorescence KW - Protein imaging KW - Thin tissue sections KW - Immunohistochemistry KW - Bioconjugation KW - Carbodiimide crosslinking KW - Laser ablation KW - Mass spectrometry PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 VL - 185 IS - 1 SP - 1 EP - 9 PB - Springer AN - OPUS4-44022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass JF - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy N2 - A non-invasivemethod has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings “Zwei Frauen am Tisch” (1920–22), “Bäume” (1946) (both by Heinrich Campendonk), “Lofoten” (1933) (Edith Campendonk-van Leckwyck) and “Ohne Titel” (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra fromthe paintingswith spectra frompure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts.We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. KW - DRIFTS KW - Painting KW - Non-invasive KW - Pigment PY - 2018 DO - https://doi.org/10.1016/j.saa.2018.01.057 SN - 1873-3557 VL - 195 SP - 103 EP - 112 PB - Elsevier B.V. AN - OPUS4-44023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - 2018 Winter Conference on Plasma Spectrochemistry CY - Amelia Island, FL, USA DA - 08.01.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert T1 - Heritage Lecture N2 - After finishing my diploma thesis in plasma physics in 1981, I dreamt of a future in a research lab to develop novel fusion reactors for energy production or to study universal plasmas and their emission in the cosmos. This dream never became real, however I found my first job in a team to build up a new museum dedicated to “Energy”, and this first part of my career was already finished after a year, because the funding was not extended. So, I found immediately a new job as a young scientist in the institute for analytical sciences (originally ISAS: Institute for Plasmachemistry and Applied Spectroscopy) in 1982 to develop novel plasma ion sources for inorganic mass spectrometry. The first source of interest was based on a glow discharge for direct analysis of conducting solids (technically supported by Finnigan MAT, Bremen). Here I adopted the design of the Grimm type discharge for the first time, which was well known in optical emission spectroscopy, and coupled it to a quadrupole mass analyzer. The advantage of this design was that flat craters are produced by sputtering which made this source very powerful for in-depth analysis of technical layers. This then became the topic of my PhD, which was not originally planned, and I had to learn a lot about surface analysis. However, since the first project was too successful we established a small team (in cooperation with Jose Broekaert - an expert in ICP-OES) which started with the development of our own inductively coupled plasma ion source in 1986 coupled to a quadrupole and in 1989 to a sector field mass spectrometer (funded by the Minister of Science and Technology; again in cooperation with Finnigan MAT). The latter device was launched to the market in 1993 as the Element 1. The second decade of my career was still related to instrumental development but mainly of glow discharge sources. In an EU funded project first an automated glow discharge sector field instrument was developed where the Grimm type geometry was combined with a fast flow concept (in cooperation with Volker Hoffmann at IFW in Dresden). This was done in cooperation with VG (which became later a part of Thermo Fisher Scientific together with Finnigan MAT), so that it is not surprising that this concept for the Element GD. This project was later continued in the third phase of my career, again funded by the EU and in cooperation with the group of Alfredo Sanz-Medel (Rosario Pereiro and Jorge Pisonero), to develop a fast flow, but now rf-powered GD ion source in combination with a time-of-flight mass spectrometer, which was later launched to the market commercially by Horiba Jobin Yvon (France) for in-depth profiling of thin layers even of non-conducting materials. In the first decade of my career I started to study already “analytical chemistry” from the scratch because the instruments developed have been applied now for direct analysis of solid materials, technical layers and environmental samples. In case of environmental applications our ICP-MS (the quadrupole and the sector field instrument) was coupled with separation techniques, so that this period of instrumental development was dominated in the second decade by development of high efficiency sample introduction systems in combination with speciation studies of Pt group elements, arsenic, selenium and phosphorus (in DNA and phosphorylated proteins), Ni and Cr. Additionally, we continued with the analysis of solid ceramic materials (Al2O3, SiC, SiN) and ambient air-born particles. At the end of the second decade we complemented our instrumental pool by a collision and reaction cell instrument in cooperation with Micromass and used this instrument for speciation studies of peptides and proteins and demonstrated that by ICP-HEX-MS quantitative proteomics is feasible. Therefore, we more and more focused in the following years on metalloproteins and published a famous paper on “Metallobiomolecules: The basis of life, the challenge of atomic spectroscopy” (together with Luc Moens and Ryszard Lobinski). For detection of metalloproteins we applied typical workflows of biochemistry and proteomics, for which I had to extend my knowledge about biochemistry and proteomics. As a new analytical tool, we used a homemade laser ablation cell for sample introduction of metalloproteins after their separation by gel electrophoresis and extended this work by applying metal-tagging of antibodies for Western blot assays. For this purpose, proteins were separated in SDS-PAGE and electroblotted onto membranes. Specific detection of proteins even not containing any metal could be performed by laser ablation ICP-MS using the metal tagged antibodies for indirect detection. This research was interrupted in 2009 by a movement from ISAS (where atomic spectroscopy was declining) to BAM (the Federal Institute for Materials Research and Testing, Berlin) where this research direction was fostered. The experience we achieved at ISAS in the previously mentioned projects were now used here at BAM in the fourth decade for materials research and the development of a quantitative elemental microscope with cellular resolution. So, at the end of my career I am trying to apply all my knowledge and expertise to develop analytical methods and to apply multimodal spectroscopies to decipher the construction code of the cellular machinery, which is the most precise and complex machinery I have ever seen. If we were able to understand how this machinery works, we can better diagnose and treat a malfunction in case of the development of a disease. Finally, I can conclude that lifelong learning starts before school but does not end at the end of this lecture. It looks like this heritage lecture will be focused on my career only, but this is not the case because some highlights of my career will be used to illustrate a few universal principles: how to have fun, how to find friends and how this all leads to an increase of joy and joy is the basis of new ideas (which must not always be related to your profession) and novel ideas are essential for a successful and satisfying career. So, this heritage lecture wants to answer the most important question of a life which was dedicated to plasma spectrochemistry: 1) Is it possible - at all - to have fun in this research direction? 2) Can we learn already today what we need tomorrow? 3) How can we still realize our scientific dreams of cutting edge research in times of cutting budgets? Which automatically leads to the next question: 4) Is necessity the mother of invention? All questions will be answered! Controversial discussions (for angry or disappointed colleagues) will be stimulated and my visions of future research (for students and postdocs) and instrumental developments (for manufacturer) will be presented. Finally, conclusions will be drawn by the auditorium (everybody) and thanks will be given to Ramon Barnes (by me) already in advance! T2 - BAM-Doktorandenseminar CY - Berlin, Germany DA - 07.02.2018 KW - History of the research work of Norbert Jakubowski KW - Glow Discharge Mass Spectrometry KW - Inductively Coupled Plasma Mass Spectrometry KW - Laser Ablation PY - 2018 AN - OPUS4-44462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Drewitz, T. A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, R. T1 - Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains JF - Toxins N2 - Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. KW - Mycotoxin KW - Zearalenone KW - Conjugate KW - Biosynthesis KW - Fusarium KW - Aspergillus KW - Rhizopus PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444246 DO - https://doi.org/10.3390/toxins10030104 SN - 2072-6651 VL - 10 IS - 3 SP - Article 104, 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-44424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Specimen temperature during CGHE and influence on hydrogen determination N2 - Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. T2 - Intermediate Meeting of IIW Subcommission II-E CY - Genoa, Italy DA - 05.03.2018 KW - Hydrogen KW - Welding KW - Carrier gas hot extraction KW - Temperature KW - Measurement PY - 2018 AN - OPUS4-44427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility JF - European Journal of Mass Spectrometry N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 DO - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Negative nucleotide ions as sensitive probes for energy specificity in collision‐induced fragmentation in mass spectrometry JF - Rapid Communications in Mass Spectrometry N2 - Rationale: The most commonly used fragmentation methods in tandem mass spectrometry (MS/MS) are collision‐induced dissociation (CID) and higher energy collisional dissociation (HCD). While in CID the preselected ions in the trap are resonantly (and m/z exclusively) excited, in HCD the entire m/z range experiences the dissociative acceleration. The different excitation is reflected in different fragment distributions. Methods: As a test‐bed for particularly pronounced fragmentation specificity, here MS/MS experiments on several 4‐mer oligonucleotides were conducted employing both collision methods and the results were thoroughly compared. Oligonucleotides are shown to be sensitive probes to subtle changes, especially in the negative ion mode. A detailed analysis of these differences reveals insight into the dissociation mechanics. Results: Thedifferencesarerepresentedinheat‐maps,whichallowforadirectvisualinspection oflargeamountsofdata.Inthesefalsecolourrepresentationsthe,sometimessubtle,changesinthe individual dissociation product distributions become distinct. Another advantage of these graphic plots can be found in the formation of systematic patterns. These patterns reflect trends in dissociation specificity which allow for the formulation of general rules in fragmentation behavior. Conclusions: Instruments equipped with two different excitation schemes for MS/MS are today widely available. Nonetheless, direct comparisons between the individual results are scarcely made. Such comparative studies bear a powerful analytical potential to elucidate fragmentation reaction mechanism. KW - DNA KW - Tandem MS KW - HCD KW - CID PY - 2018 DO - https://doi.org/10.1002/rcm.8062 SN - 0951-4198 SN - 1097-0231 VL - 32 IS - 7 SP - 597 EP - 603 PB - Wiley & Sons, Ltd. AN - OPUS4-44430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - López-Serrano Oliver, A. A1 - Peddinghaus, A. A1 - Wittke, D. A1 - Haase, A. A1 - Luch, A. A1 - Grützkau, A. A1 - Baumgart, S. T1 - Quantification of silver nanoparticles at single cell level by mass cytometry N2 - Silver nanoparticles (AgNPs), have a high scientific and commercial impact due to their important antibacterial properties. However, there are serious concerns about their toxicological adverse effects as a consequence of their broad range of applications. Particularly, the impact of AgNPs on cells is not very well understood yet and there is a current demand to develop analytical methodologies providing information about the interaction and distribution of AgNPs at a single cell level. In this research, mass cytometry was used to introduce a new quantitative approach to study the uptake of AgNPs by individual THP-1 macrophages as a cell model system. Here, we show that this methodology provides not only multi-variate phenotypic information of individual cells but enables the quantitative analysis of AgNPs associated to cells in a single measurement by performing an external calibration using AgNPs suspension. Using differentiated THP-1 cells, we monitored and quantified the uptake of 50 nm AgNPs in a time and dose-dependent manner by mass cytometry. 7 to 120 AgNPs per cell (2 to 89 fg Ag/cell) were determined after exposure of differentiated THP-1 cells to low AgNPs concentrations of 0.1 and 1.0 mg L-1, at time points of 4 and 24 h. The results were validated by mass cytometric analysis of digested cells working as a conventional inductively coupled plasma mass spectrometry, ICP-MS. This study demonstrates the power of single cell analysis by mass cytometry even for low doses experiments as a new analytical tool for hitherto unaddressed questions in nanotoxicology. T2 - 1st German Mass Cytometry User Forum CY - Berlin, Germany DA - 01.02.2018 KW - Silver nanoparticles KW - Single cell KW - Mass cytometry PY - 2018 AN - OPUS4-44408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - López-Serrano Oliver, Ana A1 - Haase, A. A1 - Peddinghaus, A. A1 - Wittke, D. A1 - Luch, A. A1 - Grützkau, A. A1 - Baumgart, S. T1 - Quantification of silver nanoparticles at single cell level by mass cytometry N2 - Silver nanoparticles (AgNPs), have a high scientific and commercial impact due to their important antibacterial properties. However, there are serious concerns about their toxicological adverse effects as a consequence of their broad range of applications. Particularly, the impact of AgNPs on cells is not very well understood yet and there is a current demand to develop analytical methodologies providing information about the interaction and distribution of AgNPs at a single cell level. In this research, mass cytometry was used to introduce a new quantitative approach to study the uptake of AgNPs by individual THP-1 macrophages as a cell model system. Here, we show that this methodology provides not only multi-variate phenotypic information of individual cells but enables the quantitative analysis of AgNPs associated to cells in a single measurement by performing an external calibration using AgNPs suspension. Using differentiated THP-1 cells, we monitored and quantified the uptake of 50 nm AgNPs in a time and dose-dependent manner by mass cytometry. 7 to 120 AgNPs per cell (2 to 89 fg Ag/cell) were determined after exposure of differentiated THP-1 cells to low AgNPs concentrations of 0.1 and 1.0 mg L-1, at time points of 4 and 24 h. The results were validated by mass cytometric analysis of digested cells working as a conventional inductively coupled plasma mass spectrometry, ICP-MS. This study demonstrates the power of single cell analysis by mass cytometry even for low doses experiments as a new analytical tool for hitherto unaddressed questions in nanotoxicology. T2 - BAM-BfR Seminar CY - Berlin, Germany DA - 15.02.2018 KW - Silver nanoparticles KW - Single cell KW - Mass cytometry PY - 2018 AN - OPUS4-44410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas A1 - Madkour, Sherif A1 - Szymoniak, Paulina T1 - Unraveling the dynamics of thin films of a miscible PVME/PS blend N2 - Dielectric spectroscopy (BDS) was employed to investigate the dynamics of thin films (7 – 200 nm) of a Poly (vinyl methyl ether) (PVME) / Polystyrene (PS) blend (50:50 wt%). For the BDS measurements Nano-Structured Capacitors (NSC) were employed, where films have a free surface. This method was applied for film thicknesses up to 36 nm. Thicker films were prepared between Crossed Electrodes Capacitors (CEC). The spectra of the films showed multiple processes. The first process was assigned to the -relaxation of a bulk-like layer. For films measured by NSC, its rates were higher compared to that of the bulk blend. This behavior was related to a PVME-rich free-surface layer. A second process was observed for films measured by CEC (process X) and the 36 nm film measured by NSC (process X2). This process was assigned to fluctuations of PVME constraint by PS. Its activation energy was found to be thickness dependent, due to the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature-dependence was observed for all films measured by NSC (process X1). It resembled the molecular fluctuations in an adsorbed layer found for films of pure PVME. T2 - Anual Meeting of the American Physical Society CY - Los Angeles, CA, USA DA - 05.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Örnek, C. A1 - Léonard, Fabien A1 - McDonald, S. A1 - Prajapati, A A1 - Withers, P. J. A1 - Engelberg, D. T1 - Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires JF - npj Materials Degradation N2 - Corrosion rates of strained grade UNS S32202 (2202) and UNS S32205 (2205) duplex stainless steel wires have been measured, in situ, using time-lapse X-ray computed tomography. Exposures to chloride-containing (MgCl2) atmospheric environments at 50 °C (12–15 M Cl− and pH ~5) with different mechanical elastic and elastic/plastic loads were carried out over a period of 21 months. The corrosion rates for grade 2202 increased over time, showing selective dissolution with shallow corrosion sites, coalescing along the surface of the wire. Corrosion rates of grade 2205 decreased over time, showing both selective and pitting corrosion with more localised attack, growing preferentially in depth. The nucleation of stress corrosion cracking was observed in both wires. KW - X-ray computed tomography KW - Time-lapse X-ray computed tomography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444153 UR - https://www.nature.com/articles/s41529-018-0030-9 DO - https://doi.org/10.1038/s41529-018-0030-9 SN - 2397-2106 VL - 2 SP - Article 10, 1 EP - 15 PB - Nature CY - London AN - OPUS4-44415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization JF - CrystEngComm N2 - A series of Ca-based coordination polymers were prepared mechanochemically by milling Ca(OH)2 with phthalic acid (H2oBDC), isophthalic acid (H2mBDC), and terephthalic acid (H2pBDC). The hydrated compounds [Ca(oBDC)(H2O)], [Ca(mBDC)(H2O)3.4], and [Ca(pBDC)(H2O)3] were prepared for the first time via mechanochemical routes. The refined structures were validated by extended X-ray absorption data. The new dehydrated compound [Ca(oBDC)] (1-H2O), obtained after the thermal post-treatment of 1 in a reversible phase transition process, was determined ab initio based on the powder X-ray diffraction (PXRD) data. The materials were thoroughly characterized using elemental analysis, thermal analysis, and spectroscopic methods: magic-angle spinning NMR and attenuated total reflection-infrared spectroscopy. The specific surface areas and sorption properties of the hydrated and dehydrated samples were determined using the isotherms of gas sorption and dynamic vapor sorption measurements. KW - Mechanochemistry KW - XRD PY - 2018 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce01906h DO - https://doi.org/10.1039/C7CE01906H VL - 20 SP - 946 EP - 961 PB - Royal Society of Chemistry AN - OPUS4-44440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschat, Ralf A1 - Hassler, J. A1 - Richter, Silke A1 - Kleve, M. A1 - Dette, A. T1 - Multielement trace analysis of pure graphite powders using optical emission spectrometry coupled to a magnetically stabilized DC arc supplied with halogenating gases as chemical modifiers – a rapid and robust methodology JF - Journal of analytical atomic spectrometry : JAAS N2 - A magnetically stabilized DC arc device, designed for operation with OES spectrometers was used to determine the elements Ag, Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Nb, Ni, Si, Sn, Sr, Ti, V, Zr at trace levels of some μg kg−1 up to some 10 mg kg−1 in graphite powders. The coil for the generation of the homogeneous magnetic field was placed outside the closed arc chamber. The time programs of variable current strengths of the magnetic coil (up to 6 A) and of the arc (up to 17 A) which was burning in air were computer controlled. Halogenating gases (mainly CCl2F2, alternatively SF6 and NF3) were used as chemical modifiers to allow an effective release of the carbide forming trace elements. The mass flow controlled modifier gas was led through a special carrier electrode near the arc plasma. The emission radiation was guided by an optical fiber alternatively into two different ICP spectrometers in which the ICP torches were removed. The synergistic interaction of the magnetic field with the halogenating modifier gases resulted in a significant improvement in the analytical performance of the optimized analytical method. All our results for 22 trace elements were in good agreement with the means of an inter-laboratory comparison by BAM for certification of a pure graphite powder material; this holds also for our results for two other graphite materials. The optimized method showed an analytical performance suitable for comprehensive trace analysis of pure graphite. The instrumentation could be integrated into modern DC arc emission spectrometers to improve their analytical capabilities substantially. KW - Graphit KW - DC-Arc KW - High purity KW - Optical emission spectroscopy KW - Magnetically stabilized PY - 2018 DO - https://doi.org/10.1039/C7JA00387K SN - 1364-5544 SN - 0267-9477 VL - 33 IS - 3 SP - 468 EP - 480 PB - Royal Society of Chemistry AN - OPUS4-44398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Lee, C. A1 - Weidner, Steffen A1 - El-Baba, T. A1 - Lutomski, C. A1 - Inutan, E. A1 - Foley, C. A1 - Ni, C.-K. A1 - McEwen, C. T1 - Unprecedented Ionization Processes in Mass SpectrometryProvide Missing Link between ESI and MALDI JF - ChemPhysChem N2 - In the field of mass spectrometry,producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from bio-medical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser Ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around athird of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorp-tion/ionization. KW - MALDI KW - Electrospray KW - Mass spectrometry KW - Ionization PY - 2018 DO - https://doi.org/10.1002/cphc.201701246 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 5 SP - 581 EP - 589 PB - Wiley-VCH AN - OPUS4-44404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Hansen, L. A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustical analysis of DCSBD and MHC discharges N2 - Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are the surface or material modification and acting as an ion source for mass spectroscopy applications. Since atmosphere plasma generates a massive amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder), which is called thermoacoustic effect. This talk presents an overview of the experimental acoustic analysis of surface dielectric barrier and micro hollow cathode discharges. Regarding other methods of acoustic excitation, the thermoacoustic approach benefits of its massless working principle and the proper impedance matching. In addition to the characterisation, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented. T2 - DPG Frühjahrstagung (SAMOP) CY - Erlangen, Germany DA - 04.03.2018 KW - Gas discharges KW - Micro hollow cathode discharge KW - Surface dielectric barrier discharge KW - Atmospheric pressure plasma PY - 2018 AN - OPUS4-44443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Niederleithinger, Ernst ED - Faix, O. T1 - Nondestructive assessment and imaging methods for internal inspection of timber. A review. JF - Holzforschung N2 - This paper reviews state-of-the-art in nondestructive testing (NDT) and semidestructive testing (SDT) methods applicable for imaging the condition of structural timber. Both NDT and SDT imaging reveal defects, damages, and decay, while the extent of wood decay can also be quantified. Combined with an appropriate data interpretation concerning the internal defects, the mechanical properties of the material can also be assessed. The possibilities and limitations of the most relevant individual NDT and SDT methods, also in combination with each other, are outlined and compared. To facilitate comparison, many observations are reported based on the same test specimen. KW - Drilling resistance KW - Electrical resistivity KW - Radar KW - Radiography KW - Sonic stress wave KW - Ultrasound KW - Non destructive testing KW - Timber structure PY - 2018 DO - https://doi.org/10.1515/hf-2017-0122 SN - 0018-3830 SN - 1437-434X VL - 72 IS - 6 SP - 467 EP - 476 PB - De Gruyter CY - Berlin AN - OPUS4-44445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS system using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - European Mass Spectrometry Conference CY - Saarbrücken, Germany DA - 10.03.2018 KW - Tandem MS KW - Vacuum Ultraviolet PY - 2018 AN - OPUS4-44484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown great potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partially due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing times and original film thickness. The thickness, topography and quality of the adsorbed layer is controlled with Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor is employed to measure the adsorbed layers with a free surface layer. The results are quantitatively compared and discussed with respect to recently published work. T2 - Meeting of the American Physical Society CY - Los Angeles, CA, USA DA - 05.03.2018 KW - Thin polymeric films KW - Adsorbed layer PY - 2018 AN - OPUS4-44488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is expected to form. These adsorbed layers have shown great potential for technological applications. However, their growth kinetics and molecular dynamics are still not fully understood. This is partially due to the hard accessibility of these layers in thin films. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. First, the growth kinetics of these layers is investigated as a function of annealing times and original film thickness. The thickness, topography and quality of the adsorbed layer is controlled with Atomic Force Microscopy (AFM). Secondly, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor is employed to measure the adsorbed layers with a free surface layer. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films KW - Dielectric spectroscopy PY - 2018 AN - OPUS4-44489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Unexpected behavior of thin PVME/PS blend films investigated by specific heat spectroscopy N2 - The structure and molecular dynamics of thin polymer films are of topical interest of soft matter-physics. Commonly, spatial structural heterogeneities of 1D confined thin films (surface, bulk-like and adsorbed layer), are expected to alter the glassy dynamics, compared to the bulk. Here, Specific Heat Spectroscopy (SHS) was used, to investigate the glassy dynamics of thin films of an asymmetric miscible PVME/PS 25/75 wt% blend. SHS measurements showed a non-monotonous thickness dependence of the dynamic Tg, on the contrary to the previously investigated PVME/PS 50/50 wt%. For PVME/PS 25/75 wt% thin films (> 30 nm), due to the presence of PVME-rich adsorbed and surface layers, the bulk-like layer experienced a thickness dependent increase of PS concentration. This led to a systematic increase of dynamic Tg. Further decrease of the film thickness (< 30 nm), resulted in a decrease of dynamic Tg, ascribed to the influence of the surface layer, which has a high molecular mobility. This is the first study, which shows deviations of dynamic Tg of thin films, compared to the bulk, resulting from the counterbalance of the free surface and adsorbed layer. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Thin polymeric films PY - 2018 AN - OPUS4-44494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Munsch, Sarah Mandy A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Determining the pore size distribution in synthetic and building materials using 1D NMR N2 - The detection of moisture in building materials has a high priority in civil engineering to locate and prevent possible moisture damages, e.g. mold, corrosion, delamination etc. Furthermore, it is of great significancy to achieve a better understanding of moisture transport and pore space in different materials. To prevent the degeneration of structures and materials, non-destructive testing methods are more and more deployed. As a non-destructive method in this work, nuclear magnetic resonance (NMR) is applied using a strayfield open magnet device that enables one-dimensional measurements in a defined volumen. By using NMR, the water content of the sample can be determined and also the pore size distribution can be deduced from the relaxation time distribution when having a comparison method like mercury intrusion porosimetry. In this study different synthetic homogenous materials with defined and almost unimodal pore size distributions are investigated as well as building materials like screed. For analyzing the pore space, the samples were measured at different saturation levels and the building materials at different hydration states as well. T2 - Magnetic Resonance in Porous Media 14 CY - Gainesville, FL, USA DA - 18.02.2018 KW - Pore size KW - Synthetic and building materials KW - NMR relaxometry KW - Mercury intrusion porosimetry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-443868 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. AN - OPUS4-44386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Herbrand, M. A1 - Müller, M. T1 - Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams JF - Sensors N2 - Ultrasonic transmission measurements have been used for decades to monitor concrete elements, mostly on a laboratory scale. Recently, coda wave interferometry (CWI), a technique adapted from seismology, was introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete laboratory samples and even large structural elements without having a transducer directly at the place where the change is taking place. Here, several load tests until failure on large posttensioned concrete beams have been monitored using networks of embedded transducers. To detect subtle effects at the beginning of the experiments and cope with severe changes due to cracking close to failure, the coda wave interferometry procedures had to be modified to an adapted step-wise approach. Using this methodology, we were able to monitor stress distribution and localize large cracks by a relatively simple technique. Implementation of this approach on selected real structures might help to make decisions in infrastructure asset management. KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda wave interferometry KW - Embedded transducers PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452328 DO - https://doi.org/10.3390/s19010147 SN - 1424-8220 VL - 19 IS - 1 SP - Article 147, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-45232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid-structure interaction in the scaled Boundary finite element method for prismatic Structures N2 - The Scaled Boundary Finite Element Method (SBFEM) for prismatic structures is an efficient method for the simulation of acoustic behavior. Hence a further development of the method is of great interest. The wave propagation can be calculated for isotropic and anisotropic materials in solids. As for many applications the acoustic behavior in fluids and the behavior in case of fluid-structure interaction (FSI) is subject of research, the implementation of a fluid model in SBFEM for prismatic structures is needed. In case of FSI the coupling between fluid and solid domains can be performed without additional effort when describing both domains in the same variables. Hence a displacement-based fluid description is used. As the discretized formulation leads to spurious modes, a penalty method to suppress the unphysical behavior is chosen. To validate the derived model a comparison with analytical solutions of purely fluid domains is made. As to verify that in case of FSI the model shows the right behavior, dispersion curves of water-filled pipes are calculated and compared to results obtained with Comsol. T2 - 89th GAMM Annual Meeting CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Fluid-Structure Interaction KW - Penalty Parameter PY - 2018 AN - OPUS4-45260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Under Investigation: Novel Approach towards the Synthesis of Deuterium-labelled Alternariol- and Alternariol monomethylether-Standards for the HPLC-MS/MS-Analysis in Food & Feed N2 - Alternariol (AOH) and Alternariol monomethylether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labelled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation4 as the key step. T2 - 13th International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds CY - Prague, Czech Republic DA - 03.06.2018 KW - Mycotoxins KW - Mass Spectrometry PY - 2018 AN - OPUS4-45268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan T1 - Bundesanstalt für Materialforschung und –prüfung (BAM) - Round table presentation N2 - Vorstellung der Tätigkeit der BAM und des FB 8.2 im Rahmen einer geplanten Greminentätigkeit im fib - Action Group 9. T2 - 2nd meeting fib Action Group 9 'Testing and SHM’ CY - München, Germany DA - 14.06.2018 KW - Zerstörungsfreie Prüfung KW - Bauwesen PY - 2018 AN - OPUS4-45215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terzioglu, T. A1 - Karthik, M. A1 - Hurlebaus, S. A1 - Hueste, M. A1 - Maack, Stefan A1 - Wöstmann, Jens A1 - Wiggenhauser, Herbert A1 - Krause, M. A1 - Miller, P. A1 - Olson, L. T1 - Nondestructive evaluation of grout defects in internal tendons of posttensioned girders JF - NDT and E International N2 - Post-tensioning systems provide safe and efficient construction solutions for long span bridges. Despite the improved grouting practices over the past decade, existing post-tensioning systems may have significant amount of grout defects, which could lead to corrosion of the strands. Condition assessment of post-tensioning systems is necessary to allow bridge owners to take timely, proactive actions to mitigate or prevent further Deterioration and unanticipated tendon failures. A detailed experimental study conducted to assess the performance of nondestructive evaluation techniques in detecting grout defects within internal tendons is presented herein. Nondestructive evaluation techniques that include Ground Penetrating Radar, Impact Echo, Ultrasonic Tomography, and Ultrasonic Echo are evaluated in terms of detecting the location and severity of fabricated grout defects in a full-scale post-tensioned U-girder mock-up specimen. While Ground Penetrating Radar can identify the location and profile of the internal tendons, particularly metal ducts due to strong reflections, this method did not provide any information about the defect conditions within the tendon. Both Impact Echo and Ultrasonic Echo techniques are effective in identifying the Location of grout defects, but could not differentiate between water, void, or compromised grout conditions. The study clearly demonstrates the need for NDE techniques that are applicable to anchorage regions, and that are capable of estimating the severity and nature of grout defects in internal tendons. KW - Zerstörungsfreie Prüfung KW - Nondestructive testing KW - Ground penetrating radar KW - Impact Echo KW - Ultrasonic tomography KW - Ultrasonic echo KW - Bridge inspection PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0963869517305996?via%3Dihub DO - https://doi.org/10.1016/j.ndteint.2018.05.013 SN - 0963-8695 VL - 99 SP - 23 EP - 35 PB - Elsevier Ltd. AN - OPUS4-45218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection JF - Optics Express N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Here, we present an advanced approach to identify pollen grains in mixtures based on: - a simplified sample preparation procedure - MALDI imaging mass spectrometry - chemometric tools Our goals are to: - explore the biomolecular variations in pollen - determine species-specific peak patterns - discriminate and identify single pollen grains in mixtures using MSI T2 - 66th Conference on Mass Spectrometry and Allied Topics CY - San Diego, CA, USA DA - 03.06.2018 KW - Pollen PY - 2018 AN - OPUS4-45196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as tagging reagents for imaging mass cytometry N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining importance for bioimaging cytometry to answer analytical, biological and biomedical questions. High sensitivity and spatial resolution make it an excellent tool for imaging of metal and heteroelement distribution in single cells. Comparable to CyTOF imaging mass cytometry, metal coded antibodies can be used for multiparametric analysis as well as quantification. In this project, nanocrystals are investigated as new highly sensitive metal tags for identification and quantification of biomarkers, like Alzheimer’s or breast cancer, in clinical cell assays and tissue samples. Of high significance is the simultaneous analysis of several biomarkers at once, which is possible by special coding of lanthanide tags on the biomarker associated antibody. Nanocrystals show potential for sensitive measurement in MS due to high stability and signal amplification compared to tags with fewer metal atoms. For proof of principle, synthesis and characterization of lanthanide doped nanocrystals was performed by a nanoPET pharma GmbH with great reproducibility and homogenous size. In A549 cell cultures, the uptake and distribution of these nanocrystals within the monolayered cells was investigated by LA-ICP-MS measurements using subcellular resolution. The nanocrystals showed high sensitivity and the possibility of multiparametric analysis by doting different lanthanides. Additionally, stability of the bioconjugation of the nanocrystals and target antibodies was investigated using Dot Blot experiments and LA-ICP-MS. T2 - CyTOF User Forum 2018 CY - Berlin, Germany DA - 01.02.2018 KW - Nanocrystal KW - Imaging mass cytometry KW - LA-ICP-MS KW - Bioconjugation KW - Metal-Tag KW - Multimodal PY - 2018 AN - OPUS4-44106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laux, P. A1 - Tentschert, J. A1 - Riebeling, Ch. A1 - Braeuning, A. A1 - Creutzenberg, O. A1 - Epp, A. A1 - Fessard, V. A1 - Haas, K.-H. A1 - Haase, A. A1 - Hund-Rinke, K. A1 - Jakubowski, Norbert A1 - Kearns, P. A1 - Lampen, A. A1 - Rauscher, H. A1 - Schoonjans, R. A1 - Störmer, A. A1 - Thielmann, A. A1 - Mühle, U. A1 - Luch, A. T1 - Nanomaterials: certain aspects of application, risk assessment and risk communication JF - Archives of Toxicology N2 - Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public. KW - Nanomaterials KW - Toxicity KW - Ecotoxicity KW - Standardization KW - Exposure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441096 DO - https://doi.org/10.1007/s00204-017-2144-1 VL - 92 IS - 1 SP - 121 EP - 141 PB - Springer AN - OPUS4-44109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - López-Serrano, Ana A1 - Mitze, H. A1 - Jakubowski, Norbert A1 - Schwerdtle, T. T1 - Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite JF - Metallomics N2 - Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus. KW - Single-cell analysis KW - ICP-MS/MS KW - Arsenite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441105 DO - https://doi.org/10.1039/c7mt00285h SN - 1756-5901 VL - 10 IS - 1 SP - 73 EP - 76 PB - RSC Publ. CY - Cambridge AN - OPUS4-44110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities T2 - Proceeding QNDE 2017 N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar welds KW - Nondestructive testing KW - Ultrasonic testing PY - 2018 SN - 978-0-7354-1644-4 SN - 0094-243X VL - 1949 SP - UNSP 110002, 1 EP - 9 AN - OPUS4-44148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar Welds KW - Nondestructive Testing KW - Ultrasonic Testing PY - 2018 AN - OPUS4-44151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epping, Ruben A1 - Falkenhagen, Jana T1 - Characterization of small heterogeneities in polymers by analysis of UPLC/ESI-MS reconstructed ion chromatograms N2 - From simple molar mass disperse homopolymers over copolymers to functionalized, 3-dimensional structures containing various distributions, the complexity of polymeric materials has become more and more sophisticated in recent years. With applications in medicine, pharmacy, smart materials or for the semiconductor industry the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isobaric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector. Instead of a complicated, time consuming and/or expensive 2d-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, here a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization mass spectrometry (ESI) is proposed. We used SEC for the separation because unlike other separation modes the separation in this mode solely should occur due to the hydrodynamic volume with no interference of other interactions. This simplifies the interpretation and the above mentioned heterogeneities should show a slight difference in hydrodynamic volume. ESI mass spectrometry can offer more than an access to mass dependent information like MMD, end group masses or CCD in polymer analysis. The online coupling to SEC allows the analysis of reconstructed ion chromatograms (RIC) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities in microstructure or topology, that are otherwise inaccessible or accessible only by time consuming or expensive methods. Because these heterogeneities might vary with the molar mass, analysis of the whole MMD-Peak (here the total ion current (TIC)) would not lead to the desired information. The broadening of the chromatographic peaks in this case does not origin from the already well known band broadening factors in chromatography from diffusion. This band broadening is attributed to the nature and composition of the analyte itself. Surprisingly there is very little investigation into the peak width or peak shape due to analyte structure itself found in literature. It is also shown, that with proper calibration even quantitative information could be obtained. This method is suitable to detect small differences in e. g. branching, topology, monomer sequence or tacticity and could potentially be used in production control of oligomeric products or other routinely done analyses to quickly indicate deviations from set parameters. Based on a variety of examples we demonstrate the possibilities and limitations of this approach. T2 - HTC-15 CY - Cardiff, UK DA - 24.01.2018 KW - UPLC/ESI-MS KW - Reconstructed chromatograms KW - Polymer analysis KW - Microstructure PY - 2018 AN - OPUS4-44137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Thissen, A. A1 - Dietrich, P. T1 - Progress on characterisation of biofilms by NAP-XPS N2 - Progress talk on characterisation of biofilms by NAP-XPS in the framework of the MetVBadBugs EURAMET-project T2 - MetVBadBugs 24 M project meeting CY - Turin, Italy DA - 06.02.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abraham, O. A1 - Ferria, H. A1 - Niederleithinger, Ernst A1 - Brühwiler, E. A1 - Dalsgard Sörensen, J. A1 - Klikowicz, P. A1 - Kirsch, F. A1 - Niedermayer, H. A1 - Yalamas, T. T1 - INFRASTAR - Innovation and networking for fatigue and reliability analysis of structures - Training for assessment of risk - H2020 JF - Impact N2 - "INFRASTAR aims to develop knowledge, expertise and skills for optimal and reliable management of structures. The generic methodology is applied to bridges and wind turbines in relation to fatigue offering the opportunity to deal with complementary notions (such as old and new asset management, unique and similar structures, wind and traffic actions) while addressing 3 major challenges: 1/ advanced modelling of concrete fatigue behaviour, 2/new non destructive testing methods for early aged damage detection and 3/probabilistic approach of structure reliability under fatigue. Benefit of cross-experience and inter-disciplinary synergies creates new knowledge. INFRASTAR proposes innovative solutions for civil infrastructure asset management so that young scientists acquire a high employment profile in close dialogue between industry and academic partners. Modern engineering methods, including probabilistic approaches, risk and reliability assessment tools, will take into account the effective structural behaviour of existing bridges and wind turbines by exploiting monitored data. Existing methods and current state-of -the art is based on excessive conservatism which produces high costs and hinders sustainability. INFRASTAR improves knowledge for optimising the design of new structures, for more realistic verification of structural safety and more accurate prediction of future lifetime of the existing structures. That is a challenge for a sustainable development because it reduces building material and energy consumption as well as CO2 production. Within the global framework of optimal infrastructure asset management, INFRASTAR will result in a multi-disciplinary body of knowledge covering generic problems from the design stage process of the new civil infrastructures up to recycling after dismantlement. This approach and the proposed methods and tools are new and allow a step forward for innovative and effective process." KW - Concrete KW - Fatigue KW - Wind turbine KW - Bridge PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447016 UR - http://www.ingentaconnect.com/content/sil/impact/2018/00002018/00000001/art00023 DO - https://doi.org/10.21820/23987073.2018.70 SN - 2398-7073 VL - 2018 IS - 1 SP - 70 EP - 72 PB - Science Impact Ltd. CY - Bristol, UK AN - OPUS4-44701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Jenny A1 - Bald, Ilko T1 - Low‐energy electron‐induced strand breaks in telomere‐derived DNA sequences—influence of DNA sequence and topology JF - Chemistry - European Journal N2 - During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low‐energy electron‐induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G‐rich sequences. Here, we use DNA origami platforms to expose G‐rich telomere sequences to low‐energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′‐(TTA GGG)2 is more sensitive to low‐energy electrons than an intermixed sequence 5′‐(TGT GTG A)2 confirming the unique electronic properties resulting from G‐stacking. With increasing length of the oligonucleotide (i.e., going from 5′‐(GGG ATT)2 to 5′‐(GGG ATT)4), both the variety of topology and the electron‐induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G‐quadruplexes or G‐intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low‐energy electron‐induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. KW - DNA radiation damage KW - Telomere KW - DNA origami KW - Electron PY - 2018 DO - https://doi.org/10.1002/chem.201705889 SN - 1521-3765 SN - 0947-6539 VL - 24 IS - 18 SP - 4680 EP - 4688 PB - Wiley AN - OPUS4-44702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ribar, A. A1 - Huber, S. E. A1 - Smiałek, M. A. A1 - Tanzer, K. A1 - Neustetter, M. A1 - Schürmann, Robin A1 - Bald, Ilko A1 - Denifl, S. T1 - Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment JF - Physical chemistry chemical physics N2 - 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylene-diaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid (MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously. KW - DEA KW - DNA KW - Low energy electrons KW - Mass spectrometry PY - 2018 UR - http://pubs.rsc.org/en/content/articlepdf/2018/cp/c7cp07697e DO - https://doi.org/10.1039/c7cp07697e VL - 20 IS - 8 SP - 5578 EP - 5585 PB - Royal Society of Chemistry AN - OPUS4-44703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustic emission by self-organising effects of micro-hollow cathode discharges JF - Applied Physics Letters N2 - We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investi-gated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well. KW - Micro hollow cathode discharge KW - Atmospheric pressure plasma KW - Gas discharges KW - Plasma acoustics PY - 2018 DO - https://doi.org/10.1063/1.5024459 SN - 0003-6951 VL - 112 IS - 15 SP - Article 154102, 1 EP - 4 PB - AIP Publishing AN - OPUS4-44659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - STXM KW - SEM KW - PS KW - PTFE KW - Core-shell nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Müller, Bernd R. A1 - Pereyra, R. A1 - Fernández, R. A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction JF - Journal of applied crystallography N2 - In order to provide further evidence of damage mechanisms predicted by the recent solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction. X-ray refraction techniques detect the internal specific surface (i.e. surface per unit volume) on a length scale comparable to the specimen size, but with microscopic sensitivity. A significant rise in the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. This substructure was also observed by scanning electron microscopy KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - subgrain structure PY - 2018 DO - https://doi.org/10.1107/S1600576718001449 SN - 1600-5767 VL - 51 SP - 420 EP - 427 PB - Wiley AN - OPUS4-44619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Salge, T. A1 - Wäsche, Rolf A1 - Hodoroaba, Vasile-Dan T1 - Advanced light element and low energy X-ray analysis of a TiB2 – TiC – SiC ceramic material using EDS spectrum imaging N2 - The accurate EDS microanalysis of light elements such as boron and carbon by spectrum imaging will be demonstrated using a sintered hard ceramic material composed of the three major phases titanium boride (TiB2), titanium carbide (TiC), silicon carbide (SiC) and minor phases, sub-μm in size. The combination of these three materials leads to improved mechanical and tribological properties. Silicon carbide is a material used for mechanical seals. It has the disadvantage of reduced failsafe running functions, causing increased wear when running dry. The added titanium components (TiC and TiB2) improve the failsafe running functions. This technology has already been transferred to industrial applications. KW - EDS KW - Spectrum imaging KW - Ceramic KW - Phase analysis KW - Light elements PY - 2018 UR - https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/Microanalysis_EBSD/LabReports/App_eds_10_LE_keramik_Rev1_1_lores.pdf SP - 1 EP - 5 CY - Berlin AN - OPUS4-44622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Gernert, U. A1 - Gerhardt, R. F. A1 - Höhn, E.-M. A1 - Belder, D. A1 - Kneipp, Janina T1 - Catalysis by Metal Nanoparticles in a Plug-In Optofluidic Platform: Redox Reactions of p-Nitrobenzenethiol and p-Aminothiophenol JF - ACS Catalysis N2 - The spectroscopic characterization by surface-enhanced Raman scattering (SERS) has shown great potential in studies of heterogeneous catalysis. We describe a plug-in multifunctional optofluidic platform that can be tailored to serve both as a variable catalyst material and for sensitive optical characterization of the respective reactions using SERS in microfluidic systems. The platform enables the characterization of reactions under a controlled gas atmosphere and does not present with limitations due to nanoparticle adsorption or memory effects. Spectra of the gold-catalyzed reduction of p-nitrothiophenol by sodium borohydride using the plug-in probe provide evidence that the borohydride is the direct source of hydrogen on the gold surface, and that a radical anion is formed as an intermediate. The in situ monitoring of the photoinduced dimerization of p-aminothiophenol indicates that the activation of oxygen is essential for the plasmon-catalyzed oxidation on gold nanoparticles and strongly supports the central role of metal oxide species. KW - Gaseous reactants KW - Heterogeneous catalysis KW - Microfluidics KW - Optofluidics KW - Radicals KW - Reusable KW - Surface-enhanced Raman scattering (SERS) PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acscatal.8b00101 DO - https://doi.org/10.1021/acscatal.8b00101 VL - 8 IS - 3 SP - 2443 EP - 2449 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-44628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Madkour, Sherif A1 - Gawek, Marcel A1 - Schönhals, Andreas T1 - Determination of the glass transition region of thin PVME films by means of spectroscopic ellipsometry N2 - In this presentation, we report on the Determination of the glass transition temperature of thin layers of Polyvinylmethylether (PVME) depending on the thickness of the polymer layer. The glass Transition of thin polymer layers is currently under much investigation due to the nano-confinement effects proposed to appear in dependence on the layer thicknesses in the nm range. The properties of the polymer, the temperature range, as well as the thicknesses range of the polymer layers pose a serious challenge to the investigation by means of spectroscopic ellipsometry. By careful choice of experimental parameters, we were able to investigate the thickness change by temperature of PVME layers in the range between 2 and 300 nm and in the temperature range between 200 K and 340 K. By optimizing the analysis process, we were able to determine Tg values within this parameter range with sufficient accuracy to investigate the Tg change due to confinement effects. Alongside the change of position of the glass transition with thickness, we discuss the details of the ellipsometric analysis and its implications for the resulting thermal properties of the thin polymer layers as well as the accuracy of the Tg value with respect to the method used in the analysis process. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Polymers KW - PVME KW - Temperature dependent ellipsometry KW - Glass transition PY - 2018 AN - OPUS4-44672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Rosu, D.-M. A1 - Beck, Uwe T1 - Calibration samples and the GUM-compliant determination of uncertainties in ellipsometry N2 - Ellipsometry is well known as a highly sensitive and reproducible surface analysis technique. However, in a context of metrological applications, the most important property of a measurement process is accuracy, relying on statistical precision, (reproducibility) and trueness (in an absolute sense versus a given standard). The latter is much more difficult to achieve. In this presentation, we discuss the possibility of establishing ellipsometry in a diverse metrological landscape by means of defining standard procedures and best practice methodologies for the measurement and for calibration purposes. The most important task of this approach is to determine the model-inherent uncertainty, originating from parameter coupling. We achieve this by means of sensitivity analysis of the parameters resulting from the fit process. We discuss the definition of reference materials by which accuracy can be made available for ellipsometry, passed along between ellipsometry laboratories and for other measurement techniques. The determination of uncertainty is presented in this work for a number of examples involving difficult analysis models employed for samples from different production environments. We present a standardization initiative with the goal to disseminate this work into an international standard alongside an inter-laboratory study comparing the results for complex samples gained by laboratories with different instrumentation. We also present the results gained within EURAMET projects focused on the metrology of materials with strong non-idealities used in photovoltaics and other energy technology. T2 - Workshop Ellipsometry 2018 CY - Chemnitz, Germany DA - 19.03.2018 KW - Ellipsometric metrology KW - Reference samples KW - Reference procedures KW - Standardization PY - 2018 AN - OPUS4-44674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hansen, B. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of a certified copper alloy with Micro-XRF on SEM N2 - Copper alloys have found widespread application in various fields. The elemental composition determines the properties of the alloys and consequently their application. Therefore, knowing the composition of a copper alloy is very important. Metrological institutes like the BAM (German Federal Institute for Materials Research and Testing) offer reference materials that can be used to prove the accuracy of the applied analysis method. The aim of this application note is to demonstrate how Micro-X-ray fluorescence spectroscopy (Micro-XRF) expediently supplements the analysis of copper alloys by using Bruker’s micro-focus X-ray source XTrace attached to a scanning electron microscope (SEM) and operating with an energy dispersive spectrometer. KW - XRF KW - µ-XRF KW - SEM/EDX KW - Copper alloy PY - 2018 UR - https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/Microanalysis_EBSD/LabReports/App_mxrf_sem_03_analysis_Cu_alloy_lores.pdf SP - 1 EP - 4 PB - Bruker Nano GmbH CY - Berlin AN - OPUS4-44677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. T1 - Evaluation of different techniques of active thermography for quantification of artificial defects in fiber-reinforced composites using thermal and phase contrast data analysis JF - International Journal of Thermophysics N2 - For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European Project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed. KW - Active thermography KW - CFRP KW - GFRP KW - Delaminations KW - Flash excitation KW - Lock-in excitation PY - 2018 DO - https://doi.org/10.1007/s10765-018-2378-z SN - 0195-928X SN - 1572-9567 VL - 39 IS - 5 SP - Article 61, 1 EP - 37 PB - Springer AN - OPUS4-44687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Rosemann, Paul A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel T2 - Proceedings of the International Conference on Martensitic Transformations: Chicago. The Minerals, Metals & Materials Series. N2 - Quenching and partitioning (Q&P) heat Treatment increases the deformability of high-strength martensitic steels. Therefore, it is necessary to have some metastable austenite in the microstructure, which transforms in martensite during plastic deformation (TRIP effect). The austenitic-martensitic microstructure is gained by an increased austenitization temperature, water quenching and additional partitioning. The partitioning enables local carbon diffusion, which stabilizes retained austenite and leads to partial reversion of martensite to austenite. The influence of partitioning time was studied for the martensitic stainless steel AISI 420 (X46Cr13, 1.4034). In line with these efforts, metallographic, XRD and EBSD measurements were performed to characterize the microstructural evolution. The mechanical properties were tested using tension and compression loading. Additional corrosion investigations showed the benefits of Q&P heat treatment compared to conventional tempering. The reversion of austenite by the partitioning treatment was verified with EBSD and XRD. Furthermore, the results of the mechanical and corrosion testing showed improved properties due to the Q&P heat treatment. T2 - International Conference on Martensitic Transformations CY - Chicago, IL, USA DA - 09.07.2017 KW - Heat treatment KW - High ductility KW - Martensitic stainless steels KW - Quenching and partitioning KW - Transformation induced plasticity KW - KorroPad KW - EBSD KW - Mechanical testing PY - 2018 SN - 978-3-319-76968-4 DO - https://doi.org/10.1007/978-3-319-76968-4_19 SP - 123 EP - 128 PB - Springer AN - OPUS4-44689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Babick, F. A1 - Ullmann, C. T1 - Evaluation of particle sizing techniques for the implementation of the EC definition of a nanomaterial N2 - Many techniques are available for measuring particle size distribution. For ideal materials (spherical particles, well dispersed) it is possible to evaluate the Performance of These methods. The performance of the analytical instrumentation for the purpose of classifying materials according to EC Definition is unknown. In this work the performance of commercially available particle sizing techniques on representative NanoDefine set of real-world testing materials (RTM) and quality control materials (QCM) for the implementation of the Definition is evaluated. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Characterization methods KW - EU definition KW - Nanodefine PY - 2018 AN - OPUS4-44693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - nPSize - Improved traceability chain of nanoparticle size measurements N2 - The overall objective of project Improved traceability chain of nanoparticle size measurements is to improve the traceability chain for nanoparticle size measurements. The main impact will be achieved by manifold contributions to standard documents for CEN/TC 352 “Nanotechnologies”, which directly addresses the research needs of CEN, CENELEC and ETSI mandated by EC to develop standards for methods and reference materials to accurately measure the size and size distribution of nanoparticles. This will take place in collaboration with ISO/TC229 ‘Nanotechnologies’, ISO/TC24/SC4 ‘Particle characterization’ and ISO/TC201 ‘Surface analysis’/ SC9 ‘Scanning probe microscopy’. T2 - 4. Sitzung des wissenschaftlichen Beirats zum Themefeld Umwelt der BAM CY - BAM, Berlin, Germany DA - 13.04.2018 KW - Nanoparticles KW - Nanoparticle size KW - Traceability KW - Standardization PY - 2018 AN - OPUS4-44695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Ca-Tetrafluorophthalate and Sr-isophthalate: mechanochemical synthesis and characterization in comparison with other Ca-and Sr-coordination polymers JF - Dalton Transactions N2 - New Ca- and Sr-based coordination polymers (CPs) were mechanochemically synthesized by milling metal hydroxide samples (M = Ca, Sr) with tetrafluorophthalic acid (H2oBDC-F4) and isophthalic acid (H2mBDC). [Ca(oBDC-F4)(H2O)2] (1) exhibits a small surface area which is slightly increased after removing the crystal water. On the other hand, the hydrated sample of the nonfluorinated [Sr(mBDC)(H2O)3.4] (2) reveals a small BET surface area which remains unchanged even after the release of crystal water via thermal treatment. The new compounds 1 and 2 are similar to their Sr- and Ca-analogs, respectively. These findings are confirmed by thermal analysis, MAS NMR, and ATR-IR measurements, in addition to the Le Bail refinements for the measured powder X-ray data of 1 and 2. Ca- and Sr-CPs based on perfluorinated dicarboxylic systems and their nonfluorinated analogs diverse in structural and chemical properties depending on the geometries of the organic linkers and the presence of fluorine atoms. The fluorinations of organic ligands lead to the formation of fluorinated CPs with higher dimensionalities compared to their nonfluorinated counterparts. Conversely, the thermal stabilities of the latter are higher than those of the fluorinated CPs. KW - Mechanochemistry PY - 2018 DO - https://doi.org/10.1039/c8dt00695d SN - 1477-9226 SN - 1477-9234 VL - 47 IS - 16 SP - 5743 EP - 5754 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-44696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cruz-Alonso, M. A1 - Fernandez, B. A1 - Alvarez, L. A1 - Gonzalez-Iglesias, H. A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Pereiro, R. T1 - Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags JF - Microchimica Acta N2 - An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma – mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. KW - Nanocluster KW - Immunohistochemistry KW - Laser ablation KW - ICP-MS KW - Fluorescence KW - Bioimaging PY - 2018 DO - https://doi.org/10.1007/s00604-017-2597-1 SN - 1436-5073 SN - 0026-3672 VL - 185 IS - 1 SP - 64 EP - 72 PB - Springer CY - Vienna AN - OPUS4-44637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Rosner, M. A1 - Tütken, T. T1 - Exploring variations in the three-isotope space: A new approach and application to magnesium isotope fractionation in the mammal food web N2 - In chemical elements with three or more stable isotopes, mass-dependent stable isotope fractionation is expressed by co-varying isotope ratios. In the three-isotope space ((δ’m2/δ’m1)/(( δ’m3/δ’m1)) these plot along a line with a slope (β), the so called ‘terrestrial fractionation line’. This partitioning of stable isotopes results from both kinetic and equilibrium reactions that are characterized by specific β-values. For the natural range of isotope ratios of ‘novel’ stable isotope systems such as Si, Mg, Fe, Zn, Cu this information cannot be accessed because samples fall close to the delta-zero standard where the current measurement precision is too low to resolve small differences in β. We present a new approach to resolve deviations from a reference slope β by standard-sample bracketing against material offset from the natural range. We use this approach to explore the isotope fractionation mechanism in the mammalian food web. We have analyzed Mg stable isotope ratios in bone bioapatite of herbivore, omnivore and carnivore mammals. Positive shifts in δ26/24Mg along the trophic chain (from herbivore to carnivore) together with β= 0.513 suggest the presence of two isotope fractionation mechanisms operating during biomineralization. While positive shifts in δ26/24Mg are in favor of equilibrium isotope fractionation process, the proximity of β to the theoretically calculated β(kinetic) of typically 0.511 suggests the presence of a second component that fractionates stable isotopes kinetically. The herein presented approach is applicable to any element with 3+ stable isotopes analyzed by multi-collector inductively coupled plasma mass spectrometry. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Magnesium delta values KW - Equilibrium isotope fractionation KW - Kinetic isotope fractionation KW - Measurement uncertainty KW - Mammals KW - Food web PY - 2018 AN - OPUS4-44643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Detjens, Marc A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Influence of Gas Pressure on Coulometric Trace Humidity Measurement N2 - Planar coulometric sensors were investigated in humidified synthetic air at various absolute gas pressures, i. e. 2 bar, 5, bar, 10 bar, and 15 bar. Humidified gas flow at adjusted gas pressure was split into two flows, one passed a coulometric sensor and the other one passed a reference hygrometer after decompression. Both signals were recorded and then compared after calculation of resulting frost point temperature. Calculation is based on a calibration function obtained at ambient pressure. Comparison showed that an increasing pressure resulted in a higher derivation between sensor signal (calculated frost point temperature) and reference frost point temperature. At an absolute pressure of 2 bar the differences were minor in consideration of the uncertainty, however at 15 bar the differences were 6.77 K. Nevertheless, it was possible to measure the gas humidity at higher pressure with coulometric trace humidity sensors. T2 - 17th International Meeting of Chemical Sensors, IMCS 2018 CY - Vienna, Austria DA - 15.07.2018 KW - Gas pressure influence KW - Coulometric sensors KW - Trace humidity measurement PY - 2018 AN - OPUS4-45535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Detjens, Marc A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Influence of Gas Pressure on Coulometric Trace Humidity Measurement T2 - Proceedings of 17th International Meeting on Chemical Sensors 2018 N2 - Planar coulometric sensors were investigated in humidified synthetic air at various absolute gas pressures, i. e. 2 bar, 5, bar, 10 bar, and 15 bar. Humidified gas flow at adjusted gas pressure was split into two flows, one passed a coulometric sensor and the other one passed a reference hygrometer after decompression. Both signals were recorded and then compared after calculation of resulting frost point temperature. Calculation is based on a calibration function obtained at ambient pressure. Comparison showed that an increasing pressure resulted in a higher derivation between sensor signal (calculated frost point temperature) and reference frost point temperature. At an absolute pressure of 2 bar the differences were minor in consideration of the uncertainty, however at 15 bar the differences were 6.77 K. Nevertheless, it was possible to measure the gas humidity at higher pressure with coulometric trace humidity sensors. T2 - 17th International Meeting of Chemical Sensors, IMCS 2018 CY - Vienna, Austria DA - 15.07.2018 KW - Gas pressure influence KW - Coulometric sensors KW - Trace humidity measurement PY - 2018 SN - 978-3-9816876-9-9 DO - https://doi.org/10.5162/IMCS2018/P2EC.7 SP - 715 EP - 716 PB - AMA Service GmbH CY - Wunstorf / Germany AN - OPUS4-45539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Alvarez-Llamas, C. A1 - Richter, Silke A1 - Mayo, J. C. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. A1 - Jakubowski, Norbert T1 - Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS JF - Journal of Analytical Atomic Spectrometry N2 - The analytical potential of a nanosecond laser ablation inductively coupled plasma mass spectrometer (ns-LA-ICP-SFMS) system, equipped with an ultra-fast wash-out ablation chamber, is critically investigated for fast and highly spatially resolved (∼μm) qualitative elemental distribution within single cells. Initially, a low surface roughness (< 10 nm) thin In–SnO2 layer (total coating thickness ∼200 nm) deposited on glass is employed to investigate the size, morphology and overlapping of laser-induced craters obtained at different laser repetition rates, making use of Atomic Force Microscopy (AFM). Conical craters with a surface diameter of about 2 µm and depths of about 100 nm were measured after a single laser shot. Furthermore, the influence of the sampling distance (i.e. distance between the sample surface and the inner sniffer of the ablation chamber) on the LA-ICP-MS ion signal wash-out time is evaluated. A significant decrease of the transient 120Sn+ ion signal is noticed after slight variations (±200 μm) around the optimum sampling position. Ultra-fast wash-outs (< 10 ms) are achieved reducing the aerosol mixing from consecutive laser shots even when operating the laser at high repetition rates (25 – 100 Hz). Fast and highly spatially resolved images of elemental distribution within mouse embryonic fibroblast cells (NIH/3T3 fibroblast cells) and human cervical carcinoma cells (HeLa cells), incubated with gold nanoparticles (Au NPs) and Cd-based quantum dots (QDs), respectively, are determined at the optimized operating conditions. Elemental distribution of Au and Cd in single cells is achieved using a high scanning speed (50 µm/s) and high repetition rate (100 Hz). The results obtained for the distribution of fluorescent Cd-based QDs within the HeLa cells are in good agreement with those obtained by confocal microscopy. The size, morphology and overlapping of laser-induced craters in the fixed cells are also investigated using AFM, observing conical craters with a surface diameter of about 2.5 µm and depths of about 800 nm after a single laser shot. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Atomic Force Microscopy KW - Cell PY - 2018 DO - https://doi.org/10.1039/c8ja00096d SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Pisonero, J. A1 - Bouzas-Ramos, D. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - LA-ICP-MS to study nanoparticle-cell interaction N2 - Nanoparticles (NPs) have found a wide range of applications in research and industry. Thereby the interaction of NPs with biological systems like cells has become a major field of interest, ranging from medical applications to nanotoxicology. Size, shape and surface modification of the nanomaterials determine the uptake rate and pathway into the cells, and therefore impact specific cell components and processes. In recent years, elemental imaging of biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning both spatial resolution (down to 1 µm) and signal-to-background ratio due to low-dispersion LA chambers make LA-ICP-MS particularly interesting for single cell analysis. Here LA-ICP-MS was applied for the imaging of individual cells to study the uptake and intracellular processing of metal-containing nanostructures. The cells were incubated with different NPs under varying experimental conditions and afterwards fixed with para-formaldehyde and dried for LA analysis. High-spatial resolution LA-ICP-MS was achieved by careful optimisation of the laser ablation parameters. Our findings show, that LA-ICP-MS is applicable to localize NP aggregates within cellular compartments. The uptake efficiency depends strongly on the physicochemical properties of the nanostructures as well as on the incubation conditions like concentration and incubation time. The results demonstrate the potential of LA-ICP-MS providing insight into nanoparticle-cell interaction dependent on experimental parameters. T2 - 14th European Workshop on Laser Ablation (EWLA) CY - Pau, France DA - 26.06.2018 KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell PY - 2018 AN - OPUS4-45570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC'2018 CY - Paris, France DA - 09.07.2018 KW - X-ray-refraction KW - Damage evolution KW - Additive manufacturing KW - Composites KW - Creep PY - 2018 AN - OPUS4-45572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield JF - Angewandte Chemie - International Edition N2 - Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm−2) and by approximately a factor of 10 at low power densities (1 W cm−2). KW - Core shell structure KW - Upconversion KW - Non lienear processes KW - Nanoparticle KW - Quantum yield PY - 2018 DO - https://doi.org/10.1002/anie.201803083 VL - 57 IS - 28 SP - 8765 EP - 8769 PB - Wiley-VCH AN - OPUS4-45574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Ziegler, Mathias T1 - Two-dimensional interference of photothermally generated moving thermal waves N2 - Structured illumination using high-power diode lasers generates a two-dimensional interference of thermal waves. In addition, the sources and the sample are moving relative to each other. Using different configurations, we investigate the validity of the temporal and spatial superposition principle of the heat diffusion equation for these cases both experimentally and by numerical-analytical modelling. Furthermore, we investigate the potential of this approach for non-destructive testing. T2 - 14th Quantitative Infrared Thermography Conference CY - Berlin, Germany DA - 24.05.2018 KW - Thermography KW - Thermal Wave KW - VCSEL KW - Laser KW - Thermal diffusion PY - 2018 AN - OPUS4-45621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönhals, Andreas A1 - Frick, B. A1 - Zorn, R. ED - Kremer, Friedrich ED - Loidl, Alois T1 - The scaling of the molecular dynamics of liquid crystals as revealed by broadband dielectric, specific heat, and neutron spectroscopy T2 - The scaling of relaxation processes, Advances in dielectrics N2 - A combination of different complementary methods is employed to investigate scaling of the molecular dynamics of two different liquid crystals. Each method is sensitive to different kind of fluctuations and provides therefore a different window to look at the molecular dynamics. In detail, broadband dielectric spectroscopy is combined with specific heat spectroscopy and neutron scattering. As systems the nematic liquid crystal E7 and a discotic liquid crystalline pyrene are considered. First of all it was proven that both systems show all peculiarities which are characteristic for glassy dynamics and the glassy state. Especially for the nematic liquid crystal E7 it could be unambiguously shown by a combination of dielectric and specific heat spectroscopy that the tumbling mode is the underlying motional process responsible for glassy dynamics. Dielectric investigations on the discotic liquid crystalline pyrene reveal that at the phase transition from the plastic crystalline to the hexagonal columnar liquid crystalline phase the molecular dynamics changes from a more strong to fragile temperature dependence of the relaxation rates. Moreover a combination of results obtained by specific heat spectroscopy with structural methods allows an estimation of the length scale relevant for the glass transition. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Rod-like liquid crystals KW - Discotic liquid crystals PY - 2018 UR - https://link.springer.com/content/pdf/10.1007%2F978-3-319-72706-6.pdf SN - 978-3-319-72705-9 SN - 978-3-319-72706-6 DO - https://doi.org/10.1007/978-3-319-72706-6_9 SN - 2190-930X SN - 2190-9318 SP - 279 EP - 306 PB - Springer International publishing AG CY - Cham, Switzerland ET - 1. AN - OPUS4-45624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Mölders, N. A1 - Sauerwald, T. A1 - Schultealbert, C. A1 - Mull, B. T1 - Two new promising approaches for quality assurance measures for materials emissions testing N2 - Two new approaches towards an emission reference material for use in quality assurance measures for materials emissions testing were developed and intensively tested. The overall goal was to obtain solid materials with homogenous and reproducible (S)VOC release. Since the application in inter-laboratory comparisons is aimed at, it should furthermore be long-term stable to ensure safe shipment to the customer without sustaining compound losses. In the first approach, thermoplastic polyurethane (TPU) was impregnated with the VOC texanol under high-pressure with liquid CO2 as solvent. In the second, styrene (VOC) and the SVOC 2,6-diisopropylnaphthalene (DIPN) were spiked into vacuum grease (VG) and a mixture of paraf-fin/squalane (P/S). For the prediction of the emission rates a finite element model (FEM) was developed for the VG and P/S type materials. All requirements for reference materials were fulfilled, whereas the TPU samples need to be aged for about 10 days until repeatable and reproducible emission rates were obtained. T2 - Indoor Air 2018 CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Emission reference material KW - Volatile organic compounds KW - CO2 assisted impregnation KW - FEM model PY - 2018 AN - OPUS4-45611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rifai, Haifa A1 - Staude, Andreas A1 - Meinel, Dietmar A1 - Illerhaus, Bernhard A1 - Bruno, Giovanni T1 - In-situ pore size investigations of loaded porous concrete with non-destructive methods JF - Cement and Concrete Research N2 - Subject of this investigation is the in-situ evolution of pore volume and pore size distribution in Ytong (a porous concrete material) under increasing pressure with two different non-destructive analytical methods: Nuclear Magnetic Resonance (NMR) and X-ray Computed Tomography (CT). For both methods special strain devices to apply external pressure were constructed. The results from the two techniques yield complementary information on the pore size distribution and allows covering different pore size regions. KW - Pore size KW - Porous concrete KW - Computed tomography KW - Nuclear magnetic resonance PY - 2018 DO - https://doi.org/10.1016/j.cemconres.2018.06.008 SN - 0008-8846 SN - 1873-3948 VL - 111 SP - 72 EP - 80 PB - Elsevier Ltd. AN - OPUS4-45617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermawati, F. U. A1 - Supardi, Z. A. I. A1 - Suasmoro, S. A1 - Hübert, Thomas T1 - Contribution of Relaxation Effect to the Permittivity of Mg1-xZnxTiO3 Ceramics JF - IOP Conference Series: Materials Science and Engineering N2 - This work reported the investigation on the effect of relaxation to the permittivity (epsilon' r ) characteristic of Mg1-x Zn x TiO3 ceramics for x = 0 – 0.5 (MZT0 – MZT0.5) measured from 1 Hz to 330 MHz. Within that frequency range, the relaxation effect that consists of the space charge (SC) and the dipolar (D) polarization mechanisms were identified. The contribution of the D relaxation in MZT0 – MZT0.2 systems extents overall from about 100 Hz to 330 MHz, while that in MZT0.3 – MZT0.5 systems is from 50 kHz to 330 MHz. The remaining frequencies, i.e. from 1 to 90 Hz for MZT0 – MZT0.2 and from 1 Hz to 50 kHz for MZT0.3 – MZT0.5, are attributed to the SC relaxation. The D polarization mechanism provides constant epsilon' r values which vary from (15.4 – 17.0) ± 0.3 throughout the samples. Contribution of the SC polarization mechanism to the characteristic is supported by the simultaneous presence of different content and level of resistivity of the secondary phase of (Mg1-αZnα)2TiO4 in MZT0 – MZT0.2 systems and of (Zn1-αMgα)2TiO4 in MZT0.3 – MZT0.5, along with the presence of the main Mg1-x Zn x TiO3 phase, as a result of the variation of zinc content in the systems. T2 - The 5th International Conference on Advanced Materials Sciences and Technology (ICAMST 2017) CY - Makassar, Indonesia DA - 19.09.2017 KW - Dielectric ceramic KW - dipolar polarization KW - Mg1-xZnxTiO3 KW - permittivity KW - space charge polarization PY - 2018 DO - https://doi.org/10.1088/1757-899X/367/1/012003 SN - 1757-8981 VL - 367 SP - 1 EP - 6 PB - IOP Publishing Ltd AN - OPUS4-45618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Investigation of ionophore antibiotics and their transformation products by using electrochemistry coupled to LC-MS N2 - Ionophore antibiotics are used to cure and prevent coccidiosis by chicken especially in broiler farming. The residues are found not only in food products (chicken and eggs) but also in the environment (manure, soil or water). In this work the ionophores monensin (MON), salinomycin (SAL), maduramicin (MAD) and lasalocid (LAS) are investigated aiming to study their transformation products (TPs) through biotransformation processes. Biotransformation can be divided into two phases, phase I: oxidation, reduction or hydrolysis and Phase II: conjugation reactions. It is necessary to further examine the biotransformation pathways to determine TPs to be able to detect residues more specifically in different matrices. The technique of electrochemistry (EC) offers the opportunity to simulate biotransformation processes and to generate TPs for further analysis. The combination of EC with liquid chromatography and mass spectrometry (EC-LC-MS) provide a fast and simple tool to separate and determine the EC-generated TPs. The electrochemical flow through cell is coupled to the (LC)-MS system, allowing the reaction mixture to be separated by a RP-18 column and then analyzed in the MS. The oxidation products are generated at different potentials between 0.0 – 2.5 V vs. Pd/H2 using glassy carbon or boron doped diamond as working electrode materials . The results show a broad spectrum of different TPs depending on used solvents and working electrode materials. Among the generated TPs already known as well as unknown TPs of the drugs can be found. Further investigations on structure elucidation of unkown TPs are planned. T2 - World Conference on Analytical and Bioanalytical Chemistry CY - Barcelona, Spain DA - 23.07.2018 KW - Transformation Product KW - Electrochemistry KW - Ionophore Antibiotics PY - 2018 AN - OPUS4-45600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains JF - Journal of the American Society for Mass Spectrometry N2 - Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrixassisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from > 10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry. KW - MALDI Imaging MS KW - Pollen grains KW - Multivariate Statistics KW - Hierarchical cluster analysis KW - Principal component analysis PY - 2018 DO - https://doi.org/10.1007/s13361-018-2036-5 SN - 1044-0305 SN - 1879-1123 VL - 29 IS - 11 SP - 2237 EP - 2247 PB - Springer AN - OPUS4-45607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Menzel, R. A1 - Rueß, L. A1 - Koch, Matthias T1 - Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism JF - Toxins N2 - To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess the potential threat to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA 14-S was reduced to α-/β-ZEL 14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats. KW - Mycotoxins KW - Metabolization KW - Toxicity testing KW - Biotests PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455772 DO - https://doi.org/10.3390/toxins10070284 VL - 10 IS - 7 SP - 284, 1 EP - 12 PB - MDPI AN - OPUS4-45577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedade, M. F. M. A1 - Joseph, A. A1 - Alves, J. R. A1 - Bernardes, C. E. S. A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Crystal Engineering through Solvent Mediated Control of Molecular Conformation: The Case of 5-Hydroxynicotinic Acid N2 - The importance of molecular conformation for polymorphism and its repercussions in terms of tight control over the industrial production of crystalline organic materials with highly reproducible physicochemical properties has long been recognized. Efforts to understand how a crystallization solvent can direct the formation of a polymorph containing a specific molecular conformation are, however, relatively scarce. Nicotinic acid (NA) and its hydroxyl derivatives (2-, 4-, 5-, and 6-hydroxynicotinic acids) are very good models for such studies. Indeed, regardless of the solvent, NA always crystallizes as a single polymorph with the molecule in the same neutral conformation. In contrast, the hydroxyl derivatives are prone to polymorphism and solvate formation and, depending on the crystallization conditions, the molecules in the crystal lattice can exhibit hydroxyl, oxo, or zwitterionic conformations. The present study focused on 5-hydroxynicotinicacid (5HNA) shows that by judicious selection of the solvent it is possible to obtain 1:1 solvates, where solvation memory is not completely lost and the tautomer preferred in solution persists in the crystalline state: zwitterionic in 5HNA·H2O and neutral in 5HNA·DMSO. Nevertheless, upon thermal desolvation the obtained materials evolve to the same unsolvated form where the molecule is in a zwitterionic conformation. The structures of 5HNA·H2O and 5HNA·DMSO obtained from single crystal-ray diffraction are discussed and compared with that of 5HNA solved from powder data. The energetics of the dehydration/desolvation process was also fully characterized by thermogravimetry (TG), differential scanning calorimetry (DSC) and Calvet microcalorimetry. T2 - BACG 2018 CY - Limerick, Ireland DA - 20.06.2018 KW - Crystal Engineering KW - 5-hydroxynicotinic acid KW - Molecular Conformation PY - 2018 AN - OPUS4-45519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Muenster, C. A1 - Mente, Tobias A1 - Boellinghaus, Thomas A1 - Kannengießer, Thomas T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic imaging for concrete: Alternative imaging conditions for reverse time migration T2 - DGZfP Jahrestagung 2018 N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448704 SP - Mi.3.A.4, 1 EP - 10 PB - DGZfP AN - OPUS4-44870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen trapping in T24 steel weld joints – Microstructure influence vs. experimental design effect on activation energy for diffusion N2 - A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. T2 - Forschungsseminar Fügetechnik des IWF, Otto-von-Guericke-Universität CY - Magdeburg, Germany DA - 25.04.2018 KW - Creep-resisting materials KW - Diffusion KW - Weld metal KW - Hydrogen embrittlement PY - 2018 AN - OPUS4-44879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization JF - Solid state sciences N2 - A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)$0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflectioninfrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments. KW - Mechanochemical synthesis KW - Barium KW - Fluorine KW - Coordination polymers KW - PXRD KW - MAS NMR spectroscopy PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1293255817310798 DO - https://doi.org/10.1016/j.solidstatesciences.2018.03.013 SN - 1293-2558 SN - 1873-3085 VL - 79 SP - 99 EP - 108 PB - Elsevier AN - OPUS4-44880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Switchable Rotaxanes operating in multilayers on solid supports N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimuli-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimuli-responsive surfaces may help integrating synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically and photochemically switchable rotaxanes on gold surfaces. Two substrates are investigated – silicon and gold. Of these materials, only gold showed to be suitable for the development of highly preferential oriented rotaxane layers. XPS indicates for both substrates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation and that the switching is reversible. However, these effects are only observed for the multilayers on gold surfaces. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - NEXAFS KW - Rotaxanes KW - Multilayers PY - 2018 AN - OPUS4-44794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layer and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 AN - OPUS4-44795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Rauscher, H. T1 - Volume specific surface area (VSSA) by BET as a reliable metric for (nano)particle size analysis for powders N2 - We discuss the role of the volume specific surface area (VSSA) as determined from the specific surface area measured by the (extended) Brunauer-Emmett-Teller (BET) technique, in the identification process of powdered nano- and non-nanomaterials in line with the EU definition of nanomaterial. Results obtained in the NanoDefine project demonstrate that under appropriate conditions, VSSA can be used as proxy to the number-based particle size distribution. The extent of agreement between nano/non-nano classification by electron microscopy (EM) and classification by VSSA is investigated systematically on a large set of diverse particulate substances, representing most of the cases expected in regulatory practice. Thus, parameters such as particle shape, size polydispersity/multi-modality, and particle (inner or coating) porosity are evaluated. Based on these results, we derive a tiered screening strategy for powders, involving the use of VSSA for the purpose of implementing the definition of nanomaterial, and recommend it for inclusion in a technical guidance for the implementation of the definition. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - Nanoparticles KW - Nanomaterial KW - Particle size distribution KW - BET KW - VSSA PY - 2018 AN - OPUS4-44801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters vs conventional labels for optical quantification of amino and carboxy groups on nanomaterials and microparticles N2 - Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers. We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS. The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary. We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Surface functionalization KW - Nanoparticles KW - Surface chemistry KW - Multimodal reporters PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Strangfeld, Christoph A1 - Prinz, Carsten A1 - Hase, F. A1 - Kruschwitz, Sabine T1 - Data of embedded humidity sensors, sample weights, and measured pore volume distribution for eight screed types T2 - Monitoring of the absolute water content in porous N2 - Four cement-based and four calcium-sulphate-based screed types are investigated. The samples have a diameter of 300 mm and a height of 35 or 70 mm. Up to ten humidity sensors are embedded directly during the concreting of the screed samples. Thus, the humidity over the sample height is monitored during hardening, hydration, evaporation, and oven drying. Furthermore, the screed samples are weighted during every measurement to determine the total mass and the corresponding moisture loss. To define the pore system precisely, mercury intrusion porosimetry as well as gas adsorption is performed. According to the data, the entire pore volume distribution is known. The measured pore diameters range from 0.8 nm to 100 μm and the total porosity of the examined screeds ranges between 11 % and 22 %. Based on these measurement data, moisture transport, pore saturation as well as sorption isotherms and their hysteresis may be calculated quantitatively as described by Strangfeld et al. KW - Concrete and screed KW - Material moisture KW - Pore volume distribution KW - Embedded humidity sensors KW - Data in brief PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448261 UR - https://data.4tu.nl/repository/uuid:d2ba436f-78c0-4105-8a1f-5422fcb37851 DO - https://doi.org/10.4121/uuid:d2ba436f-78c0-4105-8a1f-5422fcb37851 SP - 1 EP - 4 PB - 4TU.Centre for Research Data CY - Delft AN - OPUS4-44826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Wanka, Antje T1 - Development of immuno-assays and metal-staining techniques for bioimaging of cells and tissues using LA-ICP-MS N2 - We are using LA-ICP-MS to quantify metals in biological cells and thin cuts of tissues from varies organs. Different applications will be presented to demonstrate the state of the art of bioimaging to visualize the elemental distribution pattern in soft bio-materials (tissue, single cells) of metals, metal containing stains and metal-tagged antibodies. For this purpose, different strategies for metal tagging will be presented and will be compared in terms of analytical figures of merit. First applications for detection of biomarkers in animal and human tissue samples will be presented. In a first example, we have applied LA-ICP-MS to visualize the local distribution of proteins, which are used as bio-markers for neurodegenerative diseases. For this purpose, brain tissues from mice experiments have been stained by metal-tagged antibodies. House-keeping proteins have been investigated as internal cellular standards. Additionally, ink-jet printing of metal doped inks onto the surface of tissue samples has been applied for drift corrections and quantification. Validation of our results are achieved in comparison to immune-histochemical staining and optical microscopy. In a second example, we used specific metal-tagged antibodies for detection of biomarker specific for prostate cancer. For this purpose, micro tissue arrays are incubated with metal-tagged antibodies for bioimaging of samples from many patients using simultaneous detection of all relevant biomarkers and their tags. For improvement of sensitivity in the next example application nanoparticle tagged antibodies for detection of metallothionines in eye lens tissue samples will be discussed. Recently we have used our tagging and staining strategies to determine the cell cycle of single cells, which is of future interest for toxicological studies. Finally, future trends in elemental microscopy and mass cytometry imaging will be discussed. T2 - Workshop on Laser Bioimaging Mass Spectrometry CY - Münster, Germany DA - 24.05.2018 KW - Single cell analysis KW - LA-ICP-MS KW - Immuno-Assays PY - 2018 AN - OPUS4-45160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Glass transition of thin polymeric films as revealed by calorimetric and dielectric techniques N2 - The structure and dynamics of thin polymeric films is reviewed and discussed in the frame work of novel theoretical approaches T2 - Lähnwitzseminar on Calorimetry CY - Rostock-Warnemünde, Germany DA - 03.06.2018 KW - Thin polymeric films KW - Dielectric spectroscopy KW - Thermal süectroscopy PY - 2018 AN - OPUS4-45164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Winkler, J. T1 - Standardization of ellipsometry N2 - The talk addresses the STANDARDIZATION OF ELLIPSOMETRY and the following points are discussed in more detail: historical background of ellipsometry, history of International Conferences on Ellipsometry, Workshops Ellipsometry in Germany and Europe, information on German/European Working Group Ellipsometry, technical/industrial importance of ellipsometry, applications on non-ideal material systems and standardization activities on ellipsometry. T2 - DIN NA Dünne Schichten für die Optik, Mainz CY - Mainz, Germany DA - 06.06.2018 KW - Standardization KW - Ellipsometry KW - Modelling KW - Accreditation PY - 2018 AN - OPUS4-45167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -