TY - CONF A1 - Meermann, Björn T1 - Von Elementspezies, Isotope und Zellen oder: wie kommt man eigentlich von Westfalen nach Berlin N2 - Im Rahmen des Vortrages werden die Möglichkeiten der Elementanalytik an Applikationsbeispielen aus Umwelt und life-sciences aufgezeigt. Hierbei kommen ICP-MS Kopplungstechniken, stabile Isotope und Einzellen- und Partikelanalytik (sc-/sp-ICP-ToF-MS) zum Einsatz. T2 - DAAS PhD Seminar CY - Online meeting DA - 20.09.2021 KW - Elementspezies & Isotope KW - ICP-MS & HR-CS-GFMAS KW - Kopplungstechniken PY - 2021 AN - OPUS4-53378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. T1 - On-line hyphenation of CE with multicollector-icp-ms for species-specific isotopic analysis of sulfur N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species using a multiple-injection approach for instrumental mass bias correction by standard-sample bracketing. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared to data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was promising regarding the differentiation of the river systems by the isotopic signature of river water sulfate. The great potential of this method is based on the versatility of the applied separation technique, not only in the environmental field but also for, e.g., biomolecules, as sulfur is the only covalently bound constituent of proteins that can be analyzed by MC-ICP-MS. T2 - 12th International Conference on Instrumental Methods of Analysis-Modern Trends and Applications (IMA) CY - Online meeting DA - 20.09.2021 KW - CE/MC-ICP-MS KW - Species-specific Isotope Analysis KW - Environmental & life science application KW - Speciation Analysis PY - 2021 AN - OPUS4-53379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haeckel, A. A1 - Ascher, Lena A1 - Beindorff, N. A1 - Prasad, S. A1 - Garczynska, K. A1 - Guo, J. A1 - Schellenberger, E. T1 - Long‑circulating XTEN864‑annexin A5 fusion protein for phosphatidylserine‑related therapeutic applications JF - Apoptosis N2 - Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/−mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug. KW - Programmed cell death KW - LA/ICP-MS Imaging KW - Medicinal application PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533811 DO - https://doi.org/10.1007/s10495-021-01686-w VL - 26 IS - 9-10 SP - 534 EP - 547 PB - Springer AN - OPUS4-53381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langenhan, Jennifer A1 - Lisec, Jan A1 - Jaeger, Carsten T1 - PEGs in the human body: where they are coming from and what they are doing N2 - The general understanding has been that PEGs are biologically inert, meaning they pass the human body without any relevant reaction with anything. But recent studies have shown that migth not be correct. Here a retrospective analysis of LC-MS data was performed to determine correlations between blood PEG levels in humans and different experimental factors. T2 - Make and Measure 2021 CY - Online meeting DA - 16.09.2021 KW - PEG KW - Polyethylene glycole KW - Retrospective analysis PY - 2021 AN - OPUS4-53391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langenhan, Jennifer A1 - Lisec, Jan A1 - Jaeger, Carsten T1 - PEGomics: A meta-study on factors affecting polyethylene glycol (PEG) levels in human blood N2 - Polyethylene glycols (PEGs) are widely used in everyday items such as food additives and in personal care products. In addition, they have multiple medical applications: as laxatives, excipients, and covalently coupled to drug molecules leading to improved pharmacokinetics (PEGylation). While generally regarded as biologically inert, the human body is known to produce antibodies against PEGylated molecules. In addition, PEGs have been shown to be part of a biomarker signature to predict colon cancer outcome, suggesting a more complex and yet unknown behavior of PEGs in the human body. Here, we introduce PEGomics, a retrospective screening approach of publicly available LC-MS data. Using a custom R script to process entire studies, the presence of PEGs was reveled in most human plasma, serum and whole blood samples investigated. Several PEG species and adducts were identified and their correlation with different diseases and health conditions was investigated further. Blood PEG levels significantly differed between patient groups in multiple clinical studies related to e.g. pregnancy duration, fasting and smoking. We discuss possible causes for these effects in the light of recent reports of allergies against PEGs and outline our further strategies to identify the source of PEGs in the human body as well as possible metabolic transformations. T2 - ACS Spring 2021 CY - Online meeting DA - 05.04.2021 KW - PEG KW - Polyethylene glycole KW - PEGomics KW - Retrospective analysis KW - Meta-study PY - 2021 AN - OPUS4-53392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - ICP-ToF (Flugzeitanalysator, engl. time of flight)-MS ermöglicht den Multielement Fingerabdruck einzelner Zellen (single cell) zu analysieren. Die single cell-ICP-ToF-MS kommt bei dem vorgestellten Poster bei der Analyse von Archaeen, die an mikrobiell beeinflusster Korrosion (engl. microbiologically influenced corrosion, MIC) von Stahl eine Rolle spielen, zum Einsatz. Mittels sc-ICP-ToF-MS wird die mögliche Aufnahme von einzelnen Elementen aus dem jeweiligen Stahl untersucht – die erhaltenen Informationen fließen zukünftig in die Aufklärung zugrunde liegender Mechanismen sowie Entwicklung möglicher Materialschutzkonzepte ein. Die Arbeiten Verknüpfen moderne Methoden der Analytical Sciences mit Materialien. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-52941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo JF - Frontiers in oncology N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527843 DO - https://doi.org/10.3389/fonc.2021.654300 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, V. A1 - Traub, Heike A1 - Biskup, K. A1 - Wieczorek, M. A1 - Saatz, Jessica A1 - Pagel, K. T1 - Central project for biochemical analysis of proteoglycans and glycosaminoglycans and for element-specific microscopy N2 - Nearly all disease processes are associated with variations of components of the extracellular matrix (ECM) that are typically observed during the development of inflammation. This concerns for example proteoglycans and their associated glycosaminoglycans (GAG), which have been shown to bind to cationic metal imaging probes due to their strong complexing activity. The complexing activity largely depends on the degree of GAG sulfation and/or carboxylation as well as on the GAG isomericity. In this central project, we investigate GAG structures from inflammatory disorders (namely cardiovascular diseases, inflammatory intestinal diseases and neuroinflammation) provided by researchers of the Collaborative Research Center at the molecular disaccharidic level using chromatographic and mass spectrometric methods. In parallel, the spatial localization and quantification of metal-based imaging probes are evaluated by LA-ICP-MS imaging. T2 - 1st International Symposium In vivo Visualization of Extracellular Matrix Pathology CY - Online Meeting DA - 27.05.2021 KW - Laser ablation KW - ICP-MS KW - MALDI PY - 2021 AN - OPUS4-52716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Ritter, D. A1 - Goeritzer, M. A1 - Thiele, A. A1 - Blumrich, A. A1 - Beyhoff, N. A1 - Luettges, K. A1 - Smeir, E. A1 - Kasch, J. A1 - Grune, J. A1 - Müller, O. A1 - Klopfleisch, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Liver X Receptor Agonist AZ876 Induces Beneficial Endogenous Cardiac Lipid Reprogramming and Protects Against Isoproterenol-Induced Cardiac Damage JF - Journal of the American Heart Association N2 - Background - It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega‐3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results - Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective β‐agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol‐induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography‐high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions - The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol‐induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction. KW - Heart failure KW - Lipids KW - Liver X receptor KW - Diastolic dysfunction KW - Nuclear receptor PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529352 DO - https://doi.org/10.1161/JAHA.120.019473 VL - 10 IS - 14 SP - e019473 AN - OPUS4-52935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, J. J. A1 - Polyakov, D. S. A1 - Samokhvalov, A. A. T1 - Reverse deposition of TI-oxides under nanosecond laser ablation of TI N2 - Processes of laser induced oxidation of metals are typically studied in the framework of heterogeneous chemical reactions occurring on the irradiated surface, which lead to the formation of dense oxide films deposited on it. Such technology has many applications like color-laser marking technology and laser recording on thin metal films for creation of diffractive optical elements . Under the conditions of strong laser ablation, another oxidation mechanism becomes possible: evaporated atoms react with oxygen in a surrounding atmosphere and the products of such reaction are redeposited back onto the substrate. The chemical and phase composition of such deposited layer, its density, morphology and structure depend on the conditions of laser ablation. By varying these conditions, the main properties of such coating can be controlled that is important for some potential application (for example in biomedicine). In our report we present the study of the processes of redeposition of oxides structure under the conditions of multipulse nanosecond laser ablation of titanium (Grade 2) in air atmosphere at normal conditions. Our experiments show that titanium-implants with such deposited oxide layer have increased biocompatibility. Modelling of chemical reaction in laser-induced plasma coupled with experimental methods of plasma optical emission spectroscopy allows us to determine the types of main chemical reactions in laser plasma as well as it influences on the plume dynamics and vapor condensation kinetics. As a result, we propose the general physical picture of reverse deposition of oxides structure under the condition of strong nanosecond laser ablation. The formation of the titanium oxide precipitate is explained not only by collisions in the plasma, but also by the chemical interaction of titanium and oxygen, which leads to the formation of а low pressure area near the substrate and additionally stimulates the reverse deposition of oxides. We expect, similar processes are valid not only for titanium but also for other metals and, possibly, semiconductors. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Meermann, Björn T1 - Finding the most suitable PFASs sum parameter method - A Comparison of AOF vs. EOF and CIC vs. HR-CS-GFMAS N2 - Since it is unknown for many applications, which PFASs are used and how they enter the environment, target analysis-based methods reach their limits. The two most frequently used sum parameters are the adsorbable organically bound fluorine (AOF) and the extractable organically bound fluorine (EOF). Both can be quantified using either combustion ion chromatography (CIC) or high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Here we provide an insight on the advantageous and disadvantageous of both sum parameters and both detection methods. Our study is based on the analysis of surface water samples. Next to total fluorine (TF) analysis, AOF and EOF were determined as well as CIC and HR-CS-GFMAS are compared and results are comparatively discussed. Fluorine mass balancing revealed that, the AOF/TF proportion was higher than the EOF/TF proportion. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF. Although, organically bound fluorine represents only a small portion of TF, PFASs are of worldwide concern, because of their extreme persistence and their bioaccumulation potential. The EOF-HR-CS-GFMAS method turned out to be more precise and sensitive than the AOF-CIC method and is a promising tool for future monitoring studies/routine analysis of PFASs in the environment. T2 - Emerging Contaminants in the Environment Conference CY - Online meeting DA - 27.04.2021 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) PY - 2021 AN - OPUS4-53228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Monodisperse iron oxide nanoparticles as reference material candidate for particle size measurements N2 - In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important, especially with respect to the assessment of their environmental or biological impact. Furthermore, the European Commission’s REACH Regulations require the registration of nanomaterials traded in quantities of at least 1 ton. Powders or dispersions where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as nanomaterials. This creates a need for industrial manufacturers and research or analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution and will also target other key parameters like shape, structure, porosity or functional properties. In this respect, materials like iron oxide or titanium dioxide are considered as candidates to complement the already available silica, Au, Ag, and polystyrene reference nanoparticles. The thermal decomposition of iron oleate precursors in high boiling organic solvents can provide large quantities of iron oxide nanoparticles that can be varied in size and shape.[1, 2] The presence of oleic acid or other hydrophobic ligands as capping agents ensures stable dispersion in nonpolar solvents. Such monodisperse, spherical particles were synthesized at BAM and pre-characterized by electron microscopy (TEM, SEM including the transmission mode STEM-in-SEM) and dynamic light scattering comparing cumulants analysis and frequency power spectrum. 1. REACH regulations and nanosafety concerns create a strong need for nano reference materials with diverse properties. 2. Iron oxide nanoparticles are under development as new candidate reference material at BAM. 3. Narrow particle size distribution confirmed by light scattering and electron microscopy. T2 - Nanosafety 2020 CY - Online meeting DA - 05.10.2020 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Electron microscopy KW - Nanoplattform PY - 2020 AN - OPUS4-52774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Traub, Heike ED - Milacic, R. ED - Scancar, J. ED - Goenaga-Infante, H. ED - Vidmar, J. T1 - Imaging of metal-based nanoparticles in tissue and cell samples by laser ablation inductively coupled plasma mass spectrometry T2 - Comprehensive Analytical Chemistry, Analysis and Characterisation of Metal-Based Nanomaterials N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is nowadays a versatile and powerful analytical method for direct solid sample analysis. The applicability has been demonstrated for a wide variety of samples covering hard and soft materials. In an imaging mode the technique provides quantitative information on the elemental distribution within a sample. LA-ICP-MS imaging is of particular interest in biomedical research as the distribution of an element gives valuable insight on uptake and distribution of essential and toxic trace elements, administered contrast agents as well es nanoparticles. LA-ICP-MS is therefore a powerful complement to other imaging techniques. Recent instrumental improvements, especially in sample chamber design, have contributed to better sensitivity and spatial resolution enabling subcellular imaging. The book chapter provides a comprehensive overview about spatially resolved localisation and quantification of various nanoparticles in cells and tissue thin sections by LA-ICP-MS. Furthermore, different sample preparation strategies and internal standardisation and calibration approaches for bioimaging by LA-ICP-MS are summarized and discussed. Metal-containing nanomaterials are used in numerous fields ranging from industrial applications to nanomedicine. Several studies have demonstrated that the physicochemical properties of nanoparticles have an impact on their pharmacokinetics, transfer and clearance. The high sensitivity and multielement capability of LA-ICP-MS enables the elucidation of interactions between tissue components and nanomaterials used as imaging probes or drug carriers. Potential toxic effects are investigated as well. Thus, LA imaging significantly supports the clinical translation of safe and efficient nanoparticles for diagnostic and therapeutic purposes. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Nanomaterial KW - Tissue KW - Cell PY - 2021 SN - 978-0-323-85305-7 SN - 0166-526X VL - 93 SP - 173 EP - 240 PB - Elsevier CY - Amsterdam ET - 1 AN - OPUS4-52775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Müller, M.E.H. T1 - Priority effects influence the production of mycotoxins of Fusarium and Alternaria N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria tenuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. T2 - 42. Mycotoxin Workshop CY - Online meeting DA - 30.05.2021 KW - Microbe interactions KW - Antagonists KW - Mycotoxins PY - 2021 AN - OPUS4-52815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Demeyer, S. A1 - Le Diouron, V. A1 - Fallot, C. A1 - Vaneeckhoute, H. A1 - Philipp, Rosemarie A1 - Lippa, K. A1 - Toman, B. T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The presentation provides an overview of the EMPIR project ALCOREF “Certified forensic alcohol reference materials”. Results of an EURAMET intercomparison of ethanol in water reference materials developed in the project are presented, and two different statistical models for the key comparison reference function are discussed, the Frequentist approach and a Bayesian approach. T2 - CCQM Organic Analysis Working Group Meeting CY - Online meeting DA - 04.05.2021 KW - Certified reference material KW - EMPIR project KW - Interlaboratory comparison PY - 2021 AN - OPUS4-52852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Von der Au, Marcus T1 - HR-CS-GFMAS as a promising new tool for the analysis of organo-fluorine in environmental samples N2 - New HR-CS-GFMAS based methods for organically bound fluorine detection in environmental samples. T2 - CRC Colloquium - CRC 1349 Fluorine-Specific Interactions CY - Online meeting DA - 21.06.2021 KW - HR-CS-GFMAS KW - Organically bound fluorine KW - Fluorine sum parameter KW - Environmental analysis PY - 2021 AN - OPUS4-52844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. T1 - EURAMET.QM-S14 Measurement capabilities for the quantification of ethanol in water N2 - The presentation summarizes the results of the EURAMET key comparison QM-S14 “Measurement capabilities for the quantification of ethanol in water”. Possible options for the key comparison reference value (KCRV) are discussed. A Bayesian approach is finally used to estimate the KCRV and the degrees of equivalence of participants. T2 - EURAMET TC-MC Sector Committee Bio- and Organic Analysis Meeting CY - Online meeting DA - 02.02.2021 KW - Certified reference material KW - EMPIR project KW - Interlaboratory comparison PY - 2021 AN - OPUS4-52615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Demeyer, S. A1 - Le Diouron, V. A1 - Fallot, C. A1 - Vaneeckhoute, H. A1 - Philipp, Rosemarie A1 - Lippa, K. A1 - Toman, B. T1 - EURAMET.QM-S13 Comparison of value assigned forensic alcohol in water reference materials N2 - The presentation summarizes the results of the EURAMET key comparison QM-S13 “Comparison of value assigned forensic alcohol in water reference materials”. Possible options for the key comparison reference function (KCRF) are discussed: the frequentist approach and a Bayesian approach. Both methods are used to determine the degrees of equivalence of materials and participants. T2 - EURAMET TC-MC Sector Committee Bio- and Organic Analysis Meeting CY - Online meeting DA - 02.02.2021 KW - Certified reference material KW - EMPIR project KW - Iinterlaboratory comparison PY - 2021 AN - OPUS4-52617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy JF - Nature methods N2 - The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through Quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for Hardware calibration and image acquisition, management and analysis. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 DO - https://doi.org/10.1038/s41592-021-01162-y SN - 1548-7105 VL - 18 SP - 1424 EP - 1427 PB - Nature Publishing Group CY - London AN - OPUS4-52722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epping, Ruben A1 - Koch, Matthias A1 - Langer, S. A1 - Weiss, T. T1 - Development of an analytical device to search for truffles N2 - The goal of this project is to develop a mobile technical solution for tracking down truffles, with which they can be harvested easier, faster, cheaper and more efficiently than with the current method of using trained dogs. The R&D cooperation project between BAM and sglux GmbH contains the characterization of the truffle aroma and identification of marker substances therein, the development of a fast, sensitive separation and quantification method based on ozone chemiluminescence as well as the construction of a prototype device. T2 - Tag der Chemie CY - Online Meeting DA - 06.07.2021 KW - Truffles KW - Volatile organic compounds KW - Chemiluminescence KW - Mobile device KW - Trace analysis PY - 2021 AN - OPUS4-52725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Meermann, Björn T1 - A fast and simple extraction method for the determination of PFASs in soil samples - HR-CS-GFMAS a new screening tool N2 - Here, we describe a fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) utilizing extractable organic fluorine (EOF) sum parameter analysis and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) in soil samples. After extraction and separation of inorganic and organic fluorinated compounds, organically bound fluorinated compounds were indirectly determined via the molecular absorption of gallium mono-fluoride at 211.248 nm. The implementation of the decisions of the “Stockholm Convention on persistent organic pollutants” as well as the “Protocol on Persistent Organic Pollutants of the Convention on Long-Range Transboundary Air Pollution” of the UNECE include the reduction respectively the elimination of PFASs in the environment. Currently, regulations aim to target single compounds (mostly C8-PFAS). But the PFAS group includes over 4700 substances, which are potentially persistent and toxic, thus target analytical approaches are not suitable for a holistic approach investigating the PFAS pollutant situation. Furthermore, forbidden PFASs are substituted by short-chain PFASs, thus the number of unknow substances is steadily increasing. For this reason, sum parameter approaches are more suitable to investigate and assess the pollution situation as well as derive exposure limits. Our developed analytical method was successfully applied to determine PFASs in soil samples from a polluted site. In view of steadily increasing numbers of PFAS substances, our method will make an important contribution in assessing the pollution situation as well as support policy makers in deriving exposure limits for PFAS in the future. T2 - ENSOr - International Workshop on Emerging policy challenges on new soil contaminants CY - Online Meeting DA - 06.05.2021 KW - PFAS KW - HR-CS-GFMAS KW - Soil KW - Sediment PY - 2021 AN - OPUS4-52608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns JF - Separations N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Elemental analytical methods in material- & environmental analysis N2 - Materials in contact with the environment release e.g., metal-ions, elemental species and/or (nano-)particles. Once these species and/or particles are released, they are ingested by organisms and cells and thus, might have a negative impact on the environment. Thus, identification as well as quantification of potentially harmful substances is of utmost importance and highly needed to assess ecotoxicological impact of (emerging) pollutants. The oral presentation provides an overview on the power of elemental analytical techniques, in particular: ICP-MS as well as HR-CS-GFMAS in environmental research. Current research topics will be highlighted: i) Elemental Speciation analysis of anti-fouling agents via CE/MC-ICP-MS; ii) Per- and polyfluorinated compounds in surface waters via high resolution-continuum source-graphite furnace molecular absorption spectroscopy (HR-CS-GFMAS); iii) Single cell and single organism analysis via sc-ICP-ToF-MS and ETV/ICP-MS for ecotoxicological assessment. T2 - Analytical Colloquium at MERCK CY - Online meeting DA - 19.04.2021 KW - HR-CS-GFMAS KW - ICP-ToF-MS KW - ETV/ICP-MS PY - 2021 AN - OPUS4-52566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Kneipp, Janina T1 - Surface Molecular Patterning by Plasmon-Catalyzed Reactions JF - ACS Applied Materials & Interfaces N2 - Self-assembled monolayers (SAMs) on plasmonic substrates play a significant role applications of surface-enhanced Raman scattering (SERS). At the same time, localized surface plasmon resonances (LSPRs) can be employed for a broad range of plasmon-supported chemical modifications. Here, micropatterning using the derivatization of SAMs on gold nanosubstrates for rewritable SERS-based security labels or as the basis for sensing arrays functionalized with biomolecules is demonstrated using different plasmon-catalyzed reactions. The formation of 4,4′-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) as well as from p-nitrothiophenol (PNTP) and the reduction of PNTP to PATP are used to change the functionality of the substrate in specified positions. Employing LSPR, the reactions are started by illumination using visible laser light at a high intensity in a focal spot of a microscope objective and yield microscopic patterns of the reaction product. The obtained molecular patterns can be erased by other reactions, enabling different strategies for rewriting, encryption, or stepwise functionalization. KW - 4,4′-dimercaptoazobenzene KW - Surface molecular patterning KW - Plasmon-catalyzed reactions KW - p-aminothiophenol KW - p-nitrothiophenol PY - 2021 DO - https://doi.org/10.1021/acsami.1c12410 SN - 1944-8252 VL - 13 IS - 36 SP - 43708 EP - 43714 PB - ACS Publications AN - OPUS4-53341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munir, R. A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Zaidi, N. T1 - Abundance, fatty acid composition and saturation index of neutral lipids in colorectal cancer cell lines JF - The Journal of the Polish Biochemical Society and of the Polish Academy of Sciences N2 - Lipid droplets, the dynamic organelles that store Triglycerides (TG) and cholesterol esters (CE), are highly accumulated in colon cancer cells. This work studies the TG and CE subspecies profile in colon carcinoma cell lines, SW480 derived from primary tumor, and SW620 derived from a metastasis of the same tumor. It was previously reported that the total TG and CE content is dramatically higher in SW620 cells; however, TG and CE subspecies profile has not been investigated in detail. The work presented here confirms that the total TG and CE Content is significantly higher in the SW620 cells. Moreover, the fatty acid (FA) composition of TG is significantly altered in the SW620 cells, with significant decrease in the abundance of saturated triglycerides. This resulted in a significantly decreased TG saturation index in the SW620 cells. The saturation index of CE was also significantly decreased in the SW620 cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533504 DO - https://doi.org/10.18388/abp.2020_5465 VL - 68 IS - 1 SP - 1 EP - 4 PB - ABP Acta Biochimica Polonica AN - OPUS4-53350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Kobelt, D. A1 - Walther, W. A1 - Mokrizkij, M. A1 - Grötzinger, C. A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Wolf, J. A1 - Beindorf, N. A1 - Brenner, W. A1 - Stein, U. T1 - Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer JF - Cancers N2 - MACC1 is a prognostic and predictive metastasis biomarker for more than 20 solid Cancer entities. However, its role in cancer metabolism is not sufficiently explored. Here, we report on how MACC1 impacts the use of glucose, glutamine, lactate, pyruvate and fatty acids and show the comprehensive analysis of MACC1-driven metabolic networks. We analyzed concentrationdependent changes in nutrient use, nutrient depletion, metabolic tracing employing 13C-labeled substrates, and in vivo studies. We found that MACC1 permits numerous effects on cancer metabolism. Most of those effects increased nutrient uptake. Furthermore, MACC1 alters metabolic pathways by affecting metabolite production or turnover from metabolic substrates. MACC1 supports use of glucose, glutamine and pyruvate via their increased depletion or altered distribution within metabolic pathways. In summary, we demonstrate that MACC1 is an important regulator of metabolism in cancer cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533526 DO - https://doi.org/10.3390/cancers13050978 VL - 13 IS - 5 SP - 1 EP - 22 PB - MDPI Journal Cancers AN - OPUS4-53352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamus, A. A1 - Ali, I. A1 - Vasileiadis, V. A1 - Al-Hileh, L. A1 - Lisec, Jan A1 - Frank, M. A1 - Seitz, G. A1 - Engel, N. T1 - Vincetoxicum arnottianum modulates motility features and metastatic marker expression in pediatric rhabdomyosarcoma by stabilizing the actin cytoskeleton JF - BMC Complementary Medicine and Therapies N2 - Background: Prevention of metastatic invasion is one of the main challenges in the treatment of alveolar rhabdomyosarcoma. Still the therapeutic options are limited. Therefore, an anti-tumor screening was initiated focusing on the anti-metastatic and anti-invasion properties of selected medicinal plant extracts and phytoestrogens, already known to be effective in the prevention and treatment of different cancer entities. Methods: Treatment effects were first evaluated by cell viability, migration, invasion, and colony forming assays on the alveolar rhabdomyosarcoma cell line RH-30 in comparison with healthy primary cells. Results: Initial anti-tumor screenings of all substances analyzed in this study, identified the plant extract of Vincetoxicum arnottianum (VSM) as the most promising candidate, harboring the highest anti-metastatic potential. Those significant anti-motility properties were proven by a reduced ability for migration (60%), invasion (99%) and colony formation (61%) under 48 h exposure to 25 μg/ml VSM. The restricted motility features were due to an induction of the stabilization of the cytoskeleton – actin fibers were 2.5-fold longer and were spanning the entire cell. Decreased proliferation (PCNA, AMT, GCSH) and altered metastasis (e. g. SGPL1, CXCR4, stathmin) marker expression on transcript and protein level confirmed the significant lowered tumorigenicity under VSM treatment. Finally, significant alterations in the cell metabolism were detected for 25 metabolites, with levels of uracil, N-acetyl serine and propanoyl phosphate harboring the greatest alterations. Compared to the conventional therapy with cisplatin, VSM treated cells demonstrated a similar metabolic shutdown of the primary cell metabolism. Primary control cells were not affected by the VSM treatment. Conclusions: This study revealed the VSM root extract as a potential, new migrastatic drug candidate for the putative treatment of pediatric alveolar rhabdomyosarcoma with actin filament stabilizing properties and accompanied by a marginal effect on the vitality of primary cells. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533530 DO - https://doi.org/10.1186/s12906-021-03299-x VL - 21 IS - 1 PB - Springer Nature AN - OPUS4-53353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Iwert, C. A1 - Stein, J. A1 - Appelt, C. A1 - Vogt, K. A1 - Rainer, R. J. A1 - Tummler, K. A1 - Mühle, K. A1 - Stanko, K. A1 - Schumann, J. A1 - Uebe, D. A1 - Jürchott, K. A1 - Lisec, Jan A1 - Janek, K. A1 - Gille, C. A1 - Textoris-Taube, K. A1 - Sai, S. A1 - Petersen, A. A1 - Kühl, A. A. A1 - Klipp, E. A1 - Meisel, C. A1 - Sawitzki, B. T1 - TCAIM controls effector T cell generation by preventing Mitochondria-Endoplasmic Reticulum Contact Site-initiated Cholesterol Biosynthesis T2 - bioRxiv N2 - T cells need to adapt their cellular metabolism for effector cell differentiation. This relies on alterations in mitochondrial physiology. Which signals and molecules regulate those alterations remains unclear. We recently reported, that the mitochondrial protein TCAIM inhibits activation-induced changes in mitochondrial morphology and function and thus, CD effector T cell formation. Using conditional TCAIM knock-in (KI) and knockout (KO) mice, w now show that it also applies to CD8+ T cells and more importantly, delineate the molecular processes in mitochondria by which TCAIM controls effector cell differentiation. TCAIM KI resulted in reduced activation-induced HIF1α protein expression. Metabolomics and transcriptional data in combination with mathematical flux modeling revealed an impaired induction of anabolic pathways, especially of the mevalonate pathway and cholesterol biosynthesis in TCAIM KI CD8+ T cells. Addition of cholesterol completely rescued HIF1α protein expression, activation and proliferation of TCAIM KI CD8+ T cells. At the molecular level, TCAIM delayed activation-induced mitochondria-ER contact (MERC) formation by binding to MERC promoting proteins such as RMD3 and VDAC2. In summary, we demonstrate that TCAIM suppresses effector cell differentiation by inhibiting MERC formation, which induce HIF1α-mediated increase in cellular metabolism and cholesterol biosynthesis. KW - Mass Spectroscopy KW - Metabolomics KW - Cancer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533543 UR - https://www.biorxiv.org/content/10.1101/2021.04.20.440500v1 DO - https://doi.org/10.1101/2021.04.20.440500 VL - April SP - 1 EP - 45 PB - Cold Spring Harbor Laboratory AN - OPUS4-53354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands JF - Microchimica Acta N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533597 DO - https://doi.org/10.1007/s00604-021-04960-5 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - von der Au, Marcus A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method for soil samples utilizing HR-CS-GFMAS N2 - Here, we describe a fast and simple extraction method for the determination of per- and polyfluorinated alkyl substances (PFASs) utilizing extractable organic fluorine (EOF) sum parameter analysis and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) in soil samples. After extraction and separation of inorganic and organic fluorinated compounds, organically bound fluorinated compounds were indirectly determined via the molecular absorption of gallium mono-fluoride at 211.248 nm. The implementation of the decisions of the “Stockholm Convention on persistent organic pollutants” as well as the “Protocol on Persistent Organic Pollutants of the Convention on Long-Range Transboundary Air Pollution” of the UNECE include the reduction respectively the elimination of PFASs in the environment. Currently, regulations aim to target single compounds (mostly C8-PFAS). But the PFAS group includes over 4700 substances, which are potentially persistent and toxic, thus target analytical approaches are not suitable for a holistic approach investigating the PFAS pollutant situation. Furthermore, forbidden PFASs are substituted by short-chain PFASs, thus the number of unknow substances is steadily increasing. For this reason, sum parameter approaches are more suitable to investigate and assess the pollution situation as well as derive exposure limits. Our developed analytical method was successfully applied to determine PFASs in soil samples from a polluted site. In view of steadily increasing numbers of PFAS substances, our method will make an important contribution in assessing the pollution situation as well as support policy makers in deriving exposure limits for PFAS in the future. T2 - SALSA Make and Measure ... and Machines CY - Online meeting DA - 16.09.2021 KW - PFAS KW - HR-CS-GFMAS KW - IC KW - EOF KW - Soil PY - 2021 AN - OPUS4-53302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Meermann, Björn T1 - Detection of PFAS pollution in environmental samples - A Fast & sensitive PFAS sum parameter method using HR CS GFMAS N2 - The substance class of per- and polyfluorinated alkyl substances (PFAS) comprises more than 5300 organic compounds. PFAS are completely fluorinated on at least one carbon atom. They are associated with negative impacts on human and animal health, are extremely persistent in the environment, and bioaccumulate along food chains. Therefore, PFAS are classified as emerging pollutants. At the same time, their physicochemical properties make them attractive for use in diverse technical applications. They are both hydrophobic and lipophobic and show high thermal as well as chemical resistance due to the strong C-F bond. First regulations of some PFAS in combination with the technically excellent properties generated an innovation pressure and led to an enormous increase in the number of fluorinated substitution compounds. Due to the increasing complexity of this substance class, target analysis is not able to cover such a variety and multitude of analytes. Therefore, a suitable PFAS sum parameter method is necessary for an accurate detection of PFAS pollution in the environment, the identification of PFAS hotspots and an evaluation of appropriate remediation measures. Here we provide insights into the current state of PFAS sum parameter development and present our latest results on method development for the quantitative analysis of PFAS as extractable organically bound fluorine (EOF) in environmental samples using high-resolution molecular absorption spectrometry (HR-CS-GFMAS). For this purpose, we optimized the extraction of PFAS from different solid matrices with simultaneous separation of inorganic fluoride. For quantification resulting extracts were measured using a fluorine specific HR-CS-GFMAS method. By adding gallium salt solutions as modifiers in HR-CS-GFMAS, fluorine can be indirectly quantified very selectively by the in situ formation of GaF with low limits of quantification (instrumental LOQ c(F) < 3 µg/L). Here we will show results from real soil samples from sites with and without known contamination. T2 - 6. Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS) CY - Online meeting DA - 20.09.2021 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soil KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2021 AN - OPUS4-53333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gantois, F. A1 - Lalere, B. A1 - Vaslin-Reimann, S. A1 - Philipp, Rosemarie T1 - ALCOREF "Certified forensic alcohol reference materials" N2 - The poster presents the main achievements of the capacity building project ALCOREF “Forensic alcohol reference materials”. The project was part of the European Metrology Programme for Innovation and Research (EMPIR). Altogether 43 certified ethanol in water reference materials (CRMs) in the mass fraction range of 0.1 to 7 mg/g were developed by project partners. These CRMS are suitable for the calibration and verification of evidential breath alcohol analysers according to the requirements of the International Organisation of Legal Metrology (OIML). Furthermore, 10 new or improved Calibration and Measurement Capability (CMC) claims for purity assessment of ethanol and ethanol quantification were prepared. Newly established measurement capabilities and the new CRMs were successfully tested in three intercomparisons conducted as official intercomparisons of EURAMET Technical Committee for Metrology in Chemistry. T2 - 20th International Metrology Congress CIM CY - Lyon, France DA - 07.09.2021 KW - Certified reference material KW - EMPIR project KW - Evidential breath alcohol measurement PY - 2021 AN - OPUS4-53288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Strasse, Anne T1 - Optical detection of defects during laser metal deposition: Simulations and experiment JF - Applied surface science N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. KW - Additive manufacturing KW - Laser metal deposition (LMD) KW - Thermal model KW - Optical sensor KW - Process control PY - 2021 DO - https://doi.org/10.1016/j.apsusc.2021.151214 SN - 0169-4332 VL - 570 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lee, Hee-Jin A1 - Rühl, Isabel A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - Phosphorus sum parameter analysis using HR-CS-GFMAS N2 - Organophosphate (OP) esters (OPEs) are widely used as flame retardants (FRs) and can for that purpose be found in textiles, furnitures, electronics and more. They can also be used as plasticizers or lubricants. OPEs have been found in air, water and sediment as environmental pollutants and are associated with potential health risks like cancer. In this study, a method for the phosphorus sum parameter analysis using HR-CS-GFMAS was optimized for environmental (water) samples. For this purpose, three FR substances (TPP, VPA, TDCPP) were used. T2 - SALSA Make and Measure ... and Machines CY - Online meeting DA - 16.09.2021 KW - HR-CS-GFMAS KW - Phosphorus KW - Organophosphate esters KW - Flame retardants PY - 2021 AN - OPUS4-53303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water JF - Metrologia N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman microspectroscopy elucidates Early Medieval art technology: high-fired gypsum mortar and Egyptian blue from the church St. Peter above Gratsch (South Tyrol, Northern Italy) N2 - Raman microspectroscopy enables imaging of the distributions of mineral phases as well as physical properties of materials, such as crystal orientations and crystallinities, with down to sub-micrometre resolution. In a combination with other spectroscopic and microscopic techniques, this approach was applied to the analysis and elucidation of ancient production technologies of stucco fragments made of high-fired gypsum mortar and Egyptian blue pigment discovered on a monochrome wall painting fragment originating from the Early Medieval (5th/6th century AD) construction phase of the church St. Peter above Gratsch in South Tyrol (Northern Italy). T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - Raman microspectroscopy KW - Gypsum KW - Pigments PY - 2022 AN - OPUS4-55896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds JF - Scientific reports N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559028 DO - https://doi.org/10.1038/s41598-022-19923-w SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - ESAS - CSSC CY - Brno, Czech Republic DA - 04.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - SALSA - Communicating Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Multielemental analysis of MIC organisms grown on solid steel samples by means of single cell-ICP-ToF-MS N2 - Inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) enables the analysis of the multi-element fingerprint of individual cells due to a (quasi-)simultaneous detection of about 70 elements of the periodic table. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed which ensures the analysis of intact cells. It allows the studies of archaea at a single cell level which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - DGMS Young Scientists Fall Meeting 2022 CY - Hünfeld, Germany DA - 28.09.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-55910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effect and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields (QY). For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. For the reliable and accurate determination of QY which is the key performance parameter for the comparison of different luminophores, we certified a set of 12 quantum yield standards, which absorb and emit in the wavelength range from 300 nm to 1000 nm. T2 - Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-55914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Bliesener, Lilly A1 - Weiss, Tilman A1 - Koch, Matthias T1 - Marker Substances in the Aroma of Truffles JF - Molecules N2 - The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results. KW - Truffle KW - Volatile organic compounds; KW - Gas chromatography KW - Mass spectrometry KW - Canine olfactometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556116 DO - https://doi.org/10.3390/molecules27165169 SN - 1420-3049 VL - 27 IS - 16 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-55611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spallanzani, Roberta A1 - Koga, K. A1 - Cichy, S. A1 - Wiedenbeck, M. A1 - Schmidt, B. A1 - Oelze, Marcus A1 - Wilke, M. T1 - Lithium and boron difusivity and isotopic fractionation in hydrated rhyolitic melts JF - Contributions to mineralogy and petrology N2 - Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the difusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having diferent Li and B contents; these were studied in difusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B difusion of 57±4 kJ/mol and 152±15 kJ/mol with pre-exponential factors of 1.53 × 10–7 m2/s and 3.80× 10–8 m2 /s, respectively. Lithium isotopic fractionation during difusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li difusivities and isotopic fractionation results difer somewhat from earlier published values, but overall confrm that Li difusivity increases with water content. Our results on B difusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confrm that B difusivity is limited by viscous fow in silicate melts. Our results on Li and B difusion present a new tool for understanding degassing-related processes, ofering a potential geospeedometer to measure volcanic ascent rates. KW - Hydrated silicate melts KW - Stable isotopes KW - Diffusion KW - Isotopic fractionation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554496 DO - https://doi.org/10.1007/s00410-022-01937-2 VL - 177 IS - 8 SP - 1 EP - 17 PB - Springer AN - OPUS4-55449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Benemann, Sigrid A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - This study presents a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Core-shell particles KW - 3D image analysis KW - Roughness KW - SEM tilting KW - Batch analysis PY - 2022 AN - OPUS4-55452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites JF - Journal of Materials Chemistry C N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Yang, J. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - Fluorescence temperature sensing of NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ nanoparticles at low and high temperatures JF - Nanotechnology N2 - NaYF4:Yb3+/Tm3+@NaGdF4:Nd3+/Yb3+ upconversion nanoparticles (UCNPs) were prepared using a solvothermal method, and the effects of key factors such as the content of sensitiser Nd 3+ and Yb3+ on their luminescence properties were investigated. The nanoparticles are homogeneous in size and well dispersed. Under 808 nm excitation, it can produce strong upconversion fluorescence. At the same time, the nanoparticles have good temperature-sensing properties at the thermally coupled energy levels of 700 nm and 646 nm for Tm3+. Using its fluorescence intensity ratio (FIR), accurate temperature measurements can be performed, and it has been found that it exhibits different temperature sensing properties in low and high-temperature regions. The maximum relative sensitivity was found to be 0.88% K-1 and 1.89% K-1 for the lowtemperature region of 285 K-345 K and the high-temperature region of 345 K-495 K. The nanoparticles were applied to the internal temperature measurement of lithium batteries and the actual high-temperature environment, respectively, and were found to have good temperature measurementt performance. KW - Fluorescence KW - Sensor KW - Temperature KW - Ratiometric KW - Lanthanide KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Upconversion nanoparticle PY - 2022 DO - https://doi.org/10.1088/1361-6528/ac84e4 SN - 1361-6528 VL - 33 IS - 34 SP - 1 EP - 15 PB - IOP Publishing CY - Bristol AN - OPUS4-55454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - New possibilities in single cell analysis via ICP-ToF-MS – zooming into the region where materials meet environment N2 - Materials are key for our modern communities; current life seems nearly impossible without concrete, plastic and metal. In particular metals play important roles in all areas of our daily life - from building materials to high tech products. However, due to the increasing consumption of metals and corresponding waste production, an elevated release of metals from buildings and consumer goods into the environment takes place. Furthermore, metals in direct contact with the environment undergo corrosion processes which leads also to a release of metals into the (aquatic) environment. Besides this immediate metal release, the lifespan of products/buildings are substantially reduced – hence unnecessary economic costs arise. Thus, research in this regard is needed within the force field of metal/material  environment. However, to evaluate the environmental impact of materials as well as developing “safe” materials, new analytical methods are highly needed. One promising powerful tool in this regard is single cell-ICP-ToF-MS for multi-elemental analysis on a single cell/organism level. Within this presentation the concept, strength as well as challenge of single cell-ICP-MS are briefly introduced. Afterwards, two application examples are presented: (i) assessing the environmental impact of metals and (ii) the impact of the environment on metal-based materials and the derivation of potential environmental-friendly material protection strategies. These applications highlight the strength of new analytical approaches to explore the durability and safety of newly developed materials. Thus, analytical chemistry is one corner stone to transformation of modern society into circular economy (CEco). (i) Diatoms are located at the bottom of the food chain. Thus, toxicological relevant metals taken up by diatoms can possibly accumulate within the food web and cause harmful effects. Diatoms are a common test system in ecotoxicology. To investigate potential metal uptake and harmful effects on a single cell level, we developed an on-line single cell-ICP-ToF-MS approach for multi-elemental diatom analysis. Our approach is a new potential tool in ecotoxicological testing for metal-based materials. (ii) Next to classical corrosion processes, microorganisms are responsible for so called microbially influenced corrosion (MIC). MIC is a highly unpredictable process relying on the interaction pathways between cells and the metal surface. To shed light on MIC processes and derivate potential metal protection strategies, we applied single cell-ICP-ToF-MS for MIC research on a single bacteria/archaea level. It turned out that microorganism are taking up particular metals from alloys - thus, single bacteria-ICP-ToF-MS will enable the development of environmental friendly corrosion protection strategies. T2 - 10th Nordic Conference on Plasma Spectrochemistry CY - Loen, Norway DA - 12.06.2022 KW - sc-ICP-ToF-MS KW - Material - Environment interaction KW - Diatom, Bacteria PY - 2022 AN - OPUS4-55533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles JF - Frontiers in physiology N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Resch-Genger, Ute T1 - Multi-color nanosensors for ratiometric measurements of acidic, neutral, and basic pH based on silica and polystyrene particles N2 - pH presents one of the most important analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor mediated internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labelled or stained with a multitude of sensor dyes, have several advantages as compared to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte-sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by staining and/or labelling with different fluorophores and sensor molecules are surface-functionalized particles like silica (SiO2) and polystyrene (PS) particles. Here we present a platform of blue-red-green fluorescent pH nanosensors for the measurement of acidic, neutral, and basic pH utilizing both types of matrices and two spectrally distinguishable sensor dyes with an integrated reference dye and demonstrate its applicability for cellular studies. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Nanosensors KW - pH sensing KW - Silica- and polystyrene particles KW - Ratiometric sensors KW - Fluorescence PY - 2022 AN - OPUS4-55597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Multifaceted laser induced plasma: spectroscopy and beyond N2 - In this presentation, I will give a brief overview of my personal experience with laser induced plasma (LIP). I will start from my and colleagues’ early works, where we used LIP as an atomic reservoir for laser induced fluorescence (LIP). We applied LIP-LIF for a sensitive detection of trace elements in various materials and demonstrated that under certain conditions the technique can even be used for isotope analysis. Next, I will discuss the application of LIP spectroscopy, i.e., LIBS, to material identification that nowadays constitutes one of the best applications of this technique. In those early days, we used correlation analysis for spectra processing; it is now replaced by more powerful chemometric methods. Further, I will stop on our efforts in modeling LIP that we first intended for the improved quality of spectroscopic analysis and later extended to non-spectroscopic fields such as chemical vapor deposition and surface structuring. We developed a version of calibration-free LIBS, in which we iterated model-generated spectra until a close match was achieved between experimental and synthetic spectra to determine concentrations. Next, I will briefly overview our recent developments in plasma modeling that include plasma chemistry. This was important in view of widening application of LIBS as a molecular technique. I will also address several plasma diagnostics, e.g., Radon transform tomography that we developed to get more insight about LIP that was helpful for both analytic spectroscopy and modeling. Finally, I will mention several exotic applications of LIP such as LIP-based lasers and chemical reactors to illustrate a real multifaceted character of laser induced plasma and usefulness of its study for many science fields. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Emission spectroscopy KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-55968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - A Long Way of Plasma Modeling: Personal Experience N2 - Modeling is an important tool for understanding a physical phenomenon. It helps to interpret results of experiments and optimize experimental parameters for obtaining a desirable result. Modeling laser induced plasma is beneficial for many scientific and industrial fields, e.g., analytical chemistry, pulsed laser deposition, plasma enhanced chemical vapor deposition, laser welding, additive manufacturing etc. In this presentation, a personal experience in development of a physical model of laser induced plasma will be given in a chronological sequence starting from early 2000th and until now. Over the time, the model evolved from its simple analytical form that described plasma emission spectra to its current numerical form that describes plasma dynamics, chemistry, and interaction with a substrate surface. Several examples will be given for the application of the model to practical problems such as spectroscopic chemical analysis, plasma enhanced chemical vapor deposition, and surface modification by laser ablation. T2 - XII World Conference on Laser Induced Breakdown Spectroscopy CY - Bari, Italy DA - 05.09.2022 KW - Laser induced plasma KW - CFD computational fluid dynamic KW - Plasma modeling KW - Plasma chemistry PY - 2022 AN - OPUS4-55669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Millar, S. A1 - Licht, M. T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with LIBS N2 - Concrete structures often show severe damage during their lifetime. One such damage is pitting corrosion of the steel reinforcement caused by chloride ingress into the porous concrete structure. Laser-induced breakdown spectroscopy (LIBS) is a promising method in civil engineering, which is used for detection of chlorine in concrete structures in addition to conventional methods of wet chemistry. To assess LIBS as a trustful analytical technique, its accuracy and robustness is carefully tested. The presentation will outline the results of the interlaboratory comparison of chlorine quantification in cement paste samples, which was carried out by 12 laboratories in 10 countries. Two sets of samples with chloride content ranging from 0.06-1.95 wt.% in the training set and 0.23-1.51 wt.% in the test sample set (“unknowns”), with additional variations in the type of cement and chlorine source (salt type) were sent to the laboratories. The overall result demonstrates that LIBS is suitable for the quantification of the investigated sample compositions: average relative bias was mostly below 15 %. Considering that the laboratories did not receive instructions on how to perform the analysis or how to process the data, the results can be evaluated as a true status quo of the LIBS technique for this type of analysis. T2 - XII Laser Induced Breakdown Spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Chlorine KW - Cement pastes KW - Interlaboratory comparison PY - 2022 AN - OPUS4-55680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen A1 - Oelze, Marcus A1 - Rosner, M. A1 - Rienitz, O. T1 - Isotope reference materials N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. In the past, the investigation and interpretation of such variations was the field of a limited number of experts. With new upcoming techniques and research topics in the last decades, such as provenance or food authenticity studies, the number of published isotope data strongly increased. Instrumental developments such as the enhancement of inductively coupled plasma mass spectrometers (ICP-MS) from an instrument for simple quantitative analysis to highly sophisticated isotope ratio machines influenced this process significantly. While in former times only experts in mass spectrometry were able to produce reliable isotope data, nowadays many laboratories, never been in touch with mass spectrometry before, produce isotope data with an ICP-MS. Isotope reference materials (iCRM) are indispensable to enable a reliable method validation or in rare cases even SI-traceability. The fast development and the broad availability of ICP-MS also lead to an expansion of the classical research areas and new elements are under investigation. Irrespective of the investigated element or the knowledge of the user all isotope ratio applications require reference materials either for correction of instrumental isotope fractionation, for method validation or to provide a common accepted basis as needed for delta measurements. This presentation will outline the basic principles and illustrate the urgent need for new iCRMs. Consequently, the production and certification of iCRMs will be discussed and illustrated by examples of already completed certification projects. Finally, plans for future iCRMs to be produced at BAM will be presented. T2 - ICP-MS Anwender*innentreffen 2022 CY - Leoben, Austria DA - 05.09.2022 KW - Absolute isotope ratio KW - Traceability KW - Metrology KW - Comparability KW - Uncertainty KW - Isotope reference materials KW - Delta scale PY - 2022 AN - OPUS4-55681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Matthias A1 - Mauch, Tatjana A1 - Riedel, Juliane T1 - Development of a Hydrazine-Based Solid-Phase Extraction and Clean-Up Method for Highly Selective Quantification of Zearalenone in Edible Vegetable Oils by HPLC-FLD JF - Toxins N2 - Rapid, cost-efficient, and eco-friendly methods are desired today for routine analysis of the Fusarium mycotoxin zearalenone (ZEN) in edible vegetable oils. Liquid chromatography with fluorescence detection (HPLC-FLD) is commonly used to reliably control the specified ZEN maximum levels, which requires efficient sample clean-up to avoid matrix interferences. Therefore, a highly selective extraction and clean-up method based on reversible covalent hydrazine chemistry (RCHC) using hydrazine-functionalized silica was developed. This efficient solid-phase extraction (SPE) involves reversible hydrazone formation of ZEN with the hydrazine moiety covalently bound to a solid phase. Optimal conditions were achieved with 1 mL SPE cartridges filled with 400 mg of hydrazine-functionalized silica. The developed RCHC-SPE method was validated in an interlaboratory comparison study (ILC) with twelve participants analyzing six edible vegetable oils with a focus on maize oils. The derived method parameters (ZEN recovery 83%, repeatability 7.0%, and reproducibility 18%) meet the performance criteria of Commission Regulation (EC) No 401/2006. The developed RCHC-SPE-based HPLC-FLD method allows the reliable quantification of ZEN in the range of 47–494 μg/kg for different types of edible vegetable oils, also for matrix-reach native oils. Due to the high efficiency, the significantly reduced matrix load helps to extend the lifetime of analytical equipment. Furthermore, the re-useability of the RCHC-SPE cartridges contributes to an eco-friendly approach and reduced analysis costs. To our knowledge, this is the first report on ZEN quantification in edible vegetable oils based on manual RCHC-SPE cartridges. Due to its high performance, the developed RCHC-SPE method is a promising alternative to the current European standard method EN 16924:2017 (HPLC-FLD part). KW - Mycotoxin KW - Food KW - Reversible covalent hydrazine chemistry (RCHC) KW - Quantitative determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554812 DO - https://doi.org/10.3390/toxins14080549 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-55481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monks, M.-J. A1 - Würth, Christian A1 - Kemnitz, Erhard A1 - Resch-Genger, Ute T1 - Dopant ion concentration-dependent upconversion luminescence of cubic SrF2:Yb3+, Er3+ nanocrystals prepared by a fluorolytic sol–gel method JF - Nanoscale N2 - A fluorolytic sol–gel method was used for the fast and simple synthesis of small cubic-phase SrF2:Yb3+, Er3+ upconversion (UC) nanocrystals (UCNC) of different composition at room temperature. Systematic studies of the crystal phase and particle size of this Yb3+,Er3+-concentration series as well as excitation power density (P)-dependent UC luminescence (UCL) spectra, UCL quantum yields (ΦUCL), and UCL decay kinetics yielded maximum UCL performance for doping amounts of Yb3+ of 13.5% and Er3+ of 1.3% in the studied doping and P-range (30–400 W cm−2). Furthermore, ΦUCL were determined to be similar to popular β-NaYF4:Yb3+,Er3+. The relative spectral UCL distributions revealed that all UCNC show a strong red emission in the studied doping and P-range (30–400 W cm−2) and suggest that the UCL quenching pathway for unshelled cubic-phase SrF2:Yb3+,Er3+ UCNC differs from the commonly accepted population and depopulation pathways of β-NaYF4:Yb3+,Er3+ UCNC. In SrF2:Yb3+,Er3+ UCNC the 4S3/2 → 4I13/2 transition exhibits a notably stronger sensitivity towards P and reveals increasing values for decreasing Yb3+–Yb3+ distances while the 4I9/2 → 4I15/2 transition is significantly less affected by P and energy migration facilitated UCL quenching. These results emphasize the complexity of the UC processes and the decisive role of the crystal phase and symmetry of the host lattice on the operative UCL quenching mechanism in addition to surface effects. Moreover, the room temperature UCNC synthesis enabled a systematic investigation of the influence of the calcination temperature on the crystal phase of powder-UCNC and the associated UCL properties. Calcination studies of solid UCNC of optimized doping concentration in the temperature range of 175 °C and 800 °C showed the beneficial influence of temperature- induced healing of crystal defects on UCL and the onset of a phase separation connected with the oxygenation of the lanthanide ions at elevated temperature. This further emphasizes the sensitivity of the UC process to the crystal phase and quality of the host matrix. KW - Upconversion nanoparticle KW - Lanthanide KW - Photophysics KW - Synthesis PY - 2022 DO - https://doi.org/10.1039/d2nr02337g SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies JF - Analytical Chemistry N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles JF - Microscopy and Microanalysis N2 - CS particles show unique properties by merging individual characteristics of the core and the shell materials. An alteration particularly in their surface roughness affects the final performance of the particles in the targeted application. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task employing microscopic techniques being scarce and showing large differences in terms of methodology and results. In our previous work, we have reported a systematic study with a reliable analysis tool, which evaluates profile roughness quantitatively, for individual core-shell microparticles using electron microscopy (EM) images of both types, Scanning Electron Microscopy (SEM) and transmission mode SEM (or TSEM). The SEM images contain two-dimensional (2D) information, therefore, provide profile roughness data only from the projection in the horizontal plane (in other words, from the “belly”) of a spherical particle. The present study offers a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy and Microanalysis 2022 CY - Oregon, Portland, USA DA - 31.07.2022 KW - Core-shell particles KW - Image processing KW - Roughness KW - Scanning electron microscopy KW - Tilting PY - 2022 DO - https://doi.org/10.1017/S1431927622002094 SN - 1431-9276 VL - 28 IS - S1 SP - 332 EP - 334 PB - Cambridge University Press AN - OPUS4-55373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS JF - Rapid Commun Mass Spectrom N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553919 DO - https://doi.org/10.1002/rcm.9349 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry JF - ACS Nano N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias T1 - Intrinsic Performance of Monte Carlo Calibration-Free Algorithm for Laser-Induced Breakdown Spectroscopy JF - Sensors N2 - The performance of the Monte Carlo (MC) algorithm for calibration-free LIBS was studied on the example of a simulated spectrum that mimics a metallurgical slag sample. The underlying model is that of a uniform, isothermal, and stationary plasma in local thermodynamical equilibrium. Based on the model, the algorithm generates from hundreds of thousands to several millions of simultaneous configurations of plasma parameters and the corresponding number of spectra. The parameters are temperature, plasma size, and concentrations of species. They are iterated until a cost function, which indicates a difference between synthetic and simulated slag spectra, reaches its minimum. After finding the minimum, the concentrations of species are read from the model and compared to the certified values. The algorithm is parallelized on a graphical processing unit (GPU) to reduce computational time. The minimization of the cost function takes several minutes on the GPU NVIDIA Tesla K40 card and depends on the number of elements to be iterated. The intrinsic accuracy of the MC calibration-free method is found to be around 1% for the eight elements tested. For a real experimental spectrum, however, the efficiency may turn out to be worse due to the idealistic nature of the model, as well as incorrectly chosen experimental conditions. Factors influencing the performance of the method are discussed. KW - Laser induced breakdown spectroscopy KW - Calibration-free analysis KW - Monte Carlo algorithm PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558016 DO - https://doi.org/10.3390/s22197149 VL - 22 IS - 19 SP - 7149 PB - MDPI AN - OPUS4-55801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Importance of physical units in the Boltzmann plot method JF - Journal of Analytical Atomic Spectrometry N2 - The Boltzmann plot is one of the most widely used methods for determining the temperature in different types of laboratory plasmas. It operates on the logarithm as a function of the dimensional argument, which assumes that the correct physical units are used. In many works using the Boltzmann method, there is no analysis of the dimension of this argument, which may be the cause of a potential error. This technical note offers a brief description of the method and shows how to correctly use physical units when using transcendental functions like the logarithm. KW - Boltzmann plot KW - Laser induced plasma PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558039 DO - https://doi.org/10.1039/d2ja00241h SP - 1 EP - 3 PB - Royal Society of Chemistry AN - OPUS4-55803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Faßbender, Sebastian A1 - Meermann, Björn T1 - Mercury speciation in sediments of industrially impacted water bodies in Northern Germany using SSID GC/ICP-ToF-MS N2 - Sediments and soils can act as sinks of species of inorganic mercury (Hg2+), while they are simultaneously sources of organic species, such as monomethylmercury (MMHg). Although the fraction of MMHg in total Hg of sediments is suggested to be only 0.1–1%, MMHg poses a threat for humans and wildlife due to its toxic properties, high bioaccumulation potential and the ability to pass the blood-brain barrier. One example of a highly Hg contaminated waterbody is the Finow Canal, the oldest artificial waterway still in operation in Germany. Here, Hg mass fractions of up to 100 µg/g were found in the sediment in previous studies. These are suggested to be associated with a chemical plant producing mercury-based seed dressings. Despite this high mass fraction of Hg, no Hg speciation studies have been conducted there up to now. In this study, Hg speciation in sediments of Finow Canal at locations before and after the known polluted site was conducted using species-specific isotope dilution (SSID) GC-ICP-ToF-MS. Mass fractions of up to 0.41 µg/g MMHg were determined. In addition, waterbodies around the initially polluted site were investigated and elevated concentrations were also determined around 14 km downstream. For MMHg analysis, the performance of ICP-ToF-MS for SSID GC/ICP-MS was compared with ICP-Q-MS and ICP-SF-MS. Here, isotope ratio precision was similar between the tested instruments. However, the (quasi-) simultaneous detection of the whole mass spectrum will probably offer a much higher precision of ICP-ToF-MS, when more than one isotope system is used. These results are the first evidence of the occurrence of MMHg in this region and show the need for further investigations of the whole regional ecosystem, as well as the consideration of possible measures of remediation. SSID GC-ICP-(ToF)-MS is a suitable tool for investigating species-specific (multi) isotope systems for environmental monitoring. T2 - 33. Doktorandenseminar des AK Separation Science CY - Hohenroda, Germany DA - 08.01.2023 KW - Mercury KW - GC/ICP-ToF-MS KW - Isotope dilution PY - 2023 AN - OPUS4-56816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Gornushkin, Igor ED - Galbács, G. T1 - Calibration-Free Quantitative Analysis T2 - Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences N2 - Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve as an alternative to calibration-based LIBS techniques. Their major advantage is the ability for fast chemical analysis in situations where matrix-matched standards are not readily available (as, e.g., in the analysis of biological materials and remote analysis) or amount of samples are limited. Their main applications are in the industry, geology, biology, archeology, and even space exploration. This chapter overviews the principle of operation and performance of CF LIBS techniques. KW - Laser induced plasma KW - Calibration-free LIBS PY - 2022 SN - 978-3-031-14501-8 DO - https://doi.org/10.1007/978-3-031-14502-5 SP - 67 EP - 100 PB - Springer Nature Switzerland AG AN - OPUS4-56651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water JF - Metrologia N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching JF - Dalton Transactions N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Liu, Y. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, J. T1 - NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ Upconversion Nanoparticles for Optical Temperature Monitoring and Self-Heating in Photothermal Therapy JF - Applied nano materials N2 - The core−shell NaYF4:Yb3+/Tm3+@NaYF4:Yb3+ upconversion nanoparticles were successfully prepared by a solvothermal method, and a layer of mesoporous silica (mSiO2) was successfully coated on the periphery of the core−shell nanoparticles to transform their surface from lipophilic to hydrophilic, further expanding their applications in biological tissues. The physical phase, morphology, structure, and fluorescence properties were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (TEM), Fourier infrared spectroscopy (FT-IR), ζ potential analysis, and fluorescence spectroscopy. It was found that the material has a hexagonal structure with good hydrophilicity and emits intense fluorescence under 980 nm pump laser excitation. The non-contact temperature sensing performance of nanoparticles was evaluated by analyzing the upconversion fluorescence of Tm3+ (1G4 → 3F4 and 3F3 → 3H6) in the temperature range of 284−344 K. The absolute and relative sensitivities were found to be 0.0067 K−1 and 1.08 % K−1, respectively, with high-temperature measurement reliability and good temperature cycling performance. More importantly, its temperature measurement in phosphate-buffered saline (PBS) solution is accurate. In addition, the temperature of the cells can be increased by adjusting the laser power density and laser irradiation time. Therefore, an optical temperature sensing platform was built to realize the application of real-time monitoring of cancer cell temperature and the dual function of photothermal therapy. KW - Sensor KW - Temperature KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Synthesis KW - Environment KW - Monitoring KW - Sensing KW - Nano KW - Life sciences KW - Upconversion PY - 2023 DO - https://doi.org/10.1021/acsanm.2c05110 VL - 6 IS - 1 SP - 759 EP - 771 PB - ACS Publications AN - OPUS4-57081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Koch, Matthias T1 - On-Site Detection of Volatile Organic Compounds (VOCs) JF - Molecules N2 - Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research. KW - Volatile organic compounds KW - On-site detection KW - Mobile analytics KW - Sensors PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570885 DO - https://doi.org/10.3390/molecules28041598 VL - 28 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Steinhäuser, Lorin A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Le Diouron, V. A1 - Heath, E. A1 - Ana Kovačič, A. A1 - Potalivo, M. A1 - de Zorzi, P. A1 - Centioli, D. A1 - Naykki, T. A1 - Viidanoja, J. A1 - Gökcen, T. A1 - Budzinski, H. A1 - Le Menach, K. A1 - Selih, V. T1 - EDC-WFD: A project to deliver reliable measurements for better monitoring survey and risks assessments. N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17E2) and estriol (E3) will be included to demonstrate the reliability of the developed methods and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four selected effect-based methods (EBM) will be deeply investigated in order to improve their rationale use and their support in water quality assessment. In particular, the EBM sensitivity, specificity and accuracy on reference materials with single or mixture solutions of the five substances at a concentration of EQS values will be explored. This contribution will present the objectives and methods applied within the EDC-WFD project. T2 - EuChemS CY - Lisbon, Portugal DA - 29.08.2022 KW - WFD KW - Estrogens KW - Whole water samples KW - EQS PY - 2022 AN - OPUS4-57096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Kovačič, A. A1 - Steinhäuser, Lorin A1 - Heath, E. A1 - Lardy-Fontan, S. T1 - A method for monitoring estrogens in whole surface waters by GC-MS/MS N2 - Natural and synthetic estrogens are key endocrine-disrupting chemicals. Despite occurring at ultra-trace levels (below ng L-1), it is believed that they are contributing to an increase in feminized fish and other endocrine disruptive effects, and hence, their inclusion in the Watch list was not unexpected. One of the main sources ofestrogens to surface waters is wastewater effluent. Once in surface waters, they can partition into different compartments, i.e., water and suspended particulate matter. For this reason, there is an urgent need for a methodology to monitor estrogen levels below the environmental quality standards (EQS) set by the Water Framework Directive requirements. In this study, a precise and accurate gas chromatography-mass spectrometry method (GC-MS/MS) for the analysis of estrone (E1), 17β-estradiol (17β-E2), 17α-estradiol (17α- E2), 17-alpha-ethinylestradiol (EE2), and estriol (E3) in whole water samples with ng L-1 limit of quantification (LOQ) was developed and validated in accordance with CEN/TS 16800:2020 guidelines. T2 - IMSC 2022 CY - Maastricht, Netherlands DA - 27.08.2022 KW - EDC KW - WFD KW - GC-MS PY - 2022 AN - OPUS4-57097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Kratochvilo, L. A1 - Pořízka, P. A1 - Kaiser, J. A1 - Millar, S. A1 - et al., T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Concrete structures experience severe damage during service, for example due to pitting corrosion of rebars caused by the ingress of chlorine (Cl) into the porous concrete structure. The ingress can be monitored using laser-induced breakdown spectroscopy (LIBS), a recently introduced civil engineering technique used to detect Cl in concrete structures in addition to conventional wet chemistry methods. The key advantages of LIBS are high spatial resolution, which is important when analyzing heterogeneous concrete samples, as well as the almost complete absence of sample preparation. To assess LIBS as a reliable analytical method, its accuracy and robustness must be carefully tested. This paper presents the results of an interlaboratory comparison on the analysis of Cl in cement paste samples conducted by 12 laboratories in 10 countries. Two sets of samples were prepared with Cl content ranging from 0.06 to 1.95 wt% in the training set and 0.23–1.51 wt% in the test set, with additional variations in the type of cement and Cl source (salt type). The overall result shows that LIBS is suitable for the quantification of the studied samples: the average relative error was generally below 15%. The results demonstrate the true status quo of the LIBS method for this type of analysis, given that the laboratories were not instructed on how to perform the analysis or how to process the data. KW - LIBS KW - Interlaboratory comparison KW - Round robin test KW - Cement KW - Chlorine PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106632 SN - 0584-8547 VL - 202 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-57102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties JF - Optical Materials N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cheng, Z. A1 - Meng, M. A1 - Qiao, X. A1 - Liu, Y. A1 - Resch-Genger, Ute A1 - Ou, J. T1 - The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power JF - Journal of Alloys and Compounds N2 - Optical Thermometry is popular among researchers because of its non-contact, high sensitivity, and fast measurement properties. In the present experiment, Er3+/Yb3+/K+ co-doped NaYF4 nanoparticles with different K+ concentrations were synthesized by solvothermal method, and the samples showed bright upconversion green emission under the excitation of a 980 nm laser. The powder X-ray diffractometer and transmission electron microscope were used to characterize the crystal structure and its surface morphology, respectively. The spectral characteristics of nanoparticles with K+ doping concentration from 10% to 30% (Molar ratio) were investigated by fluorescence spectroscopy, and it was observed that the fluorescence intensity reached the maximum at the K+ concentration of 20%, after which the intensity weakened when the K+ content continued to increase. According to the dependence between the luminescence intensity of the sample and the laser power density and fluorescence lifetime, the intrinsic mechanism was carefully investigated. Temperature-dependent spectra of the samples were recorded in the temperature range of 315–495 K, and the maximum values of absolute sensitivity (Sa) and relative sensitivity (Sr) were measured at 0.0041 K−1 (455 K) and 0.9220%K−1 (315 K). The experimental results show that K+/Er3+/Yb3+ triple-doped NaYF4 green fluorescent nanoparticles (GFNs) have good prospects for applications in display devices, temperature sensing, and other fields. KW - K+ doped KW - Upconversion luminescence KW - Optical temperature sensing KW - Thermal coupling energy level PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2022.168299 VL - 937 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-57106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. W. T1 - A new strategy for metal labeling of glycan structures in antibodies JF - Anal. Bioanal. Chem. N2 - Quantitative analysis of complex proteins is a challenging task in modern bioanalytical chemistry. Commonly available isotope labels are still suffering from limitations and drawbacks, whereas new metal labels open numerous possibilities in mass spectrometric analyses. In this work, we have developed a newmetal labeling strategy to tag glycan structures of proteins, more particularly antibodies. The oligosaccharide glycans were selectively trimmed to the last N-acetylglucosamine to which an artificial azide containing galactose residue was bound. This azide can be used for subsequent cycloaddition of an alkyne. Therefore, we developed a lanthanide-containing macrocyclic reagent to selectively connect to this azido galactose. In summary, the glycan structures of an antibody can be labeled with a metal functionality using this approach. Furthermore, the functionality of the antibodies can be fully maintained by labeling the Fc glycans instead of using labeling reagents that target amino or thiol groups. This approach enables the possibility of using elemental, besides molecular mass spectrometry, for quantitative analyses or imaging experiments of antibodies in complex biological samples. KW - Antibody KW - Metal labeling KW - Glycans KW - DOTA KW - Lanthanide PY - 2018 DO - https://doi.org/10.1007/s00216-017-0683-1 SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 1 SP - 21 EP - 25 PB - Springer AN - OPUS4-44000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kothavale, S. A1 - Jadhav, A. G. A1 - Scholz, Norman A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Corrigendum to "Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms" [Dyes Pigments 137 (2017) 329-341] JF - Dyes and pigments N2 - We designed and synthesized triphenylamine based and coumarin fused rhodamine hybrid dyes and characterized using 1H, 13C NMR and HR-LCMS analysis. Both the newly synthesized hybrid dyes were found to show red shifted absorption as well as emissions and large Stokes shift (40e68 nm) as compared to the small Stokes shift (25e30 nm) of reported dyes Rhodamine B and 101. Photophysical properties of these dyes were studied in different solvents and according to the solvents acidity or basicity they preferred to remain in their spirocyclic or open form in different ratio. We studied the spirocyclic as well as open form derivatives of these dyes for their viscosity sensitivity in three different mixture of solvents i.e. polar-protic [EtOH-PEG 400], polar-aprotic [toluene-PEG 400] and non-polaraprotic [toluene-paraffin]. They are found to show very high viscosity sensitivity in polar-protic mixture of solvents [EtOH-PEG 400] and hence concluded that both polarity as well as viscosity factor worked together for the higher emission enhancement rather than only viscosity factor. As these dyes showed very high viscosity sensitivity in their spirocyclic as well as open form, they can be utilized as viscosity sensors in visible as well as deep red region. We also correlated our experimental finding theoretically by using Density Functional theory computations. KW - Dye KW - Fluorescence KW - Synthesis KW - Quantum yield KW - Lifetime KW - Coumarin KW - Rhodamine KW - Probe KW - Viscosity PY - 2018 DO - https://doi.org/10.1016/j.dyepig.2017.06.021 SN - 0143-7208 SN - 1873-3743 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 149 SP - 929 PB - Elsevier CY - Amsterdam AN - OPUS4-44038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. T1 - Automated determination of genotoxicity of nanoparticles with DNA-based optical assays - The NANOGENOTOX project N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks as a sign for genotoxicity3. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - SPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Nanoparticle KW - Fluorescence KW - Surface chemistry KW - Size KW - Assay KW - Microscopy KW - Nanotoxicity KW - Toxicity KW - Automation KW - Calibration KW - Standard PY - 2018 AN - OPUS4-44186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Wang, Cui ED - Otto, S. ED - Dorn, M. ED - Kreidt, E. ED - Lebon, J. ED - Srsan, L. ED - di Martino-Fumo, P. ED - Gerhards, M. ED - Seitz, M. ED - Heinze, K. T1 - Deuterated Molecular Ruby with Record Luminescence Quantum Yield JF - GDCh N2 - The recently reported luminescent chromium(III) complex 13+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridine-2-yl-pyridine-2,6-diamine) shows exceptionally strong near-IR emission at 775 nm in water under ambient conditions (F=11%) with a microsecond lifetime as the ligand design in 13+ effectively eliminates non-radiative decay pathways, such as photosubstitution, back-intersystem crossing, and trigonal twists. In the absence of energy acceptors, such as dioxygen, the remaining decay pathways are energy transfer to high energy solvent and ligand oscillators, namely OH and CH stretching vibrations. Selective deuteration of the solvents and the ddpd ligands probes the efficiency of these oscillators in the excited state deactivation. Addressing these energytransfer pathways in the first and second coordination sphere furnishes a record 30% quantum yield and a 2.3 millisecond lifetime for a metal complex with an earth-abundant metal ion in solution at room temperature. KW - Fluorescence KW - Quantum yield KW - Ligand design KW - Cr(III) KW - Complex KW - Oxygen sensor KW - NIR KW - Fluorescence lifetime PY - 2018 DO - https://doi.org/10.1002/ange.201711350 SN - 1521-3773 VL - 57 IS - 4 SP - 1112 EP - 1116 PB - Wiley-VCH Verlag & Co. KGaA CY - Weinheim AN - OPUS4-44045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Behnke, Thomas A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for the optical quantification of functional groups on nano- and microparticles N2 - Nano- and microparticles are of increasing importance for a wide range of applications in the material and life sciences. Examples are their use as carriers for dye molecules and drugs, multichromophoric reporters for signal enhancement strategies in optical assays, targeted probes for bioimaging, and biosensors. All these applications require surface functionalization of the particles with e.g., ligands (to tune the dispersibility and prevent unspecific interactions), crosslinkers, sensor dyes, or analyte recognition moieties like biomolecules, and subsequently, the knowledge of the chemical nature and total number of surface groups as well as the number of groups accessible for coupling reactions. Particularly attractive for the latter are sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation. Here, we present a novel family of cleavable photometric and multimodal reporters for the quantification of conjugatable amino and carboxyl surface groups on nano- and microparticles. These probes allow for the determination of particle-bound labels, unbound reporters in the supernatant, and reporters cleaved off from the particle surface as well as the remaining thiol groups on the particles by photometry and inductively coupled optical emission spectrometry (32S ICP-OES).3 Comparison of the performance of these cleavable reporters with conventional labels, utilizing changes in intensity and/or colour of absorption and/or emission, underlines the analytical potential of this versatile concept which elegantly circumvents signal distortions by light scattering and encoding dyes, and enables straightforward validation by method comparison. T2 - INNANOPART Open day CY - London, UK DA - 24.04.2018 KW - Nanoparticle KW - Surface groups KW - Cleavable reporter PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters versus conventional labels for optical quantification of accessible amino and carboxy groups on nano- and microparticles JF - Analytical chemistry N2 - Many applications of nanometer- and micrometer-sized particles include their surface functionalization with linkers, sensor molecules, and analyte recognition moieties like (bio)ligands. This requires knowledge of the chemical nature and number of surface groups accessible for subsequent coupling reactions. Particularly attractive for the quantification of these groups are spectrophotometric and fluorometric assays, which can be read out with simple instrumentation. In this respect, we present here a novel Family of cleavable spectrophotometric and multimodal reporters for conjugatable amino and carboxyl surface groups on nano- and microparticles. This allows determination of particle-bound labels, unbound reporters in the supernatant, and reporters cleaved off from the particle surface, as well as the remaining thiol groups on particle, by spectrophotometry and inductively coupled optical emission spectrometry (32S ICP-OES). Comparison of the performance of these cleavable reporters with conductometry and conventional labels, utilizing changes in intensity or Color of absorption or emission, underlines the analytical potential of this versatile concept which elegantly circumvents Signal distortions by scattering and Encoding dyes and enables straightforward validation by method comparison. KW - Polymer particles KW - Cleavable reporter KW - Optical quantification KW - Validation PY - 2018 DO - https://doi.org/10.1021/acs.analchem.8b00666 SN - 1520-6882 SN - 0003-2700 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 90 IS - 9 SP - 5887 EP - 5895 PB - ACS Publ. CY - Washington, DC AN - OPUS4-44830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Resch-Genger, Ute T1 - Synthesis of polymeric nanobeads with different surface group densities and their charaterization using multimodal cleavable reporters and lanthanide tags N2 - Polymeric nanoparticles (NP) are of increasing importance for a wide range of applications in the material and life sciences, including their use as drug carriers, fluorescent sensors and multimodal reporters in a large variety of bioassays and bioimaging studies. Application-relevant properties of NP include their size (and size distribution), shape, optical properties, and ease of subsequent functionalization, e.g. with linkers, sensor molecules, and bioligands. In this respect, knowledge of the chemical nature, the total number of surface groups and the number of groups accessible for subsequent coupling reactions is mandatory.1 Commercially available polystyrene NP often contain different additives like stabilizers, radical starters and crosslinkers, which can influence the quantification of surface functionalities. Moreover, they often have unknown surface group densities that may vary from batch to batch, which complicates or even hampers their reliable use in many (bio)applications. To circumvent these issues, we synthesized amino- and carboxy-functionalized, monodisperse 100 nm polystyrene NP with three different, well-defined surface group densities. Using a recently developed approach for the quantification of functional groups on nano- and microparticles with cleavable reporters,2 we quantified the assessible functional groups on the self-synthesised PS particles via optical spectroscopy (photometry) and inductively coupled optical emission spectrometry (32S ICP-OES). In addition, we developed a fluorimetric approach for the quantification of surface functional groups on nanoparticles based on the labelling with luminescent lanthanide complexes (LLC). In contrast to common organic dyes, LLC are not prone to photo¬luminescence quenching arising from reabsorption or dye aggregation, and thus, enable a reliable fluorometric quantification of the assessible functional groups on NP surfaces. Moreover, lanthanide tags can be detected with high specificity and sensitivity with analytical techniques such as XPS and ICP-MS, which allow for the multimodal validation of the fluorometric quantification approach. T2 - RSC-NPL Symposium "Nanoparticle concentration – critical needs and state-of-the-art measurement" and EMPIR 14IND12 Innanopart Open Day CY - London, UK DA - 24.05.2018 KW - Nanoparticle KW - Functional group KW - Quantification PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma JF - Optics Communications N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makowski, Maike A1 - Werneburg, Martina A1 - Jung, Christian A1 - Haase, H. A1 - Koch, Matthias T1 - Non-invasive Cereal Analysis by GC-MS detection of Trichodiene as a Volatile Mycotoxin Biomarker N2 - Due to the increasing consumption of cereals worldwide, the monitoring of growth, storage and processing is becoming more and more crucial. Particularly when stored, infested grains breed fungal clusters (“hot spots”) in which mycotoxins greatly exceed allowed maximum levels. Because of their unpredictable presence, current sample drawing and procedures for mycotoxin analysis represent a complex challenge for operators, involving invasive and cost intensive steps. Therefore, new time- and labour-saving mycotoxin control methods including sampling and analysis steps are needed. A possible approach is the non-invasive analysis of the homogeneous gas phase above the crops, instead of analyzing random samples. However, this procedure requires microbial volatile organic compounds (MVOC´s) being released by the samples and representing the present mycotoxins. Previous investigations revealed trichodiene to be a precursor in trichothecenes biosynthesis – one of the largest mycotoxin groups with over 180 compounds. Due to its non-functionalized sesquiterpene structure, trichodiene has already been quantified using Headspace GC-MS methods (for instance]). Thereby, it can possibly be used as a biomarker for trichothecene contamination in foodstuff. However, further investigations are necessary. The correlation between trichodiene concentration in the gas phase and trichothecenes mass fraction in the sample must be examined closely to draw conclusions about the exact trichothecene content within samples. Realizing this idea, would widely extend the applicability of trichodiene and enormously simplify trichothecene quantification. Hence, this first step of an ongoing study aims to develop a laboratory reference method using trichodiene as volatile biomarker to quantify trichothecenes in cereals. Static headspace and SPME-enrichment coupled to gas chromatography with mass spectrometry (GC-MS) were employed. In a second step, this reference method is intended to validate new approaches for fast on-site screening of trichodiene in cereals. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 11.03.2018 KW - Trichodiene KW - GC-MS KW - Mycotoxin Biomarker PY - 2018 AN - OPUS4-44508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makowski, Maike A1 - Jung, Christian A1 - Werneburg, Martina A1 - Haase, H. A1 - Koch, Matthias T1 - Non-invasive Cereal Analysis by GC-MS detection of Trichodiene as a Volatile Mycotoxin Biomarker N2 - Due to the increasing consumption of cereals worldwide, the monitoring of growth, storage and processing is becoming more and more crucial. Particularly when stored, infested grains breed fungal clusters (“hot spots”) in which mycotoxins greatly exceed allowed maximum levels. Because of their unpredictable presence, current sample drawing and procedures for mycotoxin analysis represent a complex challenge for operators, involving invasive and cost intensive steps. Therefore, new time- and labour-saving mycotoxin control methods including sampling and analysis steps are needed. A possible approach is the non-invasive analysis of the homogeneous gas phase above the crops, instead of analyzing random samples. However, this procedure requires microbial volatile organic compounds (MVOC´s) being released by the samples and representing the present mycotoxins. Previous investigations revealed trichodiene to be a precursor in trichothecenes biosynthesis – one of the largest mycotoxin groups with over 180 compounds. Due to its non-functionalized sesquiterpene structure, trichodiene has already been quantified using Headspace GC-MS methods (for instance). Thereby, it can possibly be used as a biomarker for trichothecene contamination in foodstuff. However, further investigations are necessary. The correlation between trichodiene concentration in the gas phase and trichothecenes mass fraction in the sample must be examined closely to draw conclusions about the exact trichothecene content within samples. Realizing this idea, would widely extend the applicability of trichodiene and enormously simplify trichothecene quantification. Hence, this first step of an ongoing study aims to develop a laboratory reference method using trichodiene as volatile biomarker to quantify trichothecenes in cereals. Static headspace and SPME-enrichment coupled to gas chromatography with mass spectrometry (GC-MS) were employed. In a second step, this reference method is intended to validate new approaches for fast on-site screening of trichodiene in cereals. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 11.03.2018 KW - Trichodiene KW - GC-MS KW - Mycotoxin Biomarker PY - 2018 AN - OPUS4-44509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Borzekowski, Antje A1 - Drewitz, Tatjana A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. T1 - Biosynthesis of zearalenone conjugates by fungi N2 - Zearalenone (ZEN) and its sulfate and glucoside conjugates have been detected in (a broad variety of) food and feed commodities1. Both conjugated derivatives are formed as part of fungal or plant secondary metabolism and thus, belong to the group of modified mycotoxins2. After consumption of contaminated foodstuff, the conjugates can be hydrolyzed by human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. In order to include ZEN conjugates in routine analysis, as well as for toxicological investigation reliable standards are needed. The objective of the present study was to develop a simple and economic method for biosynthesis of ZEN conjugates. Preceding experiments on the biotransformation of ZEN by Rhizopus and Aspergillus species showed a mixed metabolite formation3. Therefore, these known ZEN conjugating fungal strains were screened for their potential to selectively synthesize the ZEN derivatives ZEN-14-sulfate (Z14S), ZEN-14-glucoside (Z14G) and ZEN-16-glucoside (Z16G). The screening was conducted by adding ZEN to liquid fungal cultures. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. Z14S was exclusively formed by A. oryzae. Under optimized conditions a specific biosynthesis of Z14G by R. oryzae and Z16G by R. oligosporus was achieved. After liquid-liquid-extraction and preparative chromatographic cleanup 1H-NMR purities of ≥ 73% for Z14S, ≥ 82% for Z14G and ≥ 50% for Z16G were obtained. In addition, a consecutive biosynthesis was developed by first using Fusarium graminearum for ZEN biosynthesis on rice based liquid medium. After inactivation of Fusarium the subsequent conjugation reaction was conducted utilizing Aspergillus and Rhizopus species under the various optimized conditions. In this study an easy and cost-efficient biosynthesis for Z14S, Z14G and Z16G was developed. The developed biosynthesis could be also used for other metabolites like ZEL conjugates. Our results of the in vitro screening indicate also the formation of a ZEL-glucoside and α ZEL-sulfate as major metabolites by R. oryzae. In sum, under optimized cultivation conditions fungi can be easily utilized for a targeted and stereospecific synthesis of ZEN conjugates. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 12.03.2018 KW - Mycotoxins KW - Food safety KW - Analytical standards PY - 2018 AN - OPUS4-44547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma diagnostics KW - Plasma physics PY - 2018 AN - OPUS4-44497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemical reactions in laser-induced plasmas at local thermodynamic equilibrium N2 - Laser induced plasma (LIP) is a dynamic, short living event which presents significant difficulty for modeling. In this report, a collisional-dominated chemical model developed earlier* is expanded by the inclusion of a new method for calculation of chemical reactions. The model consists of the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The latter are written in terms of atomic and molecular partition functions rather than reaction rates. Typically, a solution of such the system of chemical equations is difficult for the entire range of plasma temperatures and densities because reaction constants may vary by hundreds orders of magnitude owing to extreme plasma conditions. No numerical solver of non-linear systems of equations handles this situation with ease. We resolve the problem by using a hierarchical approach. First, we rank the reactions according to their ascendancy. Second, we exploit either the contraction or Newton-Raphson algorithms to solve the system of chemical equations. We illustrate the approach by performing a series of calculations for reacting species Si, C, N, Ca, Cl and their molecules in laser induced plasmas. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma physics KW - Plasma diagnostics PY - 2018 AN - OPUS4-44499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saatz, Jessica A1 - Grunert, B. A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for bioimaging of clinical cell assays N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at the trace and ultratrace level and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, imaging mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals and mostly accumulate near the nucleus. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Bioimaging KW - Nanoparticle KW - Immuno-assay KW - Lanthanide PY - 2018 AN - OPUS4-44593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenreich, F. A1 - Kathan, M. A1 - Dallmann, A. A1 - Ihrig, S. P. A1 - Schwaar, Timm A1 - Schmidt, B. M. A1 - Hecht, S. T1 - A photoswitchable catalyst system for remote-controlled (co)polymerization in situ JF - Nature Catalysis N2 - The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomercomposition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typicallyset ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of moresophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote controlover the ring-opening polymerization of l-lactide and further allows regulation of the incorporation of trimethylene carbonateand δ -valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure,we exploit light-induced keto–enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversiblyON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a livingpolymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of newpolymer structures. KW - Polymers PY - 2018 DO - https://doi.org/10.1038/s41929-018-0091-8 SN - 2520-1158 VL - 1 IS - 7 SP - 516 EP - 522 PB - Nature CY - London AN - OPUS4-45407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Batzorig, L. A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Oyuntungalag, U. A1 - Tegshjargal, E. A1 - Rausch, J. T1 - Certified reference material of total cyanide in soil/BAM-U 116/CGL 306 N2 - Due to their toxicity and widespread application for mining and industrial purposes, cyanides are ranking among the most important inorganic pollutants which should be tested and monitored not only in the aquatic environment, but also in soils and soil-like materials. Reference materials of soils with relevant contents of cyanide to ensure reliable test results of laboratories are rare today. New certified reference material (CRM) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between Central Geological Laboratory (CGL) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was performed using software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. T2 - Geoanalysis 2018 CY - Sydney, Australia DA - 08.07.2018 KW - Certified reference material KW - Cyanide in soil KW - Total cyanide PY - 2018 AN - OPUS4-45417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved algorithm for calibration-free laser induced breakdown spectroscopy N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is thoroughly verified with synthetic spectra. T2 - 14TH European Workshop on Laser Ablation 2018 (EWLA2018) CY - Pau, France DA - June 26 - 29, 2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 AN - OPUS4-45343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma: Modeling, diagnostics, and applications N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, material processing, and even jet propulsion. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical (Guldberg-Waage) equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of calibration-free MC LIBS (Monte Carlo Laser Induced Breakdown Spectroscopy), in which concentrations of elements in materials are found by fitting model-generated and experimental spectra. T2 - Invited talk at Yeshiva University, New York, USA CY - Yeshiva University, New York, USA DA - 4.24.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-45344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Torres, B. A1 - Marcos, M. Dolores A1 - Pardo, T. A1 - Sancenón, F. A1 - Martínez-Mánez, Ramon A1 - Rurack, Knut T1 - Anilinopyridine–metal complexes for the selective chromogenic sensing of cyanide anion JF - Journal of Coordination Chemistry N2 - Probe 1, which contains an anilinopyridine chromophore and an azaoxa macrocyclic subunit, presented an absorption band centered at 340 nm in acetonitrile. Addition of Fe(III), Cr(III) and Hg(II) induced the growth of a new absorption band at 430 nm (with color change from colorless to yellow), whereas in the presence of Cu(II), Zn(II) and Pb(II), less marked changes were observed. The color changes observed upon addition of Fe(III), Cr(III) and Hg(II) were ascribed to the formation of 1:1 stoichiometry complexes with probe 1. Coordination of Fe(III), Cr(III) and Hg(II) with the pyridine fragment of 1 induced an enhancement of the charge transfer character accompanied with a marked bathochromic shift that was reflected in a color change from colorless to yellow. The strength of the interaction between probe 1 and Fe(III) cation was modulated upon interaction with anions. Of all the anions tested, only cyanide was able to induce the bleaching of the yellow 1·Fe(III) complex solution. This bleaching was ascribed to the formation of 1·Fe(III)-CN complex that restored, to some extent, the optical features of the free probe allowing the chromogenic sensing of cyanide. Besides, 1·Fe(III) complex was used to detect cyanide in acetonitrile-water 90:10 v/v mixtures with good recoveries. KW - Anilinopyridine KW - Charge Transfer KW - Iron Complex KW - Colorimetric Test KW - Cyanide PY - 2018 DO - https://doi.org/10.1080/00958972.2018.1434719 SN - 0095-8972 VL - 71 IS - 6 SP - 786 EP - 796 PB - Taylor & Francis Group CY - London AN - OPUS4-45398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Zapata, Carlos A1 - Wan, Wei A1 - Gawlitza, Kornelia A1 - Weber, M. A1 - Rurack, Knut T1 - Role of Counterions in Molecularly Imprinted Polymers for Anionic Species JF - Langmuir N2 - Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-L/D-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme−substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-X-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development. KW - Anion receptors KW - Fluorescence sensing KW - Molecular dynamics simulations KW - Molecularly imprinted polymers KW - Rational design PY - 2018 DO - https://doi.org/10.1021/acs.langmuir.8b00500 SN - 0743-7463 VL - 34 IS - 23 SP - 6963 EP - 6975 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-45399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makowski, Maike A1 - Werneburg, M. A1 - Jung, Christian A1 - Haase, H. A1 - Koch, Matthias T1 - Non-invasive GC-MS Analysis of Trichodiene as Volatile Mycotoxin Biomarker in Cereals N2 - Due to the increasing consumption of cereals worldwide, monitoring of growth, storage and processing is becoming more crucial. Particularly when stored, infested grains breed fungal clusters (“hot spots”) in which mycotoxins greatly exceed allowed maximum levels. Because of their unpredictable presence, current sampling and procedures for mycotoxin analysis are complex and contain invasive and cost intensive steps. A possible approach to avoid sampling inaccuracies is the non-invasive analysis of the homogeneous gas phase above the crops, instead of analyzing random samples. However, this procedure requires microbial volatile organic compounds (MVOC´s) being released by the samples. Previous investigations revealed trichodiene to be a precursor in trichothecenes biosynthesis – one of the largest mycotoxin groups with more than 180 compounds. Due to its non-functionalized sesquiterpene structure, quantification of trichodiene using Headspace GC-MS methods is possible (e.g. [1]). Thereby, it could be used as biomarker for trichothecene contamination in foodstuff. However, further studies are necessary. The correlation between trichodiene concentration in the gas phase and trichothecenes mass fraction in the sample must be examined closely to draw conclusions about the trichothecene content in samples. Realizing this idea, would widely extend the applicability of trichodiene and enormously simplify trichothecene quantification. Hence, this first step of an ongoing study aims to develop a laboratory reference method using trichodiene as volatile biomarker to quantify trichothecenes in cereals. Static headspace and SPME-enrichment coupled to gas chromatography with mass spectrometry (GC-MS) were employed. In a second step, this reference method is intended to validate new approaches for fast on-site screening of trichodiene in cereals. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Trichodiene KW - Gaschromatography-Mass Spectrometry KW - Mycotoxin Biomarker PY - 2018 AN - OPUS4-45314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -