TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Koos, R. A1 - Requena, G. A1 - Garces, G. T1 - Explaining Deviatoric Residual Stresses and Load Transfer in Aluminum Alloys and Composites with Complex Microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Konferenz 2022 CY - Lenggries, Germany DA - 31.05.2022 KW - Residual Stresses KW - Aluminium Alloys KW - Microstructures PY - 2022 AN - OPUS4-55020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Müller, Anja T1 - Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology N2 - Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. In the paper from 2019 nanoparticle shell thicknesses are extracted from the elastic-peak intensities in an XPS spectrum based on an ideal particle morphology. This happens for a series of CSNP samples comprising a poly(tetrafluoroethylene) (PTFE) core and either a poly(methyl methacrylate) (PMMA) or polystyrene (PS) shell. The same paper as well as the paper from 2020 demonstrate for the first time, that the analysis of the inelastic background in an XPS spectrum of CSNPs can identify and quantify the heterogeneity of the shell and the incomplete encapsulation of the core. The result from an XPS experiment is always an average across a large nanoparticle ensemble. Deviations from an ideal morphology within a single particle of the sample cannot be assessed separately. As opposed to that, a spatial resolution of 35 nm enables STXM to visualize the interior of single CSNPs which exhibit a sufficient X-ray absorption contrast between core and shell material. In the paper from 2018 a STXM analysis is demonstrated based on the example of the PTFE-PS CSNP samples already mentioned in the previous paragraph. In the publication from 2021 (Ca/Sr)F₂ core-shell like nanoparticle ensembles for the practical use in, among others, antireflective coatings are investigated. These nanoparticles do not possess a sharp interface between core and shell material, which is why a shell thickness determination as described in the second paragraph is inappropriate. Instead, in-depth profiles of the chemical composition are obtained by XPS experiments based on synchrotron radiation with variable X-ray photon energy to elucidate the internal morphology of the particles. Additionally, theoretical in-depth profiles of Ca and Sr XPS peak intensities are simulated, in order to facilitate the interpretation of the experiments. Thus, an enrichment of CaF₂ at the particle surface was determined, which could hardly have been assessed by any other analytical technique. Because this kind of non-destructive depth profiling by XPS is very demanding, more than usual effort is spent on gapless documentation of the experiments to ensure full reproducibility. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the papers in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis. N2 - Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Im Artikel von 2019 werden Schalendicken von Nanopartikeln aus den elastischen Peakintensitäten im XPS-Spektrum unter Annahme einer idealen Partikelmorphologie abgeleitet. Dies geschieht für eine Reihe von CSNP-Proben, welche aus einem Polytetrafluoroethylen- (PTFE) Kern und entweder einer Polymethylmethacrylat- (PMMA) oder Polystyrol- (PS) Schale bestehen. Sowohl dieser Artikel als auch der von 2020 zeigen erstmals, dass die Auswertung des inelastischen Untergrunds eines CSNP-XPS-Spektrums in der Lage ist, die Heterogenität der Schale und die unvollständige Ummantelung des Kerns zu identifizieren und zu quantifizieren. Das Ergebnis eines XPS-Experiments ist immer ein Mittelwert über ein großes Nanopartikelensemble. Inwiefern ein einzelner Partikel innerhalb der Probe von einer idealen Morphologie abweicht, kann nicht gesondert erfasst werden. Im Gegensatz dazu kann STXM mit einer räumlichen Auflösung von 35 nm das Innere einzelner CSNPs visualisieren, sofern sie genügend Röntgenabsorptionskontrast zwischen Kern- und Schalenmaterial aufweisen. Im Artikel von 2018 wird am Beispiel der bereits im vorherigen Abschnitt genannt PTFE-PS-CSNPProben eine solche STXM-Untersuchung demonstriert. In der Veröffentlichung von 2021 werden Kern-Schale-artige (Ca/Sr)F₂-Nanopartikel für den praktischen Einsatz in unter anderem entspiegelnden Beschichtungen untersucht. Da hier keine scharfe Grenzfläche zwischen Kern- und Schalenmaterial vorliegt, ist eine Schalendickenbestimmung, wie sie im zweiten Abschnitt diskutiert wird, nicht sinnvoll. Stattdessen werden mit Hilfe von XPS, angeregt mit Synchrotronstrahlung bei variabler Röntgenphotonenenergie, Tiefenprofile der chemischen Zusammensetzung generiert, um die innere Morphologie der Partikel aufzuklären. Zusätzlich werden theoretische Tiefenprofile der Ca- und Sr-XPS-Peakintensitäten simuliert, um die Interpretation der Experimente zu erleichtern. So wurde eine CaF₂-Anreicherung an der Oberfläche der Partikel festgestellt, die kaum mit einer anderen analytischen Methode hätte entdeckt werden können. Da diese zerstörungsfreie Bestimmung von XPS-Tiefenprofilen sehr anspruchsvoll ist, wird noch mehr als üblich auf die lückenlose Dokumentation des Experiments geachtet, um vollständige Reproduzierbarkeit zu gewährleisten. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. KW - Core-shell nanoparticle (CSNP) KW - X-ray photoelectron spectroscopy (XPS) KW - Scanning transmission X-ray microscopy (STXM) PY - 2022 DO - https://doi.org/10.18452/24312 SP - i EP - 243 PB - Humboldt-Universität CY - Berlin AN - OPUS4-54991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549836 DO - https://doi.org/10.1364/oe.448932 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella T1 - Engineered Nanomaterials- Novel Approaches for Risk Assessment and Safe-by-Design N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls not only for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials, but also for standardized and validated methods for surface analysis. 4,5 The analysis and quantification of surface chemistry is hence in the focus of an increasing number of standardization organizations and interlaboratory comparisons with different analytical methods are being done.5 For the monitoring of nanomaterial synthesis and the fast assessment of the number of functional groups such as carboxyl and amino functionalities, which are very commonly used functionalities in the life sciences, simple and validated methods are needed that can be performed with common laboratory instrumentation. 5,6 Here we provide a brief overview of the ongoing research in division Biophotonics employing quantitative NMR (qNMR), conductometry, and colorimetric and fluorometric optical assays for the determination of the total and the accessible number of carboxyl and amino groups on differently sized polymer and silica nano- and microparticles.5-7 T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Standardization KW - Quality assurance KW - Validation KW - qNMR KW - Silica KW - Polymer KW - Fluorescence KW - Assay KW - Conductometry KW - Method comparison KW - Analytical sciences PY - 2022 AN - OPUS4-54999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, R. A1 - Lyamkin, V. A1 - Cabeza, S. A1 - Evsevleev, S. A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and Bulk Residual Stress Analysis of S235JRC + C Steel TIG Weld by Diffraction and Magnetic Stray Field Measurements N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - Residual stress KW - Magnetic stray field KW - Synchrotron X-ray diffraction KW - Neutron diffraction KW - TIG welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547419 DO - https://doi.org/10.1007/s11340-022-00841-x VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer AN - OPUS4-54741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira ED - Capasso, M. ED - Davoli, P. ED - Pellé, N. T1 - XRF Ink Analysis of Selected Fragments from the Herculaneum Collection of the Biblioteca Nazionale di Napoli N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). KW - XRF KW - ink KW - Herculaneum KW - papyrus PY - 2022 UR - http://siba-ese.unisalento.it/index.php/29th_ICP/issue/view/1881 SN - 978-88-8305-177-7 DO - https://doi.org/10.1285/i99788883051760 SP - 200 EP - 213 PB - Centro di Studi Papirologici dell’Università del Salento CY - Lecce AN - OPUS4-54756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, T. A1 - Giese, S. A1 - Wang, S. A1 - Muth, Thilo A1 - Renard, B.Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides N2 - Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. KW - Mass spectrometry KW - Machine learning KW - Deep learning KW - Peptide identification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547580 DO - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 SP - 378 EP - 388 PB - Springer Nature CY - London AN - OPUS4-54758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirschberg, L. A1 - Bake, Friedrich A1 - Knobloch, K. A1 - Hulshoff, S. A1 - Hirschberg, A. T1 - Experimental investigations of indirect noise due to modulation of axial vorticity and entropy upstream of a choked nozzle N2 - An experimental cold-gas study of the response of a choked convergent–divergent nozzle to swirl perturbations is presented. The perturbations were obtained by means of upstream unsteady tangential injections into initially steady flows with different values of steady background swirl. The swirl perturbations induced changes in the axial mass-flow rate, due to either their ingestion or evacuation by the nozzle. This in turn caused a downstream acoustic response. For low-intensity background swirl the responses were found to be similar to those obtained without steady background swirl. Perturbations of a high-intensity background swirl led to different effects. For long injection times, the negative mass-flow rate modulation occurred in two stages. The first stage was similar to that of the background-swirl free case. The second stage occurred after a short time delay, and induced a much stronger negative acoustic response. This unexpected behavior suggests that a significant part of the tangentially injected fluid flows upstream inducing an accumulation of swirl, which is – after tangential injection is ceased – suddenly cleared out through the nozzle. A scaling rule for the amplitudes of these acoustic responses is reported. Furthermore, quasi-steady models, based on steady-state measurements are proposed. These models predict the downstream acoustic response amplitude within a factor two. Additionally, preliminary empirical evidence of the effect of swirl on the downstream acoustic response due to the interaction of entropy patches with a choked nozzle is reported. This was obtained by comparison of sound produced by abrupt radial or tangential sonic injection, upstream from the choked nozzle, of air from a reservoir at room temperature to that from a reservoir with a higher stagnation temperature. Because the mass flow through the nozzle does not increase instantaneously, the injected higher-enthalpy air accumulates upstream of the injection-port position in the main flow. This eventually induces a large downstream acoustic pulse when tangential injection is interrupted. The magnitude of the resulting sound pulse can reach that of a quasi-steady response of the nozzle to a large air patch with a uniform stagnation temperature equal to that of the upstream-injected heated air. This hypothesis is consistent with the fact that the initial indirect-sound pulse is identical to one obtained with unheated air injection. The authors posit that – given all of the insight gleaned from them in this case – acoustic measurements of indirect sound appear to be a potentially useful diagnostic tool. KW - Aeroacoustics KW - Indirect combustion noise KW - Vorticity noise KW - Entropy noise KW - Swirl PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548331 DO - https://doi.org/10.1016/j.jsv.2022.116989 SN - 0022-460X VL - 532 SP - 1 EP - 22 PB - Elsevier Ltd. AN - OPUS4-54833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieu, D.T. A1 - Kosslick, H. A1 - Riaz, M. A1 - Schulz, A. A1 - Springer, A. A1 - Frank, M. A1 - Jäger, Christian A1 - Minh Thu, N.T. A1 - Son, L.T. T1 - Acidity and Stability of Bronsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol N2 - Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 ◦C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 ◦C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 ◦C. Although a part of the clinoptilolite framework is maintained up to 600 ◦C, a loss of crystallinity is already observed starting from 450 ◦C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 ◦C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 ◦C. A part of the Brønsted sites is lost after calcination specifically at 500 ◦C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1 -C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 ◦C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 ◦C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. KW - Etherification KW - Glycerol KW - Zeolite KW - Clinoptilolite KW - Bronsted acidity KW - Dehydroxylation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546982 DO - https://doi.org/10.3390/catal12030253 VL - 12 IS - 3 SP - 1 EP - 24 PB - MDPI AN - OPUS4-54698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hufschläger, Daniel A1 - Gaal, Mate T1 - Sending and receiving acoustic waves using atmospheric pressure plasmas N2 - Atmospheric pressure plasmas interact in various physical ways with their surroundings. They release heat and generate charge carriers, which leads to two effects. The first effect is the generation of acoustic waves due to heat release, known as the thermoacoustic effect, and the second effect is the perturbation of the resting fluid provoked by the release of charge carriers, called “ionic wind”. The direct connection between the charge carrier production of the discharge arrangement and the surroundings also allows the detection of acoustic waves by tracking the electrical current of the arrangement. This contribution introduces a multi-fluid model approach to describe the acoustic interaction of atmospheric plasmas. In addition, we present experimental results on commercially available and in-house fabricated discharge arrangements for either emitting or receiving acoustic waves. T2 - DAGA 2022 - 48. Jahrestagung für Akustik CY - Stuttgart, Germany DA - 21.03.2022 KW - Plasma acoustics KW - Atmospheric pressure discharges KW - Ait-coupled ultrasound PY - 2022 SN - 978-3-939296-20-1 VL - 48 SP - 923 EP - 926 CY - Berlin AN - OPUS4-54681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauckmann, C. A1 - Pramann, A. A1 - Rienitz, O. A1 - Schulze, A. A1 - Phukphatthanachai, P. A1 - Vogl, Jochen T1 - Combining Isotope Dilution and Standard Addition - Elemental Analysis in Complex Samples N2 - A new method combining isotope dilution mass spectrometry (IDMS) and standard addition has been developed to determine the mass fractions w of different elements in complex matrices: (a) silicon in aqueous tetramethylammonium hydroxide (TMAH), (b) sulfur in biodiesel fuel, and (c) iron bound to transferrin in human serum. All measurements were carried out using inductively coupled plasma mass spectrometry (ICP–MS). The method requires the gravimetric preparation of several blends (bi)—each consisting of roughly the same masses (mx,i) of the sample solution (x) and my,i of a spike solution (y) plus different masses (mz,i) of a reference solution (z). Only these masses and the isotope ratios (Rb,i) in the blends and reference and spike solutions have to be measured. The derivation of the underlying equations based on linear regression is presented and compared to a related concept reported by Pagliano and Meija. The uncertainties achievable, e.g., in the case of the Si blank in extremely pure TMAH of urel (w(Si)) = 90% (linear regression method, this work) and urel (w(Si)) = 150% (the method reported by Pagliano and Meija) seem to suggest better applicability of the new method in practical use due to the higher robustness of regression analysis. T2 - CITAC Best Paper Award Ceremony CY - Online meeting DA - 21.06.2022 KW - Isotope dilution mass spectrometry KW - Standard addition KW - ICP-MS KW - Blank characterization KW - Silicon KW - Sulfur KW - Transferrin KW - Tetramethylammonium hydroxide KW - Biodiesel fuel KW - Human serum PY - 2022 AN - OPUS4-55032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Solovyev, N. A1 - El-Kathib, Ahmed A1 - Vogl, Jochen A1 - Costas-Rodriguez, M. A1 - Vanhaecke, F. A1 - Schwab, K. A1 - Griffin, E. A1 - Platt, B. A1 - Theuring, F. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT . The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - International Conference of Trace Elements and Minerals CY - Aachen, Germany DA - 05.06.2022 KW - Isotope delta value KW - Copper KW - Zinc KW - Iron KW - Dementia PY - 2022 AN - OPUS4-58230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xiao, J. A1 - Vogl, Jochen A1 - Rosner, M. A1 - Jin, Z. T1 - Boron isotope fractionation in soil-plant systems and its influence on biogeochemical cycling N2 - Boron (B) is an essential mineral nutrient for higher plants. Although B plant nutrition is well studied, the B isotope fractionation at the soil-plant interface, within plant metabolism, and its influence on biogeochemical cycling is not fully understood. Boron concentrations and isotope variations (δ11B) of the dicotyledonous plants of Chenopodium album and Brassica napus and their growing soils along a climatic gradient were analyzed to decipher these unresolved issues of the B behavior. The boron concentrations and δ11B values show an increasing trend from roots to leaves for both plants, while a decreasing trend from flower to shell and to seed for Brassica napus. A large boron isotope fractionation occurs within the plants with median Δ11Bleaf-root ≈ +20‰, which is related to different boron transporters and transportation ways. Formation of borate dimerized rhamnogalacturonan II in cell and B(OH)3 transportation in xylem lead to heavier δ11B values from root to stem and leaf while B(OH)4􀀀 transportation in phloem lead to lighter δ11B values from flower to shell and seed. Although samples cover a distinct transect with systematically different climatic conditions, Δδ11B within the individual plant compartments and between the bulk plants and the soil available B do not show any systematic variation. This suggests that B uptake from the soil into Chenopodium album and Brassica napus occurs without a distinct isotope fractionation at the soil-plant interface (median Δ11Bbulkplant-soil = 􀀀 0.2‰) and plants are able to regulate boron uptake. Both the observed large B fractionation within plant and low or absent B isotope fractionation at the soil-plant interface may have profound implications for the biological and geological B cycle. If this observed boron behavior also exists in other plants, their litters would be an important source for exporting 11B-rich biological material from continental ecosystems via rivers to the global oceans. This may be helpful for the explanation of ocean B cycle and the increasing δ11B values over the Cenozoic. KW - Boron isotopic composition KW - Boron isotope fractionation KW - Soil available boron KW - Biological boron recycling KW - Chenopodium album KW - Brassica napus PY - 2022 DO - https://doi.org/10.1016/j.chemgeo.2022.120972 SN - 0009-2541 VL - 606 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, M. A1 - Frings, P. J. A1 - Oelze, Marcus A1 - Herwartz, D. A1 - Lünsdorf, K. A1 - Wiedenbeck, M. T1 - Chert oxygen isotope ratios are driven by Earth's thermal evolution N2 - The 18O/16O ratio of cherts (δ18Ochert) increases nearly monotonically by ~15‰ from the Archean to present. Two end-member explanations have emerged: cooling seawater temperature (TSW) and increasing seawater δ18O (δ18Osw). Yet despite decades of work, there is no consensus, leading some to view the δ18Ochert record as pervasively altered. Here, we demonstrate that cherts are a robust archive of diagenetic temperatures, despite metamorphism and exposure to meteoric fluids, and show that the timing and temperature of quartz precipitation and thus δ18Ochert are determined by the kinetics of silica diagenesis. A diagenetic model shows that δ18Ochert is influenced by heat flow through the sediment column. Heat flow has decreased over time as planetary heat is dissipated, and reasonable Archean-modern heat flow changes account for ~5‰ of the increase in δ18Ochert, obviating the need for extreme TSW or δ18Osw reconstructions. The seawater oxygen isotope budget is also influenced by solid Earth cooling, with a recent reconstruction placing Archean δ18OSW 5 to 10‰ lower than today. Together, this provides an internally consistent view of the δ18Ochert record as driven by solid Earth cooling over billion-year timescales that is compatible with Precambrian glaciations and biological. KW - Climate KW - Oxygen isotope ratios KW - Silica diagenesis KW - Early Earth KW - Heat flow PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569359 DO - https://doi.org/10.1073/pnas.2213076119 SN - 0027-8424 VL - 119 IS - 51 SP - 1 EP - 7 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-56935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bilsel, M. A1 - Gökçen, T. A1 - Binici, B. A1 - Isleyen, A. A1 - Piechotta, Christian A1 - Kar-wai, A. A1 - Krylov, A. A1 - Miheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - chenko, Irina Tka A1 - Perkola, N. A1 - Lewin, M. A1 - Hua, T. T1 - High polarity analyte(s) in aqueous media: determination of L-PFOA and L-PFOS in ground water N2 - The CCQM-K156 comparison was coordinated by TUBITAK UME on behalf of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) for National Measurement Institutes (NMIs) and Designated Institutes (DIs) which provide measurement services in organic analysis under the 'Comité International des Poids et Mesures' Mutual Recognition Arrangement (CIPM MRA). Perfluoro alkyl substances (PFAS) such as PFOS and PFOA have been used in numerous industrial applications and products. Because of their high stability and resistance to biodegradation, atmospheric photooxidation, direct photolysis and hydrolysis, they are extremely persistent in the environment. The European Union (EU) Water Framework Directive lists PFOS as a priority hazardous substance that poses a significant risk to the aquatic environment. The use of PFOS-containing Aqueous Film-Forming Foams (AFFFs) has been banned since June 2011 in the EU. As relatively water-soluble, effectively non-degradable compounds, PFOS and PFOA migrate to ground water. They are not removed in the conventional drinking water treatment, and therefore cause health risks in polluted areas. The EU Drinking Water Directive and the European Commission has proposed a limit value of 100 ng/L for the sum of 20 PFAS, including PFOS and PFOA. This study provides the means for assessing measurement capabilities for determination of high polarity measurands in a procedure that requires extraction, clean-up, analytical separation and detection. Successful participation in CCQM-K156 demonstrates measurement capabilities in determining mass fraction of organic compounds, with a molecular mass of 200 g/mol to 700 g/mol, having high polarity pKow -2, in a mass fraction range from 0.5 ng/kg to 500 ng/kg in aqueous media. Nine NMIs and DIs participated in the CCQM-K156 key comparison. Seven institutes reported their results. SPE was applied in the sample pre-treatment and LC-MS was applied for detection. All participating laboratories applied isotope dilution mass spectrometry (IDMS) techniques for quantification. Participants established the metrological traceability of their results using certified reference materials (CRMs) from NMIs with stated traceability; where commercially available high purity materials were used the purity was determined in-house. The CCQM-K156 results for L-PFOA and L-PFOS range from 2.75 ng/kg to 5.50 ng/kg with a % RSD of 19.5 % for L-PFOA and from 2.04 ng/kg to 4.45 ng/kg with a % RSD of 21.3 % for L-PFOS. The KCRV was assigned using a Hierarchical Bayesian Random Effects Model (HB REM) estimator from the values reported by six of the participants. One participant result of L-PFOS and one result of L-PFOA were excluded from the KCRV for technical reasons. The KCRV was 4.9 ng/kg ± 0.4 ng/kg for L-PFOA and 3.8 ng/kg ± 0.4 ng/kg for L-PFOS. The six institutes that were included in the assignment of consensus KCRV all agreed within their standard uncertainties. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - PFAS KW - Surface water KW - ILC KW - CCQM PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08016 VL - 59 IS - 1A SP - 1 EP - 3 PB - IOP Publishing AN - OPUS4-58941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Lei A1 - Magdysyuk, Oxana V. A1 - Jiang, Fuqing A1 - Wang, Yiqiang A1 - Evans, Alexander A1 - Kabra, Saurabh A1 - Cai, Biao T1 - Mechanical performance and deformation mechanisms at cryogenic temperatures of 316L stainless steel processed by laser powder bed fusion: In situ neutron diffraction N2 - Manufacturing austenitic stainless steels (ASSs) using additive manufacturing is of great interest for cryogenic applications. Here, the mechanical and microstructural responses of a 316L ASS built by laser powder bed fusion were revealed by performing in situ neutron diffraction tensile tests at the low-temperature range (from 373 to 10 K). The stacking fault energy almost linearly decreased from 29.2 ± 3.1 mJm⁻² at 373 K to 7.5 ± 1.7 mJm⁻² at 10 K, with a slope of 0.06 mJm⁻²K⁻¹, leading to the transition of the dominant deformation mechanism from strain-induced twinning to martensite formation. As a result, excellent combinations of strength and ductility were achieved at the low-temperature range. KW - Condensed Matter Physics KW - General Materials Science KW - Mechanics of Materials KW - Metals and Alloys KW - Mechanical Engineering PY - 2022 DO - https://doi.org/10.1016/j.scriptamat.2022.114806 SN - 1359-6462 VL - 218 SP - 1 EP - 7 PB - Elsevier BV CY - Amsterdam AN - OPUS4-59317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Bruno, Giovanni T1 - Micro Non-Destructive Testing and Evaluation N2 - What is meant by ‘Micro Non-Destructive Testing and Evaluation’? This was the central subject of debate in this Special Issue. At present, sub-millimeter-size components or even assemblies are pervading the industrial and scientific world. Classic examples are electronic devices and watches (as well as parts thereof), but recent examples encompass additively manufactured lattice structures, stents, or other microparts. Moreover, most assemblies contain micro-components. Testing such components or their miniaturized parts would fit well within the topic of micro non-destructive testing and evaluation. In all cases, performance and integrity testing, quality control, and dimensional tolerances need to be measured at the sub-millimeter level (ideally with a spatial resolution of about a micron); most of the time, such features and components are embedded in much larger assemblies, which also need to be taken into account. The solution to this dilemma (i.e. measuring large parts with high resolution) depends on the part and on the problem under consideration. Another possible definition of micro non-destructive testing and evaluation can relate to the characterization of micro-features (e.g., the microstructure) in much larger specimens, such as damage in concrete cores or porosity in additively manufactured components. A further aspect is the use of microscopic probes to evaluate macroscopic properties. This is the case, for instance but not at all exclusively, in the use of diffraction techniques to determine macroscopic stress. The splits between testing and characterization at the micro-level (or of micro parts) from one side and handling of macroscopic assemblies on the other represent a great challenge for many fields of materials characterization. On top of that, including the use of microscopic methods to test integrity would add a further level of complexity. Imaging, mechanical testing, non-destructive testing, measurement of properties, structural health monitoring, and dimensional metrology all need to be re-defined if we want to cope with the multi-faceted topic of micro non-destructive testing and evaluation. The challenge has already been accepted by the scientific and engineering communities for a while but is still far from being universally tackled. This Special Issue yields an interesting answer to the questions posed above. It presents the progress made and the different aspects of the challenge as well as at indicates the paths for the future of NDT&E. KW - Neutron Diffraction KW - Ultrasound KW - Eddy Currents KW - X-ray Computed Tomography KW - Mechanical Properties KW - Residual Stress KW - Defects PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570321 SN - 978-3-0365-6180-6 DO - https://doi.org/10.3390/books978-3-0365-6180-6 SN - 1996-1944 SP - 1 EP - 304 PB - MDPI CY - Basel AN - OPUS4-57032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Kai A1 - Mirabella, Francesca A1 - Mezra, Marek A1 - Weise, Matthias A1 - Wasmuth, Karsten A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Hodoroaba, Vasile-Dan T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser generated surface structures on Titanium substrates N2 - The fabrication of laser-generated surface structures on titanium and titanium alloys has recently gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, the effective number of laser pulses per beam spot area, etc. A simple way to characterize laser-generated surface structures is by means of optical microscopy (OM) or white light interference microscopy (WLIM). The latter can address the surface topography, while having a lateral resolution limit of ~(lambda)/2 (lambda = illumination wavelength). To resolve morphologies with spatial periods significantly smaller than (lambda)/2, scanning electron microscopy (SEM) is often used, taking benefit of the reduced de Broglie wavelength associated to the electrons of several keV energy. However, all the above-mentioned techniques lack the necessary depth-resolution to reveal and quantify sub-surface material modifications of these laser-generated structures. Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) represents a promising surface analytical technique for studying laser-induced chemical surface alterations since the method combines a high surface sensitivity with the capability to perform a depth-profiling of the laser-affected surface zone. In this study we combine WLIM and high-resolution SEM with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti-6Al-4V alloys upon irradiation by near infrared ultrashort laser pulses (1030 nm, 925 fs) at different laser fluence levels, effective number of pulses, and at different pulse repetition rates (1 – 400 kHz). We show how this combined surface analytical approach allows to evaluate alterations in the surface chemistry and topography of the laser-generated surface structures depending on the laser processing parameters T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Laser-induced periodic surface structures KW - Time of Flight - Secondary ion mass spectrometry KW - White light interferometric microscopy KW - Titanium alloy PY - 2022 AN - OPUS4-54992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546833 DO - https://doi.org/10.3389/fchem.2022.840758 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on a reference polyamide specimen “BAM-Pk218” N2 - This dataset contains raw data observed with ultrasound measurements on a polyamide reference specimen at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin. The internal specimen identifier is „Pk218“. The measurements were conducted using the pulse-echo method. KW - Nondestructive testing KW - Ultrasound KW - Pulse-echo technique KW - Validation KW - Reference material KW - Reconstruction algorithm PY - 2022 DO - https://doi.org/10.7910/DVN/KVN7CY PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-54959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548226 DO - https://doi.org/10.1021/acs.inorgchem.1c03442 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - A quick intro to our NeXus format… N2 - A brief introduction is given into our data collection and organization procedure, and why we have settled on the HDF5-based NeXus format for describing experimental data. The links between NeXus and the SciCat data catalog is also provided, showing how the NeXus metadata is automatically added as searchable metadata in the catalog. T2 - NFDI NeXus Workshop CY - Online meeting DA - 17.03.2022 KW - Data management KW - Measurement organization KW - Measurement data KW - NFDI KW - FAIR KW - Open access KW - Data mining KW - Data tagging KW - Automated data tagging PY - 2022 AN - OPUS4-54823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, F. A1 - Maurino, V. T1 - Morpho-Chemical Characterisation of Me-TiO2 Nanoparticles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Titania nanoparticles KW - Photocatalysis KW - Scanning electron microscopy KW - Energy dispersive X-ray spectroscopy PY - 2022 AN - OPUS4-54977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - ISO-G-Scope Standardisation of structural and chemical properties of graphene N2 - The objectives and tasks of the EMPIR project ISO-G-Scope are presented. The last results was shown. Esspecially, the interlaboratory comparison about XPS of functionalized graphene is presented. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Graphene KW - Standardization KW - Structural characterisation KW - Chemical composition PY - 2022 AN - OPUS4-54834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hesse, R. A1 - Denecke, R. T1 - Improved estimation of the transmission function with UNIFIT 2022 N2 - The recent development of x-ray photoelectron spectroscopy using excitation sources different from the usual lab-source Mg Kα and Al Kα and spectrometers with more sophisticated lens systems requires flexible approaches for determining the transmission function. Therefore, the approach using quantified peak areas (QPA) was refined.1 A new algorithm allows a more precise estimation of the transmission function which could be shown by comparing the results obtained with the new version with former calculations. Furthermore, next to the established reference materials Cu, Ag and Au, ionic liquids can be used for estimating the transmission function at beamlines with variable excitation energies. Comparison between the measured and stoichiometric composition shows that a transmission function was determined which allows a reasonable quantification. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Synchrotron radiation KW - Iionic liquid PY - 2022 AN - OPUS4-54962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radnik, Jörg A1 - Knigge, Xenia A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Cant, D.J.H. A1 - Shard, A.G. A1 - Clifford, C.A. T1 - Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy N2 - Core–shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. KW - X-ray spectroscopy KW - Nanoparticles KW - Spectroscopy / Instrumentation KW - Spectroscopy / Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548305 DO - https://doi.org/10.1007/s00216-022-04057-9 VL - 414 IS - 15 SP - 4331 EP - 4345 PB - SpringerNature AN - OPUS4-54830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Olivia A1 - Piechotta, C. T1 - Identification of Metabolites and Transformation Products of Bisphenols N2 - Bisphenol A (BPA) is used in Polycarbonate, Polyacrylic resins, Polysulfones, Epoxy resins, and Polyetherimides. It is also used in recycled Polyvinyl chloride [1–3]. BPA has been classified as a substance of very high concern (SVHC) under REACH [4] due to its endocrine disrupting properties. The German competent authorities want to reduce the content of BPA in the environment. Possible substitutes for BPA are Bisphenol B (BPB), Bisphenol E (BPE), Bisphenol F (BPF), or Bisphenol S (BPS), as they are similar in structure. BPA-based materials have a wide area of application especially outside. These outdoor applications are exposed to different external influences, including physical, biological, mechanical and chemical influences. This results in damage and aging of the material with leaching or migration into the environment. There, the substance is transformed by various transformation processes. The emerging metabolites and transformation products (TPs) can have different properties than the parent substance. Understanding the fate and behavior of the emerging pollutants is very important. Therefore, different transformation products of selected bisphenols will be generated and analyzed: To investigate the fate of different bisphenols in water treatment plants technical transformation products [5] will be generated by chlorination, ozonization, the Fenton reaction, and UV-radiation. For the investigation of the fate of Bisphenols in surface water global radiation will be simulated with UVA-lamps Simulation of phase-I-metabolism with an electrochemical cell coupled to mass spectrometry (EC-MS). T2 - Anakon 2023 CY - Vienna, Austria DA - 11.04.2023 KW - Transformation products KW - Bisphenols KW - Metabolites KW - Wastewater KW - Environment PY - 2022 AN - OPUS4-57374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - The AIFRI Project - Artificial Intelligence For Rail Inspection N2 - The rails of modern railways face an enormous wear and tear from ever increasing train speeds and loads. This necessitates diligent non-destructive testing for defects of the entire railway system. Non-destructive testing of rail tracks is carried out by rail inspection trains equipped with ultrasonic and eddy current test devices. However, the evaluation of the gathered data is mainly done manually with a strong focus on ultrasonic data, and defects are checked on-site using hand-held testing equipment. Maintenance measures are derived based on these on-site findings. The aim of the AIFRI project (Artificial Intelligence For Rail Inspection) is to - increase the degree of automation of the inspection process, from the evaluation of the data to the planning of maintenance measures, - increase the accuracy of defect detection, - automatically classify detected indications into risk classes. These aims will be achieved by training a neural network for defect detection and classification. Since the current testing data is unbalanced, insufficiently labeled and largely unverified we will supplement fused, simulated eddy current and ultrasonic testing data in form of a configurable digital twin. T2 - PostDoc Day 2022 CY - Berlin, Germany DA - 03.11.2022 KW - Non-destructive testing KW - Artificial intelligence KW - Simulation KW - Eddy current KW - Ultrasound PY - 2022 AN - OPUS4-57240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - AI-based analysis of eddy current and ultrasonic rail testing data N2 - Non-destructive testing of rail tracks is carried out by using rail inspection cars equipped with ultrasonic and eddy current measurement. The evaluation of test data is mainly done manually, supported by a software tool which pre-selects relevant indications shown to the evaluators. The resulting indications have to be checked on-site using hand-held testing equipment. Maintenance interventions are then derived on the basis of these on-site findings. Overall aim of the AIFRI (Artificial Intelligence For Rail Inspection) project - funded by the German Federal Ministry of Digital and Transport (BMDV) as part of the mFUND programme under funding code 19FS2014 – is to increase the degree of automation of the inspection process from the evaluation of the data to the planning of maintenance interventions. The accuracy of defect detection shall be increased by applying AI methods in order to enable an automated classification of detected indications into risk classes. For this purpose, data from both eddy current inspections and ultrasonic inspections will be used in combination. Within the framework of this data-driven project, relevant defect patterns and artefacts present in the rail are analysed and implemented into a configurable digital twin. With the help of this digital twin virtual defects can be generated and used to train AI algorithms for detection and classification. With the help of reliability assessment trained AI algorithms will be evaluated with regard to the resulting quality in defect detection and characterisation. A particular aspect of the development of AI methods is the data fusion of different NDT data sources: Thereby, synergies are used that arise from linking eddy current and ultrasonic inspection data in a combined model. In the course of the project a demonstrator consisting of the developed IT-tool and an asset management system will be implemented and tested in the field using real-world data. T2 - NDT in Railway CY - Berlin, Germany DA - 26.09.2022 KW - NDT KW - Eddy current KW - Ultra sound KW - Simulation KW - Machine learning PY - 2022 UR - https://www.dgzfp.de/seminar/railway/#5 AN - OPUS4-57236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Dell'Avvocato, Giuseppe A1 - Gohlke, Dirk A1 - Palumbo, Davide A1 - Galietti, Umberto T1 - Quantitative evaluation of the welded area in Resistance Projection Welded (RPW) thin joints by pulsed laser thermography N2 - A semi-automatic thermographic procedure for the assessment of the welded area of resistance projection welded joints has been developed. Currently, to assess the quality of RPW joints destructive tests are used and the more commonly used non-destructive technique is the ultrasonic one. The possibility for a quantitative evaluation of the welded area by thermographic technique has been proved by means of an innovative procedure applied on steel RPW joints with ‘as it’ surface conditions. Measurements obtained by thermography and ultrasound have been compared, to verify the developed procedure. T2 - Thermosense: Thermal Infrared Applications XLIV, CY - Orlando, USA DA - 03.04.2022 KW - Nondestructive evaluation KW - Ultrasonics KW - Contact area PY - 2022 DO - https://doi.org/10.1117/12.2618806 VL - 12109 SP - 1 EP - 14 PB - SPIE AN - OPUS4-59380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Athman, Rukeia T1 - The BAM Data Store – an institutional RDM framework for Materials Science and Engineering N2 - In view of the increasing digitization of research and the use of data-intensive measurement and analysis methods, research institutions and their staff are faced with the challenge of documenting a constantly growing volume of data in a comprehensible manner, archiving them for the long term, and making them available for discovery and re-use by others in accordance with the FAIR principles. At BAM, we aim to facilitate the integration of research data management (RDM) strategies during the whole research cycle from the creation and standardized description of materials datasets to their publication in open repositories. To this end, we present the BAM Data Store, a central system for internal RDM that fulfills the heterogenous demands of materials science and engineering labs. The BAM Data Store is based on openBIS, an open-source software developed by the ETH Zurich that has originally been created for life science laboratories but that has since been deployed in a variety of research domains. The software offers a browser-based user interface for the digital representation of lab inventory entities (e.g., samples, chemicals, instruments, and protocols) and an electronic lab notebook for the standardized documentation of experiments and analyses. To investigate whether openBIS is a suitable framework for the BAM Data Store, we carried out a pilot phase during which five research groups with employees from 16 different BAM divisions were introduced to the software. The pilot groups were chosen to represent a diverse array of domain use cases and RDM requirements (e.g., small vs big data volume, heterogenous vs structured data types) as well as varying levels of prior IT knowledge on the users’ side. Overall, the results of the pilot phase are promising: While the creation of custom data structures and metadata schemas can be time-intensive and requires the involvement of domain experts, the system offers specific benefits in the form of a simplified documentation and automation of research processes, as well as constituting a basis for data-driven analysis. In this way, heterogeneous research workflows in various materials science research domains could be implemented, from the synthesis and characterization of nanomaterials to the monitoring of engineering structures. In addition to the technical deployment and the development of domain-specific metadata standards, the pilot phase also highlighted the need for suitable institutional infrastructures, processes, and role models. An institute-wide rollout of the BAM Data Store is currently being planned. T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - BAM Data Store KW - Forschungsdatenmanagement KW - Research data management KW - OpenBIS PY - 2022 AN - OPUS4-55139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Kerndorff, A. A1 - Ricking, M. A1 - Bednarz, M. A1 - Obermaier, N. A1 - Lukas, M. A1 - Asenova, M. A1 - Bordós, G. A1 - Eisentraut, Paul A1 - Hohenblum, P. A1 - Hudcova, H. A1 - Humer, F. A1 - István, T. G. A1 - Kirchner, M. A1 - Marushevska, O. A1 - Nemejcová, D. A1 - Oswald, P. A1 - Paunovic, M. A1 - Sengl, M. A1 - Slobodnik, J. A1 - Spanowsky, K. A1 - Tudorache, M. A1 - Wagensonner, H. A1 - Liska, I. A1 - Braun, U. A1 - Bannick, C. G. T1 - Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach N2 - In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. KW - Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), monitoring KW - Microplastics KW - River KW - Suspended particulate matter (SPM) KW - Sedimentation box (SB) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551444 DO - https://doi.org/10.1021/acsestwater.1c00439 VL - 2 IS - 7 SP - 1174 EP - 1181 PB - ACS Publications AN - OPUS4-55144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling, Diagnostics and Applications of Laser Induced Plasma N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, and material processing. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of chemical vapor deposition of molybdenum borides and micro processing and coating of titanium dental implants. T2 - University of Saragossa, Department of Chemistry CY - Saragossa, Spain DA - June 30, 2022 KW - Laser ablation KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Surface coating PY - 2022 AN - OPUS4-55166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertorelle, F. A1 - Wegner, Karl David A1 - Berkulic, M. P. A1 - Fakhouri, H. A1 - Comby-Zerbino, C. A1 - Sagar, A. A1 - Bernadó, P. A1 - Resch-Genger, Ute A1 - Bonacic-Koutecký, V. A1 - Le Guével, X. A1 - Antoine, R. T1 - Tailoring the NIR-II Photoluminescence of Single Thiolated Au25 Nanoclusters by Selective Binding to Proteins N2 - Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging. KW - Fluorescence KW - Aggregation KW - Signal enhancement KW - Cluster KW - Nano KW - Metal KW - NIRII KW - SWIR KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis KW - Protein KW - Imaging KW - Bioimaging KW - Ligand KW - Gold PY - 2022 DO - https://doi.org/10.1002/chem.202200570 SN - 1521-3765 VL - 28 IS - 39 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - IRWG strategy update N2 - This talk presents a strategy update of the Isotope Ratio Working Group of CCQM. The focus is on future comparisons and the promotion of international comparability. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope ratio KW - Traceability KW - Metrology PY - 2022 AN - OPUS4-55160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Plan for comparison on absolute Cu isotope ratios by applying the isotope mixture approach N2 - Based on a previously circulated questionnaire, the plan for a key comparison is presented which focuses on the determination of absolute copper isotope ratios by the means of synthetic isotope mixtures. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Absolute isotope ratio KW - Traceability KW - CCQM PY - 2022 AN - OPUS4-55161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - CCQM-P213: BAM procedure for obtaining Cu delta values N2 - BAM participated in the CCQM pilot study P213 for obtaining copper isotope delta values. This presentations provides details on the MC-ICP-MS based measruement procedure, which has been applied to obtain such copper delta values. T2 - IRWG Meeting CY - Online meeting DA - 12.05.2022 KW - Isotope delta value KW - Copper KW - Metrology KW - Traceability PY - 2022 AN - OPUS4-55162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Theiner, S. A1 - Corte Rodriguez, M. A1 - Traub, Heike ED - Golloch, A. T1 - Novel applications of lanthanoids as analytical or diagnostic tools in the life sciences by ICP-MS based techniques N2 - Inductively coupled plasma-mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element analysis. ICP-MS has found acceptance in various application areas ranging from material analysis to applications in the life sciences. Within the last 15 years new strategies for the sensitive detection and accurate quantification of biomolecules in complex biomedical samples have been developed. Recent instrumental improvements have contributed to this progress. As most of the biomolecules do not contain endogenous metals etectable with ICP-MS, bioconjugation with artificial metal-containing tags based on metal-loaded chelate complexes or nanoparticles is increasingly applied to determine biomolecules indirectly. Especially, the combination of immunohistochemical workflows using lanthanoid-tagged antibodies and ICP-MS detection provides new insights in the complexity and interdependency of cellular processes. Single-cell ICP-MS, also termed as mass cytometry, allows high-dimensional analysis of biomarkers in cell populations at single-cell resolution. For that purpose, lanthanoid isotope labelled antibodies are used to detect their corresponding target molecules. The visualisation of the elemental distribution is possible with laser ablation ICP-MS (LA-ICPMS) at high spatial resolution. Especially, the combination of LA with ICP time-of-flight mass spectrometry, also referred to as imaging mass cytometry (IMC), opens new possibilities for multiparametric tissue imaging at the single-cell level and even below. The lanthanoid localisation and concentration can be linked to their conjugated antibody target providing valuable information about surface markers, intracellular signalling molecules to measure biological function, and the network state of an individual cell in a tissue. This book chapter focuses on new applications, where the multi-element capabilities of ICP-MS are used for the detection of lanthanoids applied as artificial elemental stains or tags for biomolecules and in particular antibodies. KW - ICP-MS KW - Laser ablation KW - Cell KW - Antibody KW - Immunohistochemistry KW - Lanthanoid KW - Mass cytometry KW - Imaging PY - 2022 SN - 978-3-11069-645-5 SN - 978-3-11069-636-3 DO - https://doi.org/10.1515/9783110696455-013 SP - 399 EP - 444 PB - De Gruyter CY - Berlin, Boston ET - 2. rev. and exten. edition AN - OPUS4-55118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Laser-based sorting of construction and demolition waste for the circular economy N2 - Closed material cycles and unmixed material fractions are required to achieve high recovery and recycling rates in the building industry. The growing diversity of construction and demolition waste is leading to increasing difficulties in separating the individual materials. Manual sorting involves many risks and dangers for the executing staff and is merely based on obvious, visually detectable differences for separation. An automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) and visual (VIS)/ near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.). Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic/technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates. First LIBS measurements show promising results in distinguishing various material types. A meaningful validation shall be achieved with further practical samples. Future works will investigate the combination of LIBS and VIS/NIR spectroscopy in a fully automated measurement setup with conveyor belt speeds of 3 m/s. T2 - 6th fib Congress 2022 CY - Oslo, Norway DA - 12.06.2022 KW - LIBS KW - Recycling KW - Construction and demolition waste KW - Sorting PY - 2022 AN - OPUS4-55120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. T1 - Thermographic super resolution reconstruction using 2D pseudo-random pattern illumination N2 - Thermographic non-destructive testing is based on the interaction of thermal waves with inhomogeneities. The propagation of thermal waves from the heat source to the inhomogeneity and to the detection surface according to the thermal diffusion equation leads to the fact that two closely spaced defects can be incorrectly detected as one defect in the measured thermogram. In order to break this spatial resolution limit (super resolution), the combination of spatially structured heating and numerical methods of compressed sensing can be used. The improvement of the spatial resolution for defect detection then depends in the classical sense directly on the number of measurements. Current practical implementations of this super resolution detection still suffer from long measurement times, since not only the achievable resolution depends on performing multiple measurements, but due to the use of single spot laser sources or laser arrays with low pixel count, also the scanning process itself is quite slow. With the application of most recent high-power digital micromirror device (DMD) based laser projector technology this issue can now be overcome. T2 - ICPPP21: International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551224 UR - https://indico.ung.si/event/5/contributions/237/ AN - OPUS4-55122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - A fast and simple PFAS extraction method for soil sample analysis using HR-CS-GFMAS N2 - Per- and polyfluorinated alkyl substances (PFASs) are a substance class of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their different chemical and physical properties as well as the high number of target substances. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate a realistic PFAS pollution level. PFAS sum parameters compromise the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for indirect fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we describe a fast and simple extraction method for the determination of the EOF using HR-CS-GFMAS in soil samples. Common approaches for the EOF determination use solid phase extraction (SPE). To omit the bias of this time consuming and expensive step we optimized a fast and simple SPE-free extraction method. The developed extraction method consists of a liquid-solid extraction using acidified methanol. Comparison of the method with and without an SPE clean-up step revealed a drastic underestimation of EOF concentrations using SPE. In the next step, the applicability of our method was tested for other solid matrices. In view of steadily increasing numbers of PFASs, our method will make an important contribution in assessing the pollution situation as well as support policy makers in deriving exposure limits for PFASs in the future. T2 - Analytica conference CY - München, Germany DA - 21.06.2022 KW - PFAS KW - HR-CS-GFMAS KW - Soil KW - Fluorine KW - SPE PY - 2022 AN - OPUS4-55124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 SP - 1 EP - 4 AN - OPUS4-55106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Erdmann, Kerstin A1 - Rasch, Fabian T1 - Chemical characterization of ultra-fine particles released from laser printers N2 - 11 laser printers from 5 manufacturers were purchased in 2017 and tested for their UFP emissions. Size resolved sampling of the emitted particles was done with a 13 stage (30 nm to 10 µm) low pressure cascade impactor. The sampled particles were analysed for their chemical composition by thermal extraction (vaporization at 290°C) followed by GC-MS analysis. High boiling cyclic siloxanes (D10 to D16) were detected as constituents of UFP from laser printers. In comparison to measurements in 2008, aliphatic long-chain alkanes (C22 to C34) were detected additionally as chemical constituents of UFP from most of the tested printers and their amounts were higher than for cyclic siloxanes. Printers of one manufacturer showed very low UPF emissions compared to the other manufacturers. T2 - Indoor Air Conference 2022 CY - Kuopio, Finland DA - 12.06.2022 KW - UFP KW - Thermal extraction KW - Cascade impactor PY - 2022 AN - OPUS4-55107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared T2 - Spectroscopium Colloquium CY - Gijon, Spain DA - 30.05.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Zengchao A1 - Akkus, A. A1 - Weisheit, W. A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Multi element analysis in soil using nitrogen microwave inductively coupled plasma mass spectrometry (MICAP MS) N2 - Due to the fast growth of industry and the use of metal-containing compounds such as sewage sludge in agricultural fields, soil pollution associated with heavy metals presents a terrifying threat to the environment. Throughout the world, there are already 5 million sites of soil contaminated by heavy metals1. Some heavy metals pollutants can influence food chain safety and food quality, which in turn affects human health. According to the German Federal Soil Protection and Contaminated Site Ordinance (BBodSchV) 13 heavy metals such as arsenic (As), lead (Pb) and cadmium (Cd) are classified as heavily toxic to human health2. Therefore, elemental analysis and precise quantification of the heavy metals in soil are of great importance. Inductively coupled plasma mass spectrometry (ICP-MS) emerged as a powerful technique for trace analysis of soil due to its multi-element capability, high sensitivity and low sample consumption. However, despite its success and widespread use, ICP-MS has several persistent drawbacks, such as high argon gas consumption, argon-based polyatomic interferences and the need for complicated RF-power generators. Unlike argon-based ICP, the nitrogen microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) uses nitrogen as plasma gas, which eliminates high operating costs associated with argon-gas consumption as well as the argon-based interferences3. For the first time, the applicability of MICAP-MS for elemental analysis of environmental soils is investigated in this work. For this purpose, 7 reference- and 3 random soil samples containing vanadium (V), cobalt (Co), zink (Zn), copper (Cu), chrome (Cr), mercury (Hg), As, Pb and Cd are digested with aqua regia and used for analysis. Concentrations of selected elements are determined using MICAP-MS and validated using ICP-MS. Sensitivities, limits of detection and gas consumption for both methods are compared and discussed in detail. Moreover, the performance of MICAP-MS under different nitrogen plasma gas concentrations is investigated and compared. T2 - BAM Adlershofer Kolloquium CY - Online meeting DA - 21.06.2022 KW - Microwave inductively coupled atmospheric pressure mass spectrometry (MICAP-MS) KW - Multi-element analysis KW - Soil KW - Nitrogen plasma PY - 2022 AN - OPUS4-55182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferreira Camoes Liestmann, Zoe T1 - Development of an electrochemiluminescence immunoassay for selected pathogens in wastewater N2 - The outbreak of SARS-CoV-2 in December of 2019, led to a worldwide still on-going pandemic. Since then, several so-called waves of SARS-CoV-2 infections, a time period with a high and fast rising number of new infections, have occurred all over the world. Classic surveillance approaches are hardly applicable, and further, non-detected cases cannot be covered by them. Wastewater-based Epidemiology (WBE) was proven to be a reliable tool for the prediction of new SARS-CoV-2 infection waves, due to the discharge of virus particles in fecal shedding of infectious people. Until now, for the monitoring of SARS-CoV-2 in wastewater, Polymerase Chain Reaction (PCR) is used as analytical tool. Even though PCR is a highly sensitive analytical tool, is presents several disadvantages, such as the need for trained personnel, specific technical equipment, as well as a difficult performance. An analytical tool, to which these disadvantaged do not apply, are immunoassays. In this work, a sandwich Enzyme-Linked Immunosorbent Assay (ELISA), with the immobilization of the capture antibodies on the surface of a Microtiter Plate (MTP), as well as a sandwich Magnetic Bead-Based Assay (MBBA), with immobilization of the capture antibodies on the surface of Magnetic Beads (MBs), targeting the SARS-CoV-2 N-protein, were developed and optimized. Both assay formats were performed with a colorimetric and chemiluminescent detection. The developed assay is composed of the two monoclonal antibodies (mAb) AH2 and DE6 - which was biotinylated in the course of the work - which bind to two different epitops of the antigen N-protein. As tracer, Neutravidin-HRP was used, which binds, through interaction of the Neutravidin with the biotin, to the mAb DE6-Biotin. The assay development and optimization procedure included the investigation of the surface saturation with the mAb AH2, the concentration and dilution of the mAb DE6-Biotin and Neutravidin-HRP, the ideal MBs, the ideal coating as well as dilution buffers, and the colorimetric and chemiluminescent substrates. For the developed and fully optimized colorimetric ELISA, a test midpoint x0 of 388 μg/L, for the chemiluminsecent ELISA of 371 μg/L, for the colorimetric MBBA of 251 μg/L and for the chemiluminescent MBBA of 243 μg/L was obtained. Validation of the colorimetric MBBA was done by measurement of three wastewater samples collected at the Wastewater Treatment Plant (WWTP) Potsdam. Whilst no N-protein could be detected in the samples, by spiking of the wastewater samples with certain concentrations of the N-protein, 10- to 18-times lower concentrations could be back-calculated, which can be attributed to matrix-effects of the wastewater sample. Next to the matrix-effects, also several other reason exist, why no N-protein could be determined in the samples. Because of that, further investigation of the handling, and the measurement of the wastewater samples, as well as the improvement of the assay sensitivity through further optimization steps or exchange of the antibodies, is still necessary. KW - SARS-CoV-2 KW - ELISA KW - Antibody KW - N-capsid PY - 2022 SP - 1 EP - 102 PB - Technischen Universität München CY - München AN - OPUS4-57744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Compact NMR KW - Process Control KW - Modular Production KW - Process Analytical Technology PY - 2022 AN - OPUS4-55037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgmayer, R. A1 - Bake, Friedrich A1 - Enghardt, L. T1 - Design and Evaluation of a Zero Mass Flow Liner N2 - In this study, the concept of a Zero Mass Flow Liner is evaluated. The concept enables impedance control by the induction of periodic bias flow through the perforated facing sheet of the liner. The periodic bias flow is generated by a secondary high amplitude acoustic actuation. By means of the periodic bias flow, the liner can be tuned to different operating points in a given range of grazing flow velocities. The equivalent fluid impedance model for perforated plates is modified to account for the effects of periodic bias flow and grazing flow. An optimization routine, based on a genetic algorithm, is implemented. The method is applicable to any liner concept and uses the impedance of the lined surface as boundary condition in a numerical simulation. Thereby, a set of liner parameters is derived in order to obtain the desired damping characteristics. Based on the results of the optimization, a Zero Mass Flow Liner is manufactured and consequently evaluated experimentally. The damping characteristics are evaluated in form of the dissipated energy along the lined surface. Prediction and measurements show agreement. The Zero Mass Flow Liner delivers broad band dissipation of high peak value over a range of grazing flow Mach numbers. Under grazing ow conditions, the effect of periodic bias flow is reduced. This poses high energy requirements in high Mach number flow regimes which might restrict the applicability of the Zero Mass Flow concept to grazing flows of low Mach numbers. T2 - 28th AIAA/CEAS Aeroacoustics 2022 Conference CY - Southampton, Great Britain DA - 14.06.2022 KW - Acoustic damping KW - Liner KW - Zero Massflow Liner (ZML) PY - 2022 DO - https://doi.org/10.2514/6.2022-2820 SP - 1 EP - 16 PB - AIAA / CEAS AN - OPUS4-55042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hirschberg, L. A1 - Bake, Friedrich A1 - Hulshoff, S. T1 - Sound production due to main-flow oriented vorticity-nozzle interaction in absence of a net swirl N2 - The downstream acoustic response due to the interaction of main-flow oriented vorticity with a choked nozzle in a swirl-free flow was experimentally demonstrated. The response was obtained by means of impulsive radial air injection in the pipe upstream from the nozzle. The resulting downstream acoustic data are shown to obey a scaling rule that differs, from the one for swirl-nozzle interaction, which according to the literature is proportional to the square of the swirl number. In contrast, here evidence is presented that points to the scaling of main-flow oriented vorticity noise with the cross-sectional average of the square of the transversal velocity at the throat divided by the square of the critical sound speed. T2 - 28th AIAA/CEAS Aeroacoustics 2022 Conference CY - Southampton, Great Britain DA - 14.06.2022 KW - Main-flow oriented vorticity-nozzle interaction KW - Indirect noise PY - 2022 DO - https://doi.org/10.2514/6.2022-3055 SP - 1 EP - 8 PB - AIAA / CEAS AN - OPUS4-55043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The finite volume method in the context of the finite element method N2 - The finite volume method (FVM), like the finite element method (FEM), is a numerical method for determining an approximate solution for partial differential equations. The derivation of the two methods is based on very different considerations, as they have historically evolved from two distinct engineering disciplines, namely solid mechanics and fluid mechanics. This makes FVM difficult to learn for someone familiar with FEM. In this paper we want to show that a slight modification of the FEM procedure leads to an alternative derivation of the FVM. Both numerical methods are starting from the same strong formulation of the problem represented by differential equations, which are only satisfied by their exact solution. For an approximation of the exact solution, the strong formulation must be converted to a so-called weak form. From here on, the two numerical methods differ. By appropriate choice of the trial function and the test function, we can obtain different numerical methods for solving the weak formulation of the problem. While typically in FEM the basis functions of the trial function and test function are identical, in FVM they are chosen differently. In this paper, we show which trial and test function must be chosen to derive the FVM alternatively: The trial function of the FVM is a “shifted” trial function of the FEM, where the nodal points are now located in the middle of an integration interval rather than at the ends. Moreover, the basis functions of the test function are no longer the same as those of the trial function as in the FEM, but are shown to be a constant equal to 1. This is demonstrated by the example of a 1D Poisson equation. KW - Finite Volume Method KW - Finite Element Method KW - Variational Calculation KW - Numerical Methods PY - 2022 DO - https://doi.org/10.1016/j.matpr.2022.05.460 SN - 2214-7853 VL - 62 SP - 2679 EP - 2683 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Ladu, Luana A1 - Blind, K. A1 - Castka, P. T1 - Digital Maturity in the Conformity Assessment Industry - An explorative study from Germany N2 - First insights from a survey conducted among German Conformity Assessment Bodies (CABs) to explore their status of digital transformation, incl. their digital maturity, benefits and obstacles as well as actual technology trends. T2 - 26th EURAS Conference CY - Glasgow, Great Britain DA - 08.06.2022 KW - Quality Infrastructure KW - Digitalization KW - Prüflaboratorien KW - Konformitätsbewertung KW - Zertifizierungsstellen KW - Digitalisierung KW - Digitaler Reifegrad KW - Qualitätsinfrastruktur PY - 2022 AN - OPUS4-55049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia A1 - Ladu, Luana A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. ED - Jakobs, K. ED - Kim, D.-h. T1 - Digital maturity in the conformity assessment industry: An explorative study from Germany N2 - The services of Conformity Assessment Bodies (CABs) are essential to provide for trust in and safety of digital products and services by demonstrating that requirements from standards are met. Thus, it is vital that CABs are ready to fulfil their tasks also in the digital transformation, having the necessary capabilities and resources. Our study is the first to comprehensively assess the digital maturity in the CA industry and to provide some insights into the readiness of the industry to support and at the same time benefit from the digital age. To this end, we developed and implemented a digital maturity model tailored to the CA industry. In this paper, we present first results from our survey among 354 accredited CABs in Germany. With our research we contribute to better understand the digital transformation and maturation of CABs along distinctive stages. The findings suggest that the transformation process in the CA industry is just at the beginning, with the majority of CABs still in early stages of digital maturity. Also, only a few of them already exploit the latest digital technologies and applications like artificial intelligence, blockchain or big data analytics. Nevertheless, CABs regard digitalization as a big opportunity – for themselves and their industry. T2 - 26th EURAS Annual Standardisation Conference – Standards for Digital Transformation: Blockchain and Innovation CY - Glasgow, Great Britain DA - 08.06.2022 KW - Digital maturity KW - Digital transformation KW - Digitalization KW - Quality infrastructure KW - Conformity assessment KW - Conformity assessment body KW - Testing KW - Certification KW - Inspection KW - Laboratory PY - 2022 SN - 978-3-95886-446-7 SP - 253 EP - 272 PB - Verlag Mainz CY - Mainz AN - OPUS4-55065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtsch, Mona A1 - Koch, Claudia A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Castka, P. T1 - Quality assurance in supply chains during the COVID-19 pandemic: Empirical evidence on organisational resilience of conformity assessment bodies N2 - Global supply chains rely on the compliance and safety of their products, processes, and facilities. These vital services (often referred to as ‘quality assurance’ or ‘conformity assessment’ services) are provided by Conformity Assessment Bodies (CABs). This empirical study explores the impact of the COVID-19 pandemic on CABs as well as their response to the resulting challenges. Data was gathered through an online survey among all accredited CABs in Germany, which resulted in 555 valid responses. Taking a resilience perspective, we reveal that CABs were hit hard by the disruptions caused by the pandemic, albeit to different degrees, in part due to their type of services, size, and sectors served. Furthermore, we find that contingency plans do not directly cushion order declines (as the main indicator of the economic impact of the pandemic) but rather indirectly through helping CABs respond more quickly, which in turn mitigates their order declines. However, our results show that contingency plans can also have adverse effects if they hinder flexible reaction to the crisis. The findings of our study help managers and policymakers learn from the COVID-19 pandemic and improve the resilience of the conformity assessment sector and quality assurance in the event of future crises. KW - Quality Infrastructure KW - Digitalization KW - Testing laboratories KW - Organizational resilience KW - COVID-19 KW - Conformity assessment PY - 2022 DO - https://doi.org/10.1080/14783363.2022.2078189 SP - 1 EP - 23 PB - Taylor & Francis AN - OPUS4-55066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Krenzer, J. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Müller, Th. J. J. T1 - Asymmetrically bridged aroyl-S,N-ketene acetalbased multichromophores with aggregationinduced tunable emission N2 - Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. KW - Dye KW - Aggregation KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Sythesis KW - Nanaoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550719 DO - https://doi.org/10.1039/d2sc00415a VL - 13 SP - 5374 EP - 5381 PB - Royal Society of Chemistry AN - OPUS4-55071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Y. A1 - Meckler, A. N. A1 - Loland, M. A1 - Day, C. C. A1 - Müller, Bernd R. A1 - Kupsch, Andreas T1 - Fluid inclusion microthermometry in stalagmites: The next stage of development N2 - Fluid inclusion microthermometry is one of the analytical approaches that has been proposed for speleothem-based temperature reconstructions. The proxy of this paleothermometer is the density of drip water relicts that have been enclosed in microscopic fluid inclusions during speleothem growth. Prior to microthermometric analyses, the monophase liquid inclusions need to be transferred from a metastable liquid into a stable liquid-vapour two-phase state by stimulating vapour bubble nucleation by means of single ultra-short laser pulses. Subsequent microthermometric analyses determine the temperature at which the vapour bubble disappears again, the so-called liquid-vapour homogenisation temperature (Th(obs) ). The observed homogenisation temperature depends not only on the water density but also on the inclusion volume. In order to determine the water density, a thermodynamic model is used that takes account of the effect of surface tension on Th(obs) to calculate Th∞. This is the corresponding homogenisation temperature at saturation pressure that determines the water density and defines the formation temperature of the fluid inclusion. The analytical precision of the method ranges between 0.1 and 0.3 °C depending on the size of the inclusions. T2 - Climate Change: The Karst Record IX (KR9) CY - Innsbruck, Austria DA - 17.07.2022 KW - Fluid inclusion microthermometry KW - Stalagmites KW - Synchrotron radiation KW - X-ray imaging KW - X-ray diffraction PY - 2022 AN - OPUS4-55344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bintz, Thilo A1 - Munsch, Sarah A1 - Heyn, Rüdiger A1 - Hirsch, Hauke A1 - Grunewald, John A1 - Kruschwitz, Sabine T1 - Detailed investigation of capillary active insulation materials by 1H nuclear magnetic resonance (NMR) and thermogravimetric drying N2 - Capillary active interior insulation materials are an important approach to minimize energy losses of historical buildings. A key factor for their performance is a high liquid conductivity, which enables redistribution of liquid moisture within the material. We set up an experiment to investigate the development of moisture profiles within two different interior insulation materials, calcium-silicate (CaSi) and expanded perlite (EP), under constant boundary conditions. The moisture profiles were determined by two different methods: simple destructive sample slicing with subsequent thermogravimetric drying as well as non-destructive NMR measurements with high spatial resolution. The moisture profiles obtained from both methods show good agreement, when compared at the low spatial resolution of sample slicing, which demonstrates the reliability of this method. Moreover, the measured T2- relaxation-time distributions across the sample depth were measured, which may give further insight into the saturation degree of the different pore sizes. In order to explain differences in the moisture profiles between CaSi and EP, we determined their pore-size distribution with different methods: conversion of the NMR T2 relaxationtime distribution at full saturation, mercury intrusion porosimetry and indirect determination from pressure plate measurements. CaSi shows a unimodal distribution at small pore diameters, while in EP, a bi-modal or wider distribution was found. We assume that the smaller pore diameters of CaSi lead to a higher capillary conductivity, which causes a more distributed moisture profile in comparison with that of EP. T2 - NDT-CE CY - Zurich, Switzerland DA - 16.08.2022 KW - Insulation material KW - Nuclear magnetic resonance KW - Capillary conductivity KW - Pore-size distribution PY - 2022 AN - OPUS4-57918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Munsch, Sarah A1 - Bintz, Thilo A1 - Heyn, R. A1 - Hirsch, H. A1 - Grunewald, J. A1 - Kruschwitz, Sabine T1 - Detailed investigation of capillary active insulation materials by 1H nuclear magnetic resonance (NMR) and thermogravimetric drying N2 - Capillary active interior insulation materials are an important approach to minimize energy losses of historical buildings. A key factor for their performance is a high liquid conductivity, which enables redistribution of liquid moisture within the material. We set up an experiment to investigate the development of moisture profiles within two different interior insulation materials, calcium-silicate (CaSi) and expanded perlite (EP), under constant boundary conditions. The moisture profiles were determined by two different methods: simple destructive sample slicing with subsequent thermogravimetric drying as well as non-destructive NMR measurements with high spatial resolution. The moisture profiles obtained from both methods show good agreement, when compared at the low spatial resolution of sample slicing, which demonstrates the reliability of this method. Moreover, the measured T2-relaxation-time distributions across the sample depth were measured, which may give further insight into the saturation degree of the different pore sizes. In order to explain differences in the moisture profiles between CaSi and EP, we determined their pore-size distribution with different methods: conversion of the NMR T2 relaxationtime distribution at full saturation, mercury intrusion porosimetry and indirect determination from pressure plate measurements. CaSi shows a unimodal distribution at small pore diameters, while in EP, a bi-modal or wider distribution was found. We assume that the smaller pore diameters of CaSi lead to a higher capillary conductivity, which causes a more distributed moisture profile in comparison with that of EP. T2 - NDT-CE CY - Zurich, Switzerland DA - 16.08.2022 KW - Insulation material KW - Nuclear magnetic resonance KW - Capillary conductivity KW - Pore-size distribution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579172 DO - https://doi.org/10.58286/27205 SN - 1435-4934 VL - 27 IS - 9 SP - 1 EP - 11 AN - OPUS4-57917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Taylor, J. A1 - Thakur, S. A1 - Radu, F. A1 - Weschke, E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Xiao, B. A1 - Savan, A. A1 - Yusenko, Kirill A1 - Ludwig, A. T1 - Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale N2 - The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS), KW - X-ray magnetic circular dichroism (XMCD), PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578254 DO - https://doi.org/10.1007/s12274-022-5135-3 SN - 1998-0124 SP - 5626 PB - Springer AN - OPUS4-57825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Maldague, X. T1 - Detection of internal defects applying photothermal super resolution reconstruction utilizing two-dimensional high-power random pixel patterns N2 - In this work, we report on our progress for investigating a new experimental approach for thermographic detection of internal defects by performing 2D photothermal super resolution reconstruction. We use modern high-power laser projector technology to repeatedly excite the sample surface photothermally with varying spatially structured 2D pixel patterns. In the subsequent (blind) numerical reconstruction, multiple measurements are combined by exploiting the joint-sparse nature of the defects within the specimen using nonlinear convex optimization methods. As a result, a 2D-sparse defect/inhomogeneity map can be obtained. Using such spatially structured heating combined with compressed sensing and computational imaging methods allows to significantly reduce the experimental complexity and to study larger test surfaces as compared to the one-dimensional approach reported earlier. T2 - Quantitative Infrared Thermography 2022 CY - Paris, France DA - 04.07.2022 KW - Thermography KW - Super resolution KW - NDT KW - inspection KW - Internal defects KW - DMD KW - DLP PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577795 DO - https://doi.org/10.21611/qirt.2022.1005 SN - 2371-4085 SP - 1 EP - 7 PB - QIRT Council AN - OPUS4-57779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for comparison and validation of signal processing and imaging techniques in civil engineering N2 - The evaluation of technical components and materials in terms of condition and quality with the aid of non-destructive testing methods plays an outstanding role both in industrial serial production and in the individual assessment of components. The ultrasonic echo method is used for a wide variety of testing tasks, such as measuring the thickness of a component. At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, test methods are developed and their performance is demonstrated. For this purpose, references such as materials, test procedures or data sets are generated, which are used to evaluate these developed test methods. An important component of these references are data sets that are created according to the BAM Data Policy and made available to the scientific community and users of test methods in practice on the basis of the FAIR principles (Findability, Accessibility, Interoperability, and Reuse). T2 - The International Symposium on Nondestructive Testing in Civil Engineering (NDT-CE) 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Reference data KW - Non destructive testing and evaluation KW - Ultrasonic KW - Civil engineering PY - 2022 AN - OPUS4-58440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Steinhäuser, Lorin A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Le Diouron, V. A1 - Heath, E. A1 - Ana Kovačič, A. A1 - Potalivo, M. A1 - de Zorzi, P. A1 - Centioli, D. A1 - Naykki, T. A1 - Viidanoja, J. A1 - Gökcen, T. A1 - Budzinski, H. A1 - Le Menach, K. A1 - Selih, V. T1 - EDC-WFD: A project to deliver reliable measurements for better monitoring survey and risks assessments. N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17E2) and estriol (E3) will be included to demonstrate the reliability of the developed methods and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four selected effect-based methods (EBM) will be deeply investigated in order to improve their rationale use and their support in water quality assessment. In particular, the EBM sensitivity, specificity and accuracy on reference materials with single or mixture solutions of the five substances at a concentration of EQS values will be explored. This contribution will present the objectives and methods applied within the EDC-WFD project. T2 - EuChemS CY - Lisbon, Portugal DA - 29.08.2022 KW - WFD KW - Estrogens KW - Whole water samples KW - EQS PY - 2022 AN - OPUS4-57096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Kovačič, A. A1 - Steinhäuser, Lorin A1 - Heath, E. A1 - Lardy-Fontan, S. T1 - A method for monitoring estrogens in whole surface waters by GC-MS/MS N2 - Natural and synthetic estrogens are key endocrine-disrupting chemicals. Despite occurring at ultra-trace levels (below ng L-1), it is believed that they are contributing to an increase in feminized fish and other endocrine disruptive effects, and hence, their inclusion in the Watch list was not unexpected. One of the main sources ofestrogens to surface waters is wastewater effluent. Once in surface waters, they can partition into different compartments, i.e., water and suspended particulate matter. For this reason, there is an urgent need for a methodology to monitor estrogen levels below the environmental quality standards (EQS) set by the Water Framework Directive requirements. In this study, a precise and accurate gas chromatography-mass spectrometry method (GC-MS/MS) for the analysis of estrone (E1), 17β-estradiol (17β-E2), 17α-estradiol (17α- E2), 17-alpha-ethinylestradiol (EE2), and estriol (E3) in whole water samples with ng L-1 limit of quantification (LOQ) was developed and validated in accordance with CEN/TS 16800:2020 guidelines. T2 - IMSC 2022 CY - Maastricht, Netherlands DA - 27.08.2022 KW - EDC KW - WFD KW - GC-MS PY - 2022 AN - OPUS4-57097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Quadtree decomposition as a meshing strategy for guided waves simulations using the scaled boundary finite element method N2 - Structural health monitoring techniques associate strongly with damage detection and characterization. Ultrasonic guided waves (UGW), for such scope, arise as one of the most promising methods for many reasons i.e. UGW are able to travel long distances and they have high sensitivity to damage. In this context, the necessity to model realistic wave-defect interaction occurs to be critical. Realistic damage scenarios can be modeled through the usage of image-based quadtree meshes. Images, such as the outcome from X-ray scans, C-scans, etc., can be converted into meshes for further integration in a computational domain. Quadtree meshes are created by converting the intensity of the pixels to quadrilateral cells. Homogeneous regions inside one image result in one quad, whereas fine features such as discontinuities can be described with smaller quads. This contribution proposes an efficient methodology to model wave defect interaction, using as a framework the scaled boundary finite element method (SBFEM) and quadtree meshes. Problems as non-conforming regions in the mesh due to the space tree decomposition can be easily avoided using SBFEM’s polygonal elements. Moreover, the semi-analytical nature of the SBFEM allows the modeling of arbitrarily long prismatic/undamaged regions of the waveguides without an increase in the computational burden. T2 - DAGA 2022 CY - Stuttgart, Germany DA - 21.03.2022 KW - Wave defect interaction KW - Scaled Boundary Finite Element Method KW - Quadtree meshes KW - Image-based models KW - Transient analysis PY - 2022 SP - 887 EP - 890 CY - Stuttgart AN - OPUS4-57153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Bliesener, Lilly A1 - Weiss, Tilman A1 - Koch, Matthias T1 - Marker Substances in the Aroma of Truffles N2 - The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results. KW - Truffle KW - Volatile organic compounds; KW - Gas chromatography KW - Mass spectrometry KW - Canine olfactometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556116 DO - https://doi.org/10.3390/molecules27165169 SN - 1420-3049 VL - 27 IS - 16 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-55611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - Non-destructive testing application examples using the NMR core-analyzing tomograph N2 - Nuclear magnetic resonance (NMR) with focus on 1H protons is increasingly applied for non-destructive testing applications. Besides mobile NMR, laboratory devices such as the NMR core-analyzing tomograph are used. As their magnetic field is more homogeneous, they enable measurements with higher signal-to-noise ratios (SNR), but with limited sample sizes. The tomograph presented here (8.9 MHz) was constructed for a maximum sample diameter of 70 mm and length of up to 1 m. The resolution, the echo time (min. 50 µs), the SNR and the measurement type can be adjusted by means of exchangable coils. The tomograph enables measurements along the complete sensitive length, slice-selective and even 2- or 3-dimensional measurements. A movable sample lifting system thereby allows a precise positioning of the sample. T2 - Magnetic Resonance in Porous Medie (MRPM) 2022 CY - Online meeting DA - 21.08.2022 KW - Spalling KW - Nuclear magnetic resonance KW - Tomography KW - Moisture transport KW - Frost salt attach PY - 2022 AN - OPUS4-55828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim T1 - Hydrogen diffusion and desorption characteristics of a CoCrFeMnNi high entropy and a CoCrNi medium entropy alloy N2 - High-entropy alloys (HEAs) are innovative high-performance materials that have attracted more and more research attention. HEAs are characterized by a solid solution of typically five equiatomic metallic elements. In addition, medium-entropy alloys (MEA, with three elements) are of interest and become more and more important. Depending on the alloy concept, HEAs and MEAs show exceptional mechanical properties, especially high-strength and ductility combinations at both cryogenic and elevated temperatures combined with excellent corrosion resistance. Future structural HEA/MEA components can be exposed to potential applications with hydrogen containing environments like high-temperature water in pressurized nuclear reactors or aerospace structures. Other potential applications could be in materials for vessel walls in the field of cryogenic and high-pressure hydrogen storage. So far, the susceptibility of HEAs/MEAs to hydrogen assisted cracking (if any) and the hydrogen diffusion is not investigated in detail yet and can limit or extend possible applications of HEA/MEA as structural materials. In our work, we focused on the hydrogen absorption, diffusion, and distribution in a HEA (CoCrFeMnNi the original Cantor-alloy) and a MEA (CoCrNi). Cathodic hydrogen charging was carried out for the hydrogen ingress, and thermal desorption analysis (TDA) revealed complex hydrogen trapping in both alloy types up to 300 °C. The absorbed total hydrogen concentrations were > 100 ppm for the HEA and > 40 ppm for MEA. In addition, the assessment of the peak deconvolution is not trivial and must consider both experimental and microstructure influences. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - High-entropy alloy KW - Multiple principal element alloy KW - Thermal desorption analysis KW - Diffusion PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Harmonisation efforts of the CUSP projects N2 - The talk is about harmonisation approaches within CUSP. First the five H2020 projects for research on risk assessment regarding microplastics topic were presented. Secondly, harmonisation process were discussed. T2 - VAMAS SC 47 Meeting CY - Turin, Italy DA - 19.10.2022 KW - Microplastics KW - Harmonisation KW - Nanoplastics KW - H2020 KW - Risk assessment PY - 2022 AN - OPUS4-56077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlers, Henrik A1 - Thewes, R. A1 - Pelkner, Matthias T1 - Online Process Monitoring for Additive Manufacturing Using Eddy Current Testing With Magnetoresistive Sensor Arrays N2 - The rising popularity of additive manufacturing processes leads to an increased interest in possibilities and methods for related process monitoring. Such methods ensure improved process quality and increase the understanding of the manufacturing process, which in turn is the basis for stable component quality, e.g., required in the aerospace industry or in the medical sector. For laser powder bed fusion, a handful of process monitoring tools already exist, such as optical tomography, thermography, pyrometry, imaging, or laser power monitoring. Although these tools provide helpful information about the process, more information is required for an accurate in-depth understanding. In this article, advanced approaches in eddy current testing (ET) are combined, such as single wire excitation, magnetoresistive (MR) sensor arrays, and heterodyning to build up a system that can be used for online process monitoring of laser powder bed fusion. In addition to detailed information about the developed ET system and underlying signal processing, the first results of magnetoresistance-basedonline ET during the laser powder fusion process are presented. While producing a step-shaped cuboid, each layer is tested during recoating. Test results show that not only the contours of the topmost layer are detected but also the contours of previous layers covered by powder. At an excitation frequency of 1 MHz, a penetration depth of approx. 400 μm is obtained. To highlight the possibilities of ET for online process monitoring of laser powder bed fusion, results are compared with postexposure images of the integrated layer control system (LCS). KW - Process monitoring KW - Eddy current testing KW - Giant magneto resistance (GMR) KW - Additive manufacturing KW - Laser powder bed fusion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560881 DO - https://doi.org/10.1109/JSEN.2022.3205177 VL - 22 IS - 20 SP - 19293 EP - 19300 PB - IEEE CY - New York, NY AN - OPUS4-56088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. T1 - Modular process control with compact NMR spectroscopy – From Field Integration to Automated Data Analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. At the end of the article, ideas for solutions are discussed in order to speed up the implementation of new special products from the point of view of process analytics and to network the existing process chains more closely. T2 - PATriCK 2022 – Merck conference on PAT technology CY - Darmstadt, Germany DA - 19.10.2022 KW - Process Analytical Technology KW - Digitalisation KW - Process Industry KW - Online NMR Spectroscopy KW - Modular Production PY - 2022 AN - OPUS4-56089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Ponader, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Hodoroaba, Vasile-Dan T1 - Correlative Analysis by Raman and other Micro & Nanospectroscopic Imaging Techniques N2 - In the present talk the basics of the Raman spectroscopy and particularly of Raman microscopy are explained. Advantages and disadvantages of the method are highlighted through selected case studies. In the second part of the lecture examples of correlative imaging with electron, X-ray, ion and optical microscopies from micro- to the nanoscale are highlighted. T2 - Charisma School on Raman Harmonisation CY - Turin, Italy DA - 19.10.2022 KW - Raman KW - Correlative Imaging KW - Microscopy KW - Hyperspectral imaging PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47/program-sc47 AN - OPUS4-56094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators N2 - The majority of ultrasonic devices used for non-destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limitations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous monofrequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 AN - OPUS4-56069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators N2 - The majority of ultrasonic devices used for non- destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limi- tations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous mono- frequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air-coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 AN - OPUS4-56072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators N2 - The majority of ultrasonic devices used for non-destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limitations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous mono-frequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air-coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 DO - https://doi.org/10.1109/IUS54386.2022.9958740 SP - 1 EP - 4 AN - OPUS4-56073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Cement KW - Chlorine PY - 2022 AN - OPUS4-56061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -