TY - GEN A1 - Rabin, Ira ED - Raggetti, L. T1 - Material Studies of Historic Inks: Transition from Carbon to Iron-Gall Inks T2 - Traces of Ink N2 - This chapter offers observations and considerations concerning black writing inks encountered in writing supports transmitting documentary and literary texts of the late Antiquity and early Middle Ages. It discusses different types of inks, the Methods of their detection and their use in different times and geographical areas. KW - Material analysis KW - Writing inks KW - Ink fingerprint PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528057 DO - https://doi.org/10.1163/9789004444805_006 SP - 70 EP - 78 PB - Brill CY - Leiden AN - OPUS4-52805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Niemz, P. A1 - Baensch, Franziska A1 - Brunner, A. J. ED - Pavalache-Ilie, M. ED - Curtu, A. L. T1 - Acoustic Emission Analysis And Synchrotron-based Microtomography of glued shear strength samples from spruce wood T2 - Bulletin of the Transilvania University of Braşov, Series II N2 - To better understanding the failure of adhesive joints tensile tests were carried out on miniature test specimens from Norway spruce in the synchrotron. Urea-formaldehyde resin was used as adhesive. e. For comparison purposes, tensile tests were carried out on solid wood and on bonded miniature tensile shear samples with acoustic emission. The acoustic emission signals of all the experiments occurred with classified pattern recognition. This resulted in two classes of signals for each two frequency peaks. One class consisted of the low-frequency and the other of the higher-frequency peak of higher intensity, but this was essentially independent from the structure (solid wood or plywood) and size scale of the test specimens. The influence of the adhesive layers was determined on wood test specimens on laboratory scale and on miniature test specimens with an adhesive layer and selected fiber orientations. This gave evidence that the sound emission signals from the failure of the adhesive layer presumably of the class with low frequency signals peak in the range of services can be assigned. KW - Wood KW - Bondline KW - In-situ test KW - Acoustic emission KW - Synchrotron tomography PY - 2020 DO - https://doi.org/10.31926/but.fwiafe.2020.13.62.1.7 VL - 13 IS - 62 Part 1 SP - 81 EP - 88 PB - Transilvania University Press, Brasov, Romania CY - Brasov AN - OPUS4-51010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Strangfeld, Christoph A1 - Klewe, Tim ED - Rizzo, P. ED - Milazzo, A. T1 - Hygrometric Moisture Measurements Based on Embedded Sensors to Determine the Mass of Moisture in Porous Building Materials and Layered Structures T2 - Lecture Notes in Civil Engineering: European Workshop on Structural Health Monitoring N2 - Subfloors are layered structures, consisting largely of porous building materials, such as screed. They are often suffering damage from tap water leakage, which is a typical problem in buildings, and which has largely contributed to repair costs of almost 3 billion Euro in 2018 alone in Germany. In this context, especially mould plays a role, which is both destroying the structure and posing severe health risks. To determine the damaging effects of moisture, it is necessary to know the respective processes occurring in building materials, especially to quantify the amount of moisture and its progress in the material. In this study, humidity sensors are used to derive the material moisture experimentally. Capacitive sensors recording the relative humidity are embedded into the screed and in the insulation materials such as expanded polystyrene, extruded polystyrene, perlite and glass wool. For the application in screed, the sensors need to be shielded against the aggressive alkaline materials. To ensure an appropriate exchange with the environment, a permeable membrane is requested. Different membrane materials have been investigated regarding their robustness and their permeability. In the first experimental setup, two humidity sensor arrays with seven individual sensors are embedded in homogeneous screed samples. The measured corresponding relative humidity of the screed is converted to the material moisture based on the approach of Hillerborg. In a second experimental setup, a layered structure of a complete subfloor is built in a box of 0.8 m times 0.8 m. The humidity sensors are positioned in the different insulation materials of various thicknesses. By adding water, leakage damage is simulated and its progress and effect is investigated experimentally. The investigations point at the question if the observed moisture is able to generate damage such as mould. The moisture and corresponding humidity values are discussed. It will be shown that this low-cost hygrometric approach can be used easily for moisture monitoring of screed and insulation materials as well KW - Moisture monitoring KW - Material moisture KW - Building materials KW - Embedded humidity sensors PY - 2021 DO - https://doi.org/10.1007/978-3-030-64594-6_22 VL - 1 SP - 213 EP - 225 PB - Springer Nature CY - Cham AN - OPUS4-52013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -