TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. T2 - ECM31 CY - Oviedo, Spain DA - 18.08.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Environmental sustainability and –stability of Materials concerning the Migration of pollutants N2 - MaUS is an acronym for ”Material und Umweltsimulationen“. Plastics are in the focus of environmental politics due to their long-term behaviour and therefore to their persistence. Not only that they appear as visible contaminants in the sea and on the beach, but their unknown behaviour concerning their additives as well as the related transformation products are anxious. Therefore, we wish to establish a certified reference method to provide a method for testing plastics. Aim of this project is the development of fast motion standard reference methods for testing plastics regarding to their environmental compatibility. To establish these testing methods, we use polystyrene (PS) and polypropylene (PP) with environmental relevant brominated flame retardants, known for their persistent bioaccumulative and toxic (PBT) properties. In case of PS the material contains 1 wt% of 1,2,5,6,9,10-hexabromocyclododecan (HBCD) and in case of PP 0.1 wt% bromodiphenylether (BDE-209), which is known as a substance of very high concern (SVHC). Furthermore, we use polycarbonate (PC), which is still used as material in baby flasks and releases Bisphenol A (BPA), an estrogenic active substance. As an additional material PTFE is used for its importance as a source for two ubiquitous environmental substances (PFOS and PFOA), whose toxicological effects are still incompletely known. The focus in this current work is set on the transfer of potential pollutants out of applied materials mentioned above into environmental compartments like water or soil. Here an accelerated aging concept should be developed to shortened time consuming natural processes. For these resulting simulations we use a programmable weathering chamber with dry and wet periods and with high and low temperatures. These programmes run for several weeks and according to a defined sampling schedule we take water samples, run a clean-up procedure by SPE (Molecular imprinted polymers (MiPs) resp. polymer-based cartridges (Waters Oasis HLB)) and analyse them by HPLC-UV resp. LC-MS/MS. Of most interest in case of flame retardants are photocatalytic transformation products. Therefore, we conduct a non-target-screening resp. a suspected target-screening by LC-MS/MS and HRMS. T2 - Project meeting PlasticsEurope - BAM CY - Leverkusen, Germany DA - 06.11.2018 KW - Environmental simulation KW - Pollutants PY - 2018 AN - OPUS4-47026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bosc-Bierne, Gaby T1 - Development of an HPLC-HRMS method for quality control of peptide pools N2 - Synthetic peptide pools are used in antigen-specific T-cell assays, which are an important part in vaccine and immunotherapeutic clinical trials. As the analytical characterization is challenging due to the similarity of the single peptides or is expensive due to isotope labeled standards, usually only a pre-characterization of the single peptides is performed. However, a regular quality control of the peptide mix would be highly desirable. Therefore, a cost-efficient high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for quality control of a model peptide pool is developed. Peptides were synthesized using peptides&elephants proprietary libraries of individual peptides (LIPS) technology and purified by reversed-phase chromatography to > 90% each. The lyophilized single peptides were combined to a model peptide pool and analyzed by reversed-phase high-performance capillary liquid chromatography coupled to an orbitrap mass spectrometer. Separation was performed on a capillary reversed phase column (2 μm, ID x L 300 μm x 150 mm) with a linear gradient of acetonitrile + 0,05% trifluoroacetic acid. For the separation of a model peptide pool the additive, additive concentration, the gradient elution and the temperature were optimized. Different quantification approaches were tested. Identification was performed by high resolution mass spectrometry in which extracted ion chromatograms (XIC) were used to confirm exact masses. In line with the development of a new cost-efficient quality control method for the separation and identification of complex synthetic peptide pools, varied HPLC parameters highlighted their influence on chromatographic resolution and peptides were identified with high mass accuracy. T2 - 8th Austrian Peptide Symposium CY - Salzburg, Austria DA - 13.12.2018 KW - LC-MS KW - Peptide pools KW - Quality control PY - 2018 AN - OPUS4-47058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project z02 at the csmc: material-science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the Centre for the Study of Manuscript Cultures (CSMC). In collaboration with the other two service projects, Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the centre. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out. T2 - Konferenz: Art & Archaeology 2018 CY - Jerusalem, Israel DA - 09.12.2018 KW - Manuscripts KW - Inks KW - CSMC KW - Pigments PY - 2018 AN - OPUS4-47039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Presentation of the recent results in the context of in situ investigations of reactions using X-ray diffraction. T2 - Germany Brazil Workshop: New light on mechanisms of chemical reactions CY - Kiel, Germany DA - 31.07.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ studies of mechanochemistry: a force of synthesis N2 - Recent results in the field of mechanisms and kinetics of mechanochemical reactions. T2 - Seminar GFZ Potsdam CY - Postdam, Germany DA - 28.03.2018 KW - In situ KW - XRD KW - Rietveld PY - 2018 AN - OPUS4-46992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Synchrotron X-ray Investigations N2 - Summary of the techniques available at the BAMline and µspot BEamline. T2 - Workshop Humboldt University and Hebrew University of Jerusalem CY - Berlin, Germany DA - 09.10.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time In situ investigations N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - 5th International Conference "Fundamental Bases of Mechanochemical Technologies" CY - Novosibirsk, Russia DA - 25.06.2018 KW - Mechanochemistry KW - XRD KW - Kinetic KW - Coordination polymers PY - 2018 AN - OPUS4-46994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ characterization of nucleation, growth, crystallization and dissolution of nanoscaled iron oxides N2 - Nucleation and growths of iorn oxide nanoparticles studied in situ using XRD, XRF, SAXS and XANES. T2 - International CRC meeting CY - Berlin, Germany DA - 10.10.2018 KW - XRD KW - XANES PY - 2018 AN - OPUS4-46995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - QM Summer School – teaching living quality management to our young generation N2 - In 2018, BAM (Federal Institute for Materials Research and Testing) and the young analysts of the department Analytical Chemistry at the Gesellschaft Deutscher Chemiker (German Chemical Society, GDCh) jointly organized the second summer school on quality assurance in analytical chemistry in Berlin, Germany. Over fifty doctoral students that are still in the initial stages of work participated in the week-long event and the participants were confronted with the most important basic concepts of internal and external systems of quality assurance in analytical chemistry. Especially young scientists and scholars deal with the development of analysis methods and often generate an increasingly growing wealth of data. Results are mostly evaluated under quantitative aspects and need to be assessed subject-specifically. In addition to the purely scientific requirements these results also should meet the requirements of analytical quality assurance. For this purpose, the development of analytical methods is accompanied by a process of validation – the documented proof that a method is suitable for the intended purpose and the defined requirements. This talk summarizes the didactic concept, which was used by the organizers to span an arc from the handling of process characteristics, such as accuracy, precision, linearity, recovery, up to measurement uncertainty and modern multivariate analysis techniques. In an open space workshop, the participants discussed their idea of quality management and worked out requirements after common sense. Interestingly, many participants had already implemented important quality assurance without professionally knowing it. T2 - Euroanalysis XX 2019 CY - Istanbul, Turkey DA - 01.09.2019 KW - Quality Management KW - Summer School KW - GDCh KW - Joung Analysts KW - Chemometrics KW - Education PY - 2019 UR - http://euroanalysis2019.com/ AN - OPUS4-48834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -