TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, R. A1 - Lyamkin, V. A1 - Cabeza, S. A1 - Evsevleev, S. A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and Bulk Residual Stress Analysis of S235JRC + C Steel TIG Weld by Diffraction and Magnetic Stray Field Measurements N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - Residual stress KW - Magnetic stray field KW - Synchrotron X-ray diffraction KW - Neutron diffraction KW - TIG welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547419 DO - https://doi.org/10.1007/s11340-022-00841-x VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer AN - OPUS4-54741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira ED - Capasso, M. ED - Davoli, P. ED - Pellé, N. T1 - XRF Ink Analysis of Selected Fragments from the Herculaneum Collection of the Biblioteca Nazionale di Napoli N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). KW - XRF KW - ink KW - Herculaneum KW - papyrus PY - 2022 UR - http://siba-ese.unisalento.it/index.php/29th_ICP/issue/view/1881 SN - 978-88-8305-177-7 DO - https://doi.org/10.1285/i99788883051760 SP - 200 EP - 213 PB - Centro di Studi Papirologici dell’Università del Salento CY - Lecce AN - OPUS4-54756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, T. A1 - Giese, S. A1 - Wang, S. A1 - Muth, Thilo A1 - Renard, B.Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides N2 - Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. KW - Mass spectrometry KW - Machine learning KW - Deep learning KW - Peptide identification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547580 DO - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 SP - 378 EP - 388 PB - Springer Nature CY - London AN - OPUS4-54758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langenhan, Jennifer A1 - Jaeger, Carsten A1 - Baum, K. A1 - Simon, M. A1 - Lisec, Jan T1 - A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC‐APCI‐MS Flux Experiments N2 - The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer‐based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN. KW - Mass Spectrometry KW - Isotopologue Distribution KW - Metabolic Flux KW - R package PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547318 DO - https://doi.org/10.3390/metabo12050408 VL - 12 IS - 5 SP - 1 EP - 10 PB - MDPI AN - OPUS4-54731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirschberg, L. A1 - Bake, Friedrich A1 - Knobloch, K. A1 - Hulshoff, S. A1 - Hirschberg, A. T1 - Experimental investigations of indirect noise due to modulation of axial vorticity and entropy upstream of a choked nozzle N2 - An experimental cold-gas study of the response of a choked convergent–divergent nozzle to swirl perturbations is presented. The perturbations were obtained by means of upstream unsteady tangential injections into initially steady flows with different values of steady background swirl. The swirl perturbations induced changes in the axial mass-flow rate, due to either their ingestion or evacuation by the nozzle. This in turn caused a downstream acoustic response. For low-intensity background swirl the responses were found to be similar to those obtained without steady background swirl. Perturbations of a high-intensity background swirl led to different effects. For long injection times, the negative mass-flow rate modulation occurred in two stages. The first stage was similar to that of the background-swirl free case. The second stage occurred after a short time delay, and induced a much stronger negative acoustic response. This unexpected behavior suggests that a significant part of the tangentially injected fluid flows upstream inducing an accumulation of swirl, which is – after tangential injection is ceased – suddenly cleared out through the nozzle. A scaling rule for the amplitudes of these acoustic responses is reported. Furthermore, quasi-steady models, based on steady-state measurements are proposed. These models predict the downstream acoustic response amplitude within a factor two. Additionally, preliminary empirical evidence of the effect of swirl on the downstream acoustic response due to the interaction of entropy patches with a choked nozzle is reported. This was obtained by comparison of sound produced by abrupt radial or tangential sonic injection, upstream from the choked nozzle, of air from a reservoir at room temperature to that from a reservoir with a higher stagnation temperature. Because the mass flow through the nozzle does not increase instantaneously, the injected higher-enthalpy air accumulates upstream of the injection-port position in the main flow. This eventually induces a large downstream acoustic pulse when tangential injection is interrupted. The magnitude of the resulting sound pulse can reach that of a quasi-steady response of the nozzle to a large air patch with a uniform stagnation temperature equal to that of the upstream-injected heated air. This hypothesis is consistent with the fact that the initial indirect-sound pulse is identical to one obtained with unheated air injection. The authors posit that – given all of the insight gleaned from them in this case – acoustic measurements of indirect sound appear to be a potentially useful diagnostic tool. KW - Aeroacoustics KW - Indirect combustion noise KW - Vorticity noise KW - Entropy noise KW - Swirl PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548331 DO - https://doi.org/10.1016/j.jsv.2022.116989 SN - 0022-460X VL - 532 SP - 1 EP - 22 PB - Elsevier Ltd. AN - OPUS4-54833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548226 DO - https://doi.org/10.1021/acs.inorgchem.1c03442 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -