TY - JOUR A1 - Falqueto, J. B. A1 - Clark, A. H. A1 - Štefančič, A. A1 - Smales, Glen Jacob A1 - Vaz, C. A. F. A1 - Schuler, A. J. A1 - Bocchi, N. A1 - Kazzi, M. E. T1 - High performance doped Li-rich Li1+xMn2–xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave-assisted hydrothermal route N2 - Li-rich nanoparticles of Li1+xMn2–xO4 doped with Al, Co, or Ni are successfully synthesized using a facile, fast, and efficient microwave-assisted hydrothermal route. Synchrotron X-ray diffraction confirms the formation of the crystalline cubic spinel phase type. X-ray absorption spectroscopy analysis at the Co and Ni K- and L-edges verifies that the dopants are within the Li1+xMn2–xO4 spinel structure and are inactive during cycling in the bulk and at the surface. Moreover, we demonstrate that nanocrystallinity and cationic doping play an important role in improving the electrochemical performance with respect to LiMn2O4 microparticles. They significantly reduce the charge-transfer resistance, lower the first cycle irreversible capacity loss to 6%, and achieve a capacity retention between 85 and 90% after 380 cycles, with excellent Coulombic efficiency close to 99% without compromising the specific charge at a 5C cycling rate. Furthermore, the Mn K- and L-edges attest that after long cycling, the Mn oxidation state in the bulk differs from that at the surface caused by the Mn disproportion reaction; however, the cationic doping helps mitigate the Mn dissolution with respect to the undoped Li1+xMn2–xO4 nanoparticles, as indicated by inductively coupled plasma atomic emission spectrometry. KW - XAS KW - SAXS KW - Li-ion battery KW - Cathode material KW - Spinel KW - The MOUSE PY - 2022 DO - https://doi.org/10.1021/acsaem.2c00902 SN - 2574-0962 VL - 5 IS - 7 SP - 8357 EP - 8370 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Matthias A1 - Mauch, Tatjana A1 - Riedel, Juliane T1 - Development of a Hydrazine-Based Solid-Phase Extraction and Clean-Up Method for Highly Selective Quantification of Zearalenone in Edible Vegetable Oils by HPLC-FLD N2 - Rapid, cost-efficient, and eco-friendly methods are desired today for routine analysis of the Fusarium mycotoxin zearalenone (ZEN) in edible vegetable oils. Liquid chromatography with fluorescence detection (HPLC-FLD) is commonly used to reliably control the specified ZEN maximum levels, which requires efficient sample clean-up to avoid matrix interferences. Therefore, a highly selective extraction and clean-up method based on reversible covalent hydrazine chemistry (RCHC) using hydrazine-functionalized silica was developed. This efficient solid-phase extraction (SPE) involves reversible hydrazone formation of ZEN with the hydrazine moiety covalently bound to a solid phase. Optimal conditions were achieved with 1 mL SPE cartridges filled with 400 mg of hydrazine-functionalized silica. The developed RCHC-SPE method was validated in an interlaboratory comparison study (ILC) with twelve participants analyzing six edible vegetable oils with a focus on maize oils. The derived method parameters (ZEN recovery 83%, repeatability 7.0%, and reproducibility 18%) meet the performance criteria of Commission Regulation (EC) No 401/2006. The developed RCHC-SPE-based HPLC-FLD method allows the reliable quantification of ZEN in the range of 47–494 μg/kg for different types of edible vegetable oils, also for matrix-reach native oils. Due to the high efficiency, the significantly reduced matrix load helps to extend the lifetime of analytical equipment. Furthermore, the re-useability of the RCHC-SPE cartridges contributes to an eco-friendly approach and reduced analysis costs. To our knowledge, this is the first report on ZEN quantification in edible vegetable oils based on manual RCHC-SPE cartridges. Due to its high performance, the developed RCHC-SPE method is a promising alternative to the current European standard method EN 16924:2017 (HPLC-FLD part). KW - Mycotoxin KW - Food KW - Reversible covalent hydrazine chemistry (RCHC) KW - Quantitative determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554812 DO - https://doi.org/10.3390/toxins14080549 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-55481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monks, M.-J. A1 - Würth, Christian A1 - Kemnitz, Erhard A1 - Resch-Genger, Ute T1 - Dopant ion concentration-dependent upconversion luminescence of cubic SrF2:Yb3+, Er3+ nanocrystals prepared by a fluorolytic sol–gel method N2 - A fluorolytic sol–gel method was used for the fast and simple synthesis of small cubic-phase SrF2:Yb3+, Er3+ upconversion (UC) nanocrystals (UCNC) of different composition at room temperature. Systematic studies of the crystal phase and particle size of this Yb3+,Er3+-concentration series as well as excitation power density (P)-dependent UC luminescence (UCL) spectra, UCL quantum yields (ΦUCL), and UCL decay kinetics yielded maximum UCL performance for doping amounts of Yb3+ of 13.5% and Er3+ of 1.3% in the studied doping and P-range (30–400 W cm−2). Furthermore, ΦUCL were determined to be similar to popular β-NaYF4:Yb3+,Er3+. The relative spectral UCL distributions revealed that all UCNC show a strong red emission in the studied doping and P-range (30–400 W cm−2) and suggest that the UCL quenching pathway for unshelled cubic-phase SrF2:Yb3+,Er3+ UCNC differs from the commonly accepted population and depopulation pathways of β-NaYF4:Yb3+,Er3+ UCNC. In SrF2:Yb3+,Er3+ UCNC the 4S3/2 → 4I13/2 transition exhibits a notably stronger sensitivity towards P and reveals increasing values for decreasing Yb3+–Yb3+ distances while the 4I9/2 → 4I15/2 transition is significantly less affected by P and energy migration facilitated UCL quenching. These results emphasize the complexity of the UC processes and the decisive role of the crystal phase and symmetry of the host lattice on the operative UCL quenching mechanism in addition to surface effects. Moreover, the room temperature UCNC synthesis enabled a systematic investigation of the influence of the calcination temperature on the crystal phase of powder-UCNC and the associated UCL properties. Calcination studies of solid UCNC of optimized doping concentration in the temperature range of 175 °C and 800 °C showed the beneficial influence of temperature- induced healing of crystal defects on UCL and the onset of a phase separation connected with the oxygenation of the lanthanide ions at elevated temperature. This further emphasizes the sensitivity of the UC process to the crystal phase and quality of the host matrix. KW - Upconversion nanoparticle KW - Lanthanide KW - Photophysics KW - Synthesis PY - 2022 DO - https://doi.org/10.1039/d2nr02337g SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - CS particles show unique properties by merging individual characteristics of the core and the shell materials. An alteration particularly in their surface roughness affects the final performance of the particles in the targeted application. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task employing microscopic techniques being scarce and showing large differences in terms of methodology and results. In our previous work, we have reported a systematic study with a reliable analysis tool, which evaluates profile roughness quantitatively, for individual core-shell microparticles using electron microscopy (EM) images of both types, Scanning Electron Microscopy (SEM) and transmission mode SEM (or TSEM). The SEM images contain two-dimensional (2D) information, therefore, provide profile roughness data only from the projection in the horizontal plane (in other words, from the “belly”) of a spherical particle. The present study offers a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy and Microanalysis 2022 CY - Oregon, Portland, USA DA - 31.07.2022 KW - Core-shell particles KW - Image processing KW - Roughness KW - Scanning electron microscopy KW - Tilting PY - 2022 DO - https://doi.org/10.1017/S1431927622002094 SN - 1431-9276 VL - 28 IS - S1 SP - 332 EP - 334 PB - Cambridge University Press AN - OPUS4-55373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mani, Deepak A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Diffraction Enhanced Imaging Analysis with Pseudo-Voigt Fit Function N2 - Diffraction enhanced imaging (DEI) is an advanced digital radiographic imaging technique employing the refraction of X-rays to contrast internal interfaces. This study aims at qualitatively and quantitatively evaluating images acquired using this technique and to assess how different fitting functions to the typical rocking curves (RCs) influence the quality of images. RCs are obtained for every image pixel. This allows the separate determination of the absorption and the refraction properties of the material in a position-sensitive manner. Comparison of various types of fitting functions reveals that the Pseudo-Voigt (PsdV) function is best suited to fit typical RCs. A robust algorithm was developed in the Python programming language, which reliably extracts the physically meaningful information from each pixel of the image. We demonstrate the potential of the algorithm with two specimens: a silicone gel specimen that has well-defined interfaces, and an additively manufactured polycarbonate specimen. KW - Diffraction Enhanced Imaging KW - Analyzer-Based Imaging KW - X-ray refraction KW - Non-Destructive Evaluation KW - Pseudo-Voigt fit function KW - Python PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553791 DO - https://doi.org/10.3390/jimaging8080206 SN - 2313-433X VL - 8 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Standardized workflow for checking the performance of an EDS X-ray spectrometer at a Scanning Electron Microscope N2 - For test laboratories operating under accreditation schemes like ISO/IEC 17025 (ISO/IEC 17025), as the international reference for testing and calibration laboratories wanting to demonstrate their capacity to deliver reliable results, a periodical control of the critical instrumental parameters of an Energy-Dispersive X-ray Spectrometer (EDS) is required. This periodical check of an EDS is specified with exact procedures and materials in the ISO 15632:2021 ”Microbeam Analysis – Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis” (ISO 15632). The EDS check can be simplified to the acquisition of only one 10 kV spectrum from a dedicated test material, EDS-TM002, which is made available by BAM since 2009 (https://webshop.bam.de/webshop_en/). The optional BAM software “EDX spectrometer check” is destined to automatically evaluate this spectrum and determine the performance of the EDS in terms of energy resolution and calibration, as well as possible alteration of low-energy efficiency due to detector contamination. Nearly 200 laboratories have the EDS-TM and associated software package in use. Practical examples based on various types of artifacts occurred in the EDS spectra and a long-term (>10 years) meticulous observation of the own spectrometers will be discussed. Different types of EDS spectrometers are considered, e.g. Si(Li) and SDD, of various window types (AP, the recent one Si3N4 or even windowless), and with different front contact layers (Au and Ni) (Hodoroaba and Procop, 2014). Evaluation of other parameters or effects such as the deadtime at different count rates or pileup effects is also explained with examples. T2 - Workshop "Automated Mineralogy" @ GEOANALYSIS 2022 CY - Freiberg, Germany DA - 06.08.2022 KW - EDS KW - X-ray spectrometer KW - Performance check KW - Test material KW - Standardized check KW - EDS-TM002 PY - 2022 UR - https://geoanalysis2021.de/en/workshops/automated-mineralogy AN - OPUS4-55460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553919 DO - https://doi.org/10.1002/rcm.9349 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shapovalov, O. A1 - Heckel, Thomas A1 - Gaal, Mate A1 - Weiß, S. T1 - External Acoustical Damping on a Metallic Angle Wedge in a High Temperature Resistant Ultrasonic Probe N2 - Ultrasonic probes for high-temperature applications are provided with metallic wedges, which can withstand the contact with the high temperature of the inspected structure. The ultrasonic signal travels within the wedge and gets reflected from its boundaries, causing interference signals called “ghost echoes”. The current work presents an investigation of the additional damping effect provided by porous sintered metal plates applied onto the surface of the wedge. In particular, the study evaluates the effect of damping plate thickness on the interference signal level at different transmission frequencies. Damping plates made of sintered metal SIKA-R 15 AX were attached to a wedge prototype made of steel 1.4301. The study revealed, that the most effective thickness of damping plates in the selected frequency interval of 1 to 4 MHz is equal to 4 mm. The evaluation of the interference signal has shown that the application of such damping plates to the wedge surface contributes to an additional attenuation of an interference signal of 10 to 30 dB after 500 μs of signal propagation. KW - Ultrasonic testing KW - High temperature KW - Acoustical damping KW - Angle wedge KW - Ultrasonic probe PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553920 DO - https://doi.org/10.1007/s40857-022-00270-9 SN - 0814-6039 SP - 1 EP - 11 PB - Springer AN - OPUS4-55392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Koos, R. A1 - Hofmann, M. A1 - Requena, G. A1 - Garcés, G. T1 - Damage and stress evolution in multi-phase metal matrix composites N2 - While there is a extensive literature on the micro-mechanical behavior of metal matrix composites (MMCs) under uniaxial applied stress, very little is available on multi-phase MMCs. In order to cast light on the reinforcement and damage processes in such multi-phase composites, an Al alloy with one and two ceramic reinforcements (planar-random oriented alumina fibers and SiC particles) were studied. In-situ compression tests during neutron diffraction experiments were used to track the load transfer among phases, while X-ray computed tomography was used to investigate pre-strained samples, in order to monitor and quantify damage. We found that damage progresses differently in composites with different orientations of the fiber mat. Because of the presence of the intermetallic network, it was observed that the second ceramic reinforcement changes the load transfer scenario only at very high applied load, when also intermetallic particles break. We rationalized the experimental results by means of a micromechanical model based on Maxwell’s homogenization scheme, and we could explain why no damage is observed in the ductile matrix under compression: the matrix finds itself in hydrostatic compression, and the Poisson’s tensile strain is totally carried by the reinforcement phases T2 - CIMTEC CY - Perugia, Italy DA - 20.06.2022 KW - Load transfer KW - Neutron Diffraction KW - Michromechanical modeling KW - Computed Tomography KW - Machine Learning PY - 2022 AN - OPUS4-55404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -