TY - JOUR A1 - Deumer, J. A1 - Pauw, Brian Richard A1 - Marguet, S. A1 - Skroblin, D. A1 - Taché, O. A1 - Krumrey, M. A1 - Gollwitzer, C. T1 - Small-angle X-ray scattering: characterization of cubic Au nanoparticles using Debye’s scattering formula N2 - A versatile software package in the form of a Python extension, named CDEF (computing Debye’s scattering formula for extraordinary form factors), is proposed to calculate approximate scattering profiles of arbitrarily shaped nanoparticles for small-angle X-ray scattering (SAXS). CDEF generates a quasi-randomly distributed point cloud in the desired particle shape and then applies the open-source software DEBYER for efficient evaluation of Debye’s scattering formula to calculate the SAXS pattern (https://github.com/j-from-b/CDEF). If self-correlation of the scattering signal is not omitted, the quasi-random distribution provides faster convergence compared with a true-random distribution of the scatterers, especially at higher momentum transfer. The usage of the software is demonstrated for the evaluation of scattering data of Au nanocubes with rounded edges, which were measured at the four-crystal monochromator beamline of PTB at the synchrotron radiation facility BESSY II in Berlin. The implementation is fast enough to run on a single desktop computer and perform model fits within minutes. The accuracy of the method was analyzed by comparison with analytically known form factors and verified with another implementation, the SPONGE, based on a similar principle with fewer approximations. Additionally, the SPONGE coupled to McSAS3 allows one to retrieve information on the uncertainty of the size distribution using a Monte Carlo uncertainty estimation algorithm. KW - X-ray scattering KW - SAXS KW - Non-spherical nanoparticles KW - Nanoparticles KW - Nanomaterials KW - Debye scattering equation KW - Simulation KW - Data fitting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557652 DO - https://doi.org/10.1107/S160057672200499X VL - 55 IS - Pt 4 SP - 993 EP - 1001 PB - International Union of Crystallography CY - Chester, England AN - OPUS4-55765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Mechanochemical Remediation of Per- and Polyfluoroalkyl Substanzes (PFAS) in Soils N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of anionic, cationic, or zwitterionic organofluorine surfactants used in the formulations of thousands of products and consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment. Because PFAS have been extensively used in a variety of AFFF products they can be found in soils from industrial and military installations. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GCMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Mechanochemical treatment KW - XANES spectroscopy PY - 2022 AN - OPUS4-55742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rienitz, O. A1 - Pramann, A. A1 - Flierl, L. T1 - Scale Conversion and Uncertainty Calculations in Isotope Delta Measurements N2 - Isotope ratio applications are on the increase and a major part of which are delta measurements, because they are easier to perform than the determination of absolute isotope ratios while offering lower measurement uncertainties. Delta measurements use artefact-based scales and therefore scale conversions are required due to the lack of the scale defining standards. Such scale conversions often form the basis for comparing data being generated in numerous projects andtherefore need to be as accurate as possible. In practice, users are tempted to apply linear approximations, which are not sufficiently exact, because delta values are defined by nonlinear relationships. The bias of such approximations often is beyond typical measurement uncertainties and its extent can hardly be predicted. Therefore, exact calculations are advised. Here, the exact equations and the bias of the approximations are presented, and calculations are illustrated by real-world examples. Measurement uncertainty is indispensable in this context and therefore, its calculation is described as well for determining delta values but also for scale conversions. Approaches for obtaining a single delta measurement and for repeated measurements are presented. For the latter case, a new approach for calculating the measurement uncertainty is presented, which considers covariances between the isotope ratios. KW - Delta isotope standard KW - Delta scale KW - In-house calibration solution KW - Isotope ratios KW - Isotope reference material KW - Measurement uncertainty KW - Scale conversion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557254 DO - https://doi.org/10.1111/ggr.12450 SN - 1639-4488 VL - 46 IS - 4 SP - 773 EP - 787 PB - Wiley AN - OPUS4-55725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Witt, Julia A1 - Jain, Mohit A1 - Emmerling, Franziska T1 - In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis N2 - The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, have not been explored yet. For the first time, we report here in situ real-time monitoring of the mechanochemical formation mechanism of mixed-ligand MOFs. Our results show that binary phases can act as intermediates or competing products in one-pot and stepwise synthesis. KW - Mechanochemistry KW - Metal-organic-frameworks KW - In situ X-ray diffraction KW - Mixed-ligand MOFs PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558167 DO - https://doi.org/10.1039/D2CE00803C SP - 1 EP - 4 PB - Royal Society of Chemistry AN - OPUS4-55816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim T1 - Overview of NDT techniques for moisture measurements in building materials N2 - Overview of NDT techniques for moisture measurements in building materials used in department 8 of BAM. T2 - ENBRI Expert Workshop "Hygrothermal testing - a necessity to guarantee durable buildings" CY - Brussels, Belgium DA - 21.09.2022 KW - Moisture KW - Building materials KW - GPR KW - NMR KW - Microwave PY - 2022 AN - OPUS4-55817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - ESAS - CSSC CY - Brno, Czech Republic DA - 04.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Fabian T1 - An improved method for the determination of PFAS using HR-CS-GFMAS via GaF detection N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of over 4730 individual compounds. Several PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. Here, we present an improved method for the determination of PFASs using HR-CS-GFMAS via GaF detection. The optimized method includes a Ga pretreatment as described by Gawor et al. resulting in overall lower detection limits. Furthermore, during optimization the influence of species-specific responses during HR-CS-GFMAS analysis was reduced resulting in a more accurate determination of PFAS sum parameters. To test the applicability of the improved method, we analyzed soil samples from a former fire-fighting training area combining the improved method for detection with our previously optimized extraction method for EOF determination in soils. T2 - SALSA - Communicating Make and Measure 2022 CY - Berlin, Germany DA - 15.09.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine PY - 2022 AN - OPUS4-55783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias T1 - Intrinsic Performance of Monte Carlo Calibration-Free Algorithm for Laser-Induced Breakdown Spectroscopy N2 - The performance of the Monte Carlo (MC) algorithm for calibration-free LIBS was studied on the example of a simulated spectrum that mimics a metallurgical slag sample. The underlying model is that of a uniform, isothermal, and stationary plasma in local thermodynamical equilibrium. Based on the model, the algorithm generates from hundreds of thousands to several millions of simultaneous configurations of plasma parameters and the corresponding number of spectra. The parameters are temperature, plasma size, and concentrations of species. They are iterated until a cost function, which indicates a difference between synthetic and simulated slag spectra, reaches its minimum. After finding the minimum, the concentrations of species are read from the model and compared to the certified values. The algorithm is parallelized on a graphical processing unit (GPU) to reduce computational time. The minimization of the cost function takes several minutes on the GPU NVIDIA Tesla K40 card and depends on the number of elements to be iterated. The intrinsic accuracy of the MC calibration-free method is found to be around 1% for the eight elements tested. For a real experimental spectrum, however, the efficiency may turn out to be worse due to the idealistic nature of the model, as well as incorrectly chosen experimental conditions. Factors influencing the performance of the method are discussed. KW - Laser induced breakdown spectroscopy KW - Calibration-free analysis KW - Monte Carlo algorithm PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558016 DO - https://doi.org/10.3390/s22197149 VL - 22 IS - 19 SP - 7149 PB - MDPI AN - OPUS4-55801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -