TY - CONF A1 - Zabala, A. T1 - Ball-on-flat linear reciprocating tests: Critical assessment of wear volume determination methods N2 - This work presents a critical assessment of wear volume determination methods for ball-on-flat linear reciprocating sliding tribological tests. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Wear KW - Sliding KW - Surface KW - Analysis PY - 2022 AN - OPUS4-55319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias ED - Mendioroz, A. ED - Avdelidis, N. P. T1 - Thermographic testing using 2D pseudo-random illumination and photothermal super resolution reconstruction N2 - Due to the diffusive nature of heat propagation in solids, the detection and resolution of internal defects with active thermography based non-destructive testing is commonly limited to a defect-depth-to-defect-size ratio greater than or equal to one. In the more recent past, we have already demonstrated that this limitation can be overcome by using a spatially modulated illumination source and photothermal super resolution-based reconstruction. Furthermore, by relying on compressed sensing and computational imaging methods we were able to significantly reduce the experimental complexity to make the method viable for investigating larger regions of interest. In this work we share our progress on improving the defect/inhomogeneity characterization using fully 2D spatially structured illumination patterns instead of scanning with a single laser spot. The experimental approach is based on the repeated blind pseudo-random illumination using modern projector technology and a high-power laser. In the subsequent post-processing, several measurements are then combined by taking advantage of the joint sparsity of the defects within the sample applying 2D-photothermal super resolution reconstruction. Here, enhanced nonlinear convex optimization techniques are utilized for solving the underlying ill-determined inverse problem for typical simple defect geometries. As a result, a higher resolution defect/inhomogeneity map can be obtained at a fraction of the measurement time previously needed. T2 - Thermosense: Thermal Infrared Applications XLIV CY - Orlando, Florida, USA DA - 05.04.2022 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2022 DO - https://doi.org/10.1117/12.2618562 SN - 0277-786X VL - 12109 SP - 1 EP - 10 PB - SPIE AN - OPUS4-54909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Reconstruction of Elastic Constants of Isotropic and Anisotropic Materials using Ultrasonic Guided Waves N2 - Acoustic methods are ideally suited for determining the mechanical properties of different materials non-destructively. The availability of such methods is particularly important for fiber-reinforced polymers (FRPs) because their properties strongly depend on the manufacturing process and in-service conditions. Since FRPs are mostly used in thin-walled components, properties can be derived from the dispersion curves of ultrasonic guided waves (UGWs). Our approach is based on an inverse procedure in which the numerically calcu-lated dispersion curves are fitted to the measured curves. The acquisition is done by applying a broadband piezoelectric transducer (PZT) to excite and a 3D laser Doppler vibrometer (3D LDV) to record the waves. Compared to the ap-proaches based on laser excitation, the PZT provides a better signal-to-noise ra-tio because more energy is brought into the structure. Whereas the 3D LDV compared to a 1D LDV or a PZT allows capturing in-plane and out-of-plane components and thus providing more dispersion information. Since the inverse procedure requires many iterations before elastic properties are retrieved, an ef-ficient tool for the calculation of the dispersion curves is necessary. For this, the Scaled Boundary Finite Element Method is used. All in all, a good agreement between theoretical and experimental curves is demonstrated. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Lamb waves KW - Elastic waves KW - Fibre-reinforced polymers KW - Inverse procedure KW - Scaled Boundary Finite Element Method PY - 2022 AN - OPUS4-55236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raab, A. A1 - Vogl, Jochen A1 - Solovyev, N. T1 - Isotope signature of iron, copper and zinc in mouse models (L66 and 5XFAD) and their controls used for dementia research N2 - Introduction: The influence of copper, iron and zinc concentrations on the formation of ß-amyloid plaques and neurofibrillary tangles in Alzheimer’s disease (AD) is widely discussed in the community. The results from human and animal studies so far are mixed with some studies showing a correlation and others not. From a number of studies, it is known that disease state and isotopic composition of essential elements can be coupled. Aim: The aim of the study was to identify changes in element content and isotopic composition in two transgenic mouse models used in AD research compared to their genetic WT relatives and to establish whether element content and isotopic signature between different laboratories is comparable. Methods: ß-amyloid (5xFAD) and tau overexpressing (L66) mice together with their matching wild-types were bred at dedicated facilities in accordance with the European Communities Council Directive (63/2010/EU). Serum and brain were sampled after sacrifice and the samples distributed among the participants of the study. The tissues were acid digested for total element determination and high-precision isotope ratio determination. Element content was determined by either sector-field or quadrupole-based inductively coupled plasma mass spectrometry (ICPMS). For the determination of isotope ratios multi-collector ICPMS was used. Results: Total copper content was significantly higher for L66 and their matched WT compared to 5xFAD and WT. Brains of L66 mice contained more Fe in brain than their WT, Zn and Cu were not significantly different between L66 and WT. Whereas 5xFAD mice had a slightly lower Cu and slightly higher Zn concentration in brain compared to WT. The isotopic signature in brain of L66 mice for Fe was different from their controls, whereas Zn isotope ratios were influenced in 5xFAD mice compared to their WT. The Cu isotopic ratio did not seem to be influenced in either strain. In serum, the shifts were less pronounced. Conclusion: Even though neither Tau-protein nor amyloid precursor protein are known to be metal-dependent / -containing proteins, the overexpression of both influences the Fe, Cu and Zn metabolism in brain and to some extent also in serum as can be seen not only using total element determination but probably more clearly studying the isotopic signature of Fe, Cu and Zn. T2 - The International Conference of Trace Elements and Minerals (ICTEM) 2022 CY - Aachen, Germany DA - 05.06.2022 KW - Isotope ratio KW - Isotope delta value KW - Metrology KW - Alzheimer disease KW - Measurement uncertainty PY - 2022 AN - OPUS4-55204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olino, M. A1 - Lugovtsova, Yevgeniya A1 - Memmolo, V. A1 - Prager, Jens T1 - Temperature Compensation Strategies for Lamb Wave Inspection using Distributed Sensor Networks N2 - The application of temperature compensation strategies is crucial in structural health monitoring approaches based on guided waves. Actually, the varying temperature influences the performance of the inspection system inducing false alarms or missed detection, with a consequent reduction of reliability. This paper quantitatively describes a method to compensate the temperature effect, namely the optimal baseline selection (OBS), extending its application to the case of distributed sensor networks (DSN). The effect of temperature separation between baseline time-traces in OBS are investigated considering multiple couples of sensors employed in the DSN. A combined strategy that uses both OBS and frequent value warning is considered. Theoretical results are compared, using data from two several experiments, which use different frequency analysis with either predominantly A0 mode or S0 mode data or both. The focus is given on the fact that different paths are available in a sensor network and several possible combination of results are available. Nonetheless, introducing a frequent value warning it is possible to increase the efficiency of the OBS approach making use of fewer signal processing algorithms. These confirm that the performance of OBS quantitatively agrees with predictions and also demonstrate that the use of compensation strategies improve detectability of damage. T2 - IEEE International Workshop on Metrology for AeroSpace CY - Pisa, Italy DA - 27.06.2022 KW - Ultrasound KW - Ultrasonic Guided Waves KW - Structural Health Monitoring PY - 2022 SN - 978-1-6654-1076-2 DO - https://doi.org/10.1109/MetroAeroSpace54187.2022.9856029 SP - 598 EP - 601 AN - OPUS4-55268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, I. A1 - Freitag, S. A1 - Memmolo, V. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Lugovtsova, Yevgeniya A1 - Eremin, A. A1 - Moll, J. A1 - Tschöke, K. ED - Rizzo, P. ED - Milazzo, A. T1 - Performance Assessment for Artificial Intelligence-Based Data Analysis in Ultrasonic Guided Wave-Based Inspection: A Comparison to Classic Path-Based Probability of Detection N2 - Performance assessment for GuidedWave (GW)-based Structural Health Monitoring (SHM) systems is of major importance for industrial deployment. With conventional feature extraction methods like damage indices, pathbased probability of detection (POD) analysis can be realized. To achieve reliability quantification enough data needs to be available, which is rarely the case. Alternatives like methods for performance assessment on system level are still in development and in a discussion phase. In this contribution, POD results using an Artificial Intelligence (AI)-based data analysis are compared with those delivered by conventional data analysis. Using an open-access dataset from Open Guided Wave platform, the possibility of performance assessment for GW-based SHM systems using AI-based data analysis is shown in detail. An artificial neural network (ANN) classifier is trained to detect artificial damage in a stiffened CFRP plate. As input for the ANN, classical damage indicators are used. The ANN is tested to detect damage at another position, whose inspection data were not previously used in training. The findings show very high detection capabilities without sorting any specific path but only having a global view of current damage metrics. The systematic evaluation of the ANN predictions with respect to specific damage sizes allows to compute a probability of correct identification versus flaw dimension, somehow equivalent to and compared with the results achieved through classic path-based POD analysis. Also, sensitive paths are detected by ANN predictions allowing for evaluation of maximal distances between path and damage position. Finally, it is shown that the prediction performance of the ANN can be improved significantly by combining different damage indicators as inputs. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Probability of Detection KW - Composites KW - Open Guided Waves Platform KW - Artificial Neural Network PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 953 EP - 961 PB - Springer CY - Cham, Switzerland AN - OPUS4-55269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschöke, K. A1 - Mueller, I. A1 - Memmolo, V. A1 - Sridaran Venkat, R. A1 - Golub, M. A1 - Eremin, A. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Lugovtsova, Yevgeniya A1 - Moll, J. A1 - Freitag, S. ED - Rizzo, P. ED - Milazzo, A. T1 - A Model-Assisted Case Study Using Data from Open Guided Waves to Evaluate the Performance of Guided Wave-Based Structural Health Monitoring Systems N2 - Reliability assessment of Structural Health Monitoring (SHM) systems poses new challenges pushing the research community to address many questions which are still open. For guided wave-based SHM it is not possible to evaluate the system performance without taking into account the target structure and applied system parameters. This range of variables would result in countless measurements. Factors like environmental conditions, structural dependencies and wave characteristics demand novel solutions for performance analysis of SHM systems compared to those relying on classical non-destructive evaluation. Such novel approaches typically require model-assisted investigations which may not only help to explain and understand performance assessment results but also enable complete studies without costly experiments. Within this contribution, a multi input multi output approach using a sparse transducer array permanently installed on a composite structure to excite and sense guided waves is considered. Firstly, the method and the analysis of path-based performance assessment are presented considering an open-access dataset from the Open Guided Wave platform. Then, a performance analysis of a guided wave-based SHM system using Probability of Detection is presented. To explain some unexpected results, the model-assisted investigations are used to understand the physical phenomena of wave propagation in the test specimen including the interaction with damage. Finally, issues and future steps in SHM systems’ performance assessment and their development are discussed. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Performance assessment KW - Ultrasonic Guided Waves KW - Open Guided Waves Platform PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 938 EP - 944 PB - Springer CY - Cham, Switzerland AN - OPUS4-55270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Faßbender, Sebastian A1 - Chronakis, Michail A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets N2 - Within this work, the combination of a microdroplet generator and an ICP-ToF-MS for nanoparticle analysis is presented. For the size determination of platinum nanoparticles an on-line isotope dilution analysis approach was developed. The 194Pt/195Pt isotopic ratio was used for the characterization of the particles, while the 182W/183W isotopic ratio was monitored simultaneously for mass bias correction. The on-line ID-MDG-sp-ICP-ToF-MS approach was deployed for the size determination of three platinum nanoparticle samples (50 nm, 63 nm, 70 nm); for validation, complementary size characterization techniques (sp-ICP-ToF-MS and TEM) were used. The robustness of this technique was evidenced, by using sodium chloride concentrations up to 100 mg L−1 as a matrix component. Our new on-line ID MDG-sp-ICP-ToF-MS approach is a promising tool for the fast and reliable determination of nanoparticles' size in severe matrix concentrations, e.g., environmental samples. KW - ICP-ToF-MS KW - Nanoparticles KW - Isotope Dilution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552727 DO - https://doi.org/10.1039/D2JA00072E SN - 0267-9477 VL - 37 IS - 6 SP - 1203 EP - 1207 PB - Royal Society of Chemistry AN - OPUS4-55272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grotelüschen, Bjarne A1 - Bühling, Benjamin T1 - Impact-Echo Dataset "IE Platte" N2 - This dataset contains raw data resulting from Impact-Echo measurements at the reference concrete block "IE Platte", located at BAM (German Federal Institute for Materials Research and Testing). The specimen contains three polystyrene slabs and one polyethylene foil to act as reflectors. The specimen was produced in a three-step process. First, the base plate was cast. Second, the reflectors were taped to the base plate. Finally, the upper layer was cast on top of base plate and reflectors. A drawing is contained in the dataset. The Impact-Echo method is based on the excitation of the zero-group-velocity frequency of the first symmetric Lamb mode of a plate-like structure, in order to assess its thickness. Numerous publications elaborate on Impact-Echo theory, examples are (Gibson and Popovics 2005, Schubert and Köhler 2008 , Abraham and Popovics 2010). The measurements have been conducted using a setup that contains only commercially available components. The setup consists of an Olson CTG-2 concrete thickness gauge (Olsen Instruments, USA) for actuation and sensing and an 8-bit NI USB-5132 digital storage oscilloscope (National Instruments, USA) combined with the Echolyst software (Schweizerischer Verein für technische Inspektionen (SVTI), Switzerland) for data acquisition. Measurements were conducted using a grid of 29x29 points with a spacing of 50 mm. At each point 8192 samples were recorded at a sampling rate of 1 MS/s. The dataset contains the (X,Y) location in mm of the individual measurement points as well as the raw measurement data at those points. The data is provided in the formats *.mir/*.mhdr (Echolyst), *.npy (Python) and *.mat (Matlab) and *.csv to ease the import in various post-processing tools. KW - Concrete KW - Impact-Echo KW - Nondestructive testing PY - 2022 DO - https://doi.org/10.7910/DVN/EH4E9G PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-55279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -