TY - GEN A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Kolmangadi, Mohamed Aejaz T1 - X-ray scattering datasets associated with the publication "Side chain length dependent dynamics and conductivity in self assembled ion channels" N2 - X-ray scattering datasets for samples described in the 2022 publication "Side chain length dependent dynamics and conductivity in self assembled ion channels". This dataset includes both raw and processed X-ray scattering data for samples ILC8, ILC10, ILC12, ILC14 and ILC16 alongside background measurement files (BKG). KW - X-ray scattering KW - SAXS KW - MOUSE KW - Columnar ionic liquid crystals KW - Liquid crystals PY - 2023 DO - https://doi.org/10.5281/zenodo.7621358 PB - Zenodo CY - Geneva AN - OPUS4-56973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray scattering Datasets of gold and silver nanoparticle composites, relating to the publication "Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup" N2 - Wide-range X-ray scattering datasets and analyses for all samples described in the 2020 publication "Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup". These datasets are composed by combining multiple small-angle x-ray scattering and wide-angle x-ray scattering curves into a single dataset. They have been analyzed using McSAS to extract polydispersities and volume fractions. They have been collected using the MOUSE project (instrument and methodology). KW - X-ray scattering KW - MOUSE KW - Saxs KW - Waxs KW - Analyses KW - Datasets PY - 2022 DO - https://doi.org/10.5281/zenodo.7193859 PB - Zenodo CY - Geneva AN - OPUS4-55979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray Scattering for Nanostructure Quantification, and the Quest for the Perfect Experiment N2 - Compared to the clear, real-space images you can get from electron microscopy, X-ray scattering patterns are rather featureless. These patterns, however, contain structural information from all of the material structure illuminated by the X-ray beam. With this technique, you can measure nanoparticle dispersions, catalysts, composites, MOF powders, battery materials, light metal alloys and gels to reveal information on the structural features found within these materials. We have even measured many such materials for several research groups from the University of Birmingham, revealing structure features in the sub-nm to the micrometer range. Measuring an X-ray scattering pattern is relatively easy, but measuring a high-quality, useful pattern requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration) [1]. With the MOUSE, we have combined: a) a comprehensive and highly automated laboratory workflow with b) a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. T2 - School of Chemistry Seminars CY - Birmingham, UK DA - 10.11.2021 KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Nanostructure PY - 2021 UR - https://www.youtube.com/watch?v=N2kY4wbqeM4 AN - OPUS4-53810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - X-ray scattering for nanostructure quantification, and the quest for the perfect experiment N2 - Measuring an X-ray scattering pattern is relatively easy, but measuring a steady stream of high-quality, useful patterns requires significant effort and good laboratory organization. Such laboratory organization can help address the reproducibility crisis in science, and easily multiply the scientific output of a laboratory, while greatly elevating the quality of the measurements. We have demonstrated this for small- and wide-angle X-ray scattering in the MOUSE project (Methodology Optimization for Ultrafine Structure Exploration). With the MOUSE, we have combined a comprehensive and highly automated laboratory workflow with a heavily modified X-ray scattering instrument. This combination allows us to collect fully traceable scattering data, within a well-documented, FAIR-compliant data flow (akin to what is found at the more automated synchrotron beamlines). With two full-time researchers, our lab collects and interprets thousands of datasets, on hundreds of samples, for dozens of projects per year, supporting many users along the entire process from sample selection and preparation, to the analysis of the resulting data. This talk will briefly introduce the foundations of X-ray scattering, present the MOUSE project, and will highlight the proven utility of the methodology for materials science. Upgrades to the methodology will also be discussed, as well as possible avenues for transferring this holistic methodology to other instruments T2 - SNI 2022 CY - Berlin, Germany DA - 05.09.2022 KW - Methodology KW - X-ray scattering KW - Laboratory management KW - Instrumentation utilization KW - MOUSE KW - SAXS KW - WAXS KW - Automation PY - 2022 AN - OPUS4-55760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete and other objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. The talk also discusses other applications , such as volcanology, mining and geothermal exploration. T2 - RWTH Aachen, Geophysikalisches Seminar CY - Aachen, Germany DA - 11.01.2024 KW - Muon tomography KW - Civil engineering KW - Mining KW - Geothermal engineering PY - 2024 AN - OPUS4-59349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Muon tomography KW - Concrete KW - Civil engineering PY - 2023 AN - OPUS4-59347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Steffen A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Grunewald, Christian A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - XAFS@BAMline N2 - X-ray Absorption fine structure spectroscopy (XAFS) is a frequently employed technique in order to investigate structural composition and Change of chemical compounds such as catalytic species or corrosion processes. These structural properties are essential (i) to understand underlying reaction mechanism and (ii) to further improve the design of materials. While XAFS measurements are usually performed with ionization Chambers or simple fluorescence detectors, we at BAMline specialize in measurements with innovative set-ups that meet Specialrequirements such as time resolution, (3D-) spatial Resolution or demanding sample environments. This contribution presents various available XAFS configurations with their corresponding applications. In particular, these comprise single -shot XAFS for time- resolved measurements, grazing-exit XAFS with energy and a spatially resolved detector for the characterization of thin films and an in situ grazing incidence Setup for the characterization of corrosion layers. Additionally,the possibility of analyzing Minute samples in total-reflection geometry is demonstrated. T2 - EXRS 2018 CY - Ljubljana, Slovenia DA - 24.06.2018 KW - XANES KW - XAFS KW - BAMline KW - Synchrotron KW - TXRF PY - 2018 AN - OPUS4-46361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schumacher, David A1 - Waske, Anja T1 - XCT data of metallic feedstock powder with pore size analysis N2 - X-Ray computed tomography (XCT) scan of 11 individual metallic powder particles, made of (Mn,Fe)2(P,Si) alloy. The data set consists of 4 single XCT scans which have been stitched together [3] after reconstruction. The powder material is an (Mn,Fe)2(P,Si) alloy with an average density of 6.4 g/cm³. The particle size range is about 100 - 150 µm with equivalent pore diameters up to 75 µm. The powder and the metallic alloy are described in detail in [1, 2]. KW - Additive Manufacturing KW - Feedstock powder KW - Powder Characterization KW - X-Ray Computed Tomography PY - 2022 DO - https://doi.org/10.5281/zenodo.5796487 PB - Zenodo CY - Geneva AN - OPUS4-55556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - XCT simulation: Effects of error sources on dimensional measurements for medical and standard objects N2 - The quantification of experimental and data analysis errors is most of the times jeopardised by the presence of surface roughness, waviness, as well as by typical measurement artefacts of the XCT technique (for instance refraction at sharp edges). One way to at least estimate the influence of those factors on dimensional measurements and on tolerances is to simulate them using Monte-Carlo method. An alternative strategy is to use independent knowledge (e.g. CMM data) to smoothen/calibrate/correct XCT data. T2 - Workshop on additive manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - aRTist KW - Part geometry KW - Part material KW - Beam hardening KW - Partial volume effect PY - 2019 AN - OPUS4-48263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -