TY - JOUR A1 - Beck, Joana T1 - Review: Fitz's Atlas™of coating surveys N2 - Fitz's Atlas of coating surveys is designed as loose‐leave binder with a resistant cover that not only provides the possibility of updating the Atlas easily but also makes it practicable for on‐site use. This binder is well structured by sheet dividers with tabs for each of the 16 chapters. All in all, this atlas supports the surveyor by giving practicable hints and advice, lists and pictures to prepare and conduct investigations and write surveys. KW - Coating KW - Survey KW - Protection PY - 2019 DO - https://doi.org/10.1002/maco.201970084 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 8 SP - 1508 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil analyzed by Nitrogen K edge micro XANES Spectroscopy N2 - Specific co-fertilization of nutrients can enhance their plant-availability and thus the yield of plants. To investigate this effect, we performed a pot experiment with three different P-fertilizers and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of nitrogen (N) in the soil via novel X-ray spectroscopic method. The application of NI with the N fertilizer led to a higher dry matter yield of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Workshop for X-ray and neutron imaging applications in soil sciences CY - Lund, Sweden DA - 17.06.2019 KW - Nitrogen KW - Phosphorus recycling KW - Fertilizer KW - XANES spectroscopy KW - Pot experiment PY - 2019 AN - OPUS4-48237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Application of Diffusive Gradients in Thin-films (DGT) and spectroscopic techniques to analyze phosphorus in soils N2 - A wide range of analytical methods are used to estimate the plant-availability of soil phosphorus (P). Previous investigations showed that analytical methods based on the Diffusive Gradients in Thin films (DGT) technique provide a very good correlations to the amount of bioavailable nutrients and pollutants in environmental samples (Davison 2016, Vogel et al. 2017). However, the DGT results do not identify which P compound of the soil has the high bioavailability. But there are various spectroscopic techniques (infrared, Raman, P K-edge and L-edge XANES and P NMR spectroscopy) available to characterize P species in soils. Therefore, spectroscopic investigation of DGT binding layers after deployment allow us to determine the specific compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared, P K- and L-edge X-ray absorption near-edge structure (XANES) and NMR spectroscopy, respectively. Additionally, microspectroscopic techniques make it also possible to analyze P compounds on the DGT binding layer with a lateral resolution down to 1 μm2. Therefore, species of elements and compounds of e.g. a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients in the environment. T2 - SPP1685 Closing Conference: New Approaches to Ecosystem Nutrition - Phosphorus and Beyond CY - Freiburg, Germany DA - 25.10.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling PY - 2021 AN - OPUS4-53641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, Emily A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Organically bound fluorine in river water - A methode comparison of CIC and HR-CS-GFMAS N2 - Abstract: Since it is unknown for many applications, which PFASs are used and how they enter the environment, target analysis-based methods reach their limits. The two most frequently used sum parameters are the adsorbable organically bound fluorine (AOF) and the extractable organically bound fluorine (EOF). Both can be quantified using either combustion ion chromatography (CIC) or high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Here we provide an insight on the advantageous and disadvantageous of both sum parameters and both detection methods. Our study is based on the analysis of surface water samples. Next to total fluorine (TF) analysis, AOF and EOF were determined as well as CIC and HR-CS-GFMAS are compared and results are comparatively discussed. Fluorine mass balancing revealed that, the AOF/TF proportion was higher than the EOF/TF proportion. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF. Although, organically bound fluorine represents only a small portion of TF, PFASs are of worldwide concern, because of their extreme persistence and their bioaccumulation potential. The EOF-HR-CS-GFMAS method turned out to be more precise and sensitive than the AOF-CIC method and is a promising tool for future monitoring studies/routine analysis of PFASs in the environment. T2 - SALSA Make and Measure 2020: Advanced Characterization of Materials CY - Online meeting DA - 15.10.2020 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surfacewaters PY - 2020 AN - OPUS4-52451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruyle, B. A1 - Pickard, H. A1 - Schultes, L. A1 - Fredriksson, F. A1 - Heffernan, A. A1 - Knappe, D. A1 - Lord, H. A1 - Meng, P. A1 - Mills, M. A1 - Ndungu, K. A1 - Roesch, Philipp A1 - Rundberget, J.T. A1 - Tettenhorst, D. A1 - Van Buren, J. A1 - Vogel, Christian A1 - Westerman, D. A1 - Yeung, L. A1 - Sunderland, E. T1 - Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (Anguilla rostrata): Recommendations for Methods Standardization N2 - Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds. KW - Extractable organic fluorine KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Combustion ion chromatography (CIC) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587726 DO - https://doi.org/10.1021/acs.est.3c04560 SN - 0013-936X VL - 57 IS - 48 SP - 20159 EP - 20168 PB - American Chemical Society (ACS) AN - OPUS4-58772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS analytics and their relation to PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 10,000 anionic, cationic, zwitterionic or neutral organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. While liquid chromatography tandem mass spectrometry (LC-MS/MS) is commonly used technique to characterize targeted PFAS in environmental samples, there are more than 10,000 different PFAS known, which have various headgroups and properties. Therefore, several analytical techniques are available to analyse various groups or pools of PFAS or “all” PFAS as a sum parameter. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - International workshop of CAR-PFAS (Consortium for analysis and remediation of per- and polyfluoroalkyl substances) Japan CY - Tokyo, Japan DA - 17.10.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Soil PY - 2023 AN - OPUS4-58609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Ronen, A. A1 - Leube, Peter A1 - Ben Efrain, R. A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S. T1 - Detection, quantification, and treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater (DFEAT-PFAS) N2 - Over the past century, a range of synthetic compounds have been produced to improve humanity’s quality of life. These include pharmaceuticals, plastics, and other chemical compounds that possess properties making them potentially harmful when released to the environment (e.g., ecological and health impacts to humans and animals). Per- and polyfluoroalkyl substances (PFAS) are a large group of chemicals used in the formulations of thousands of consumer goods, including aqueous film-forming foams used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. Because of the recent regulations and restrictions on the use of long chain (≥C8) PFAS a significant shift in the industry towards short (C4-C7) and ultrashort (C1-C3) chain alternatives has been recognized the last years. Due to the high polarity and water solubility of ultrashort PFAS, the potential for bioaccumulation is low. However, the high persistence of ultrashort-chain PFAS will result in environmental accumulation, especially in aquatic environments, leading to potential risks for aquatic organisms and increased human external exposure through drinking water. Ultrashort PFAS like trifluoroacetic acid (TFA) are low to moderately toxic to a range of organisms. In addition, ultrashort PFAS can penetrate natural and anthropogenic barriers and eventually reach drinking water sources. Because common drinking water treatment techniques do not sufficiently remove them, they may reach human consumption. In the project we are focusing on detecting and removing PFAS, especially ultrashort-chain PFAS from contaminated groundwater. We are designing passive sampling devices, which can collect and monitor the temporal profile of PFAS species in groundwater. This will allow us to analyze PFAS contaminations in German and Israeli groundwater using state-of-the-art and novel analytical techniques and understand the extent of contamination. In addition to quantification, PFAS contaminated groundwater will be treated via a two-stage process to produce PFAS-free drinking water. As ultrashort-chain PFAS are difficult to analyze with the current target (LC-MS/MS) and sum parameter (AOF, EOF) analysis methods, we additionally using gas chromatography – mass spectrometry (GC-MS). Therefore, an analytical method based on GC-MS is in development to analyze the volatile ultrashort-chain PFAS (TFA, PFPrA, TFMS, PFEtS, PFPrS, trifluoroethanol, pentafluoropropanol and hexafluoro isopropanol) directly in contaminated groundwater samples with the headspace technique and in eluates of organic solvents from the developed passive sampler after direct injection. Moreover, a two-stages process is designed to increase the low concentrations found in groundwater using novel membranes processes such as closed-circuit reverse osmosis (CCRO) and mixed matrix composite nanofiltration membranes (MMCM). Next, the rejected streams containing higher concentrations of PFAS will be treated by coagulation, and the remaining PFAS adsorbed onto carbonaceous nanomaterials (CNMs). The DEFEAT-PFAS project will result in the development of novel tools to detect, quantify, and remove PFAS, especially ultrashort-chain PFAS from contaminated groundwater, and will acquire a new understanding of the extent of these contaminations. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2023 AN - OPUS4-58346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Lisec, Jan A1 - Borca, C. A1 - Huthwelker, T. A1 - Simon, Franz-Georg T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Mechanochemical remediation of PFAS in soils – Does it work? N2 - Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. These approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well as the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - Baltic Sea PFAS Network Coffee Session CY - Online meeting DA - 25.08.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2023 AN - OPUS4-58114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining DGT and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The amount of plant-available phosphorus (P) in soil strongly influences the yield of plants in agriculture. Therefore, various simple chemical extraction methods have been developed to estimate the plant-available P pools in soil. More recently, several experiments with the DGT technique have shown that it has a much better correlation to plant-available P in soils than standard chemical extraction methods (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. However, the DGT technique cannot give information on the plant-available P species in the soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Soil KW - Phosphorus KW - Plant-availability PY - 2023 AN - OPUS4-58574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -