TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Thiel, Erik A1 - Pech May, Nelson Wilbur T1 - Using spatial and temporal shaping of laser-induced diffuse thermal wave fields in thermography N2 - The diffuse nature of thermal waves is a fun-damental limitation in thermographic nonde-structive testing. In our studies we investigated different approaches by shaping the thermal wave fields which result from heating. We have used high-power laser sources to heat metallic samples. Using these spatial and temporal shaping techniques leads to a higher detection sensitivity in our measurements with the infra-red camera. In this contribution we show our implementation of shaping laser-induced diffuse thermal wave fields and the effect on the defect reconstruction quality. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Thermal wave KW - Diffusion KW - High-power laser KW - Thermography KW - Spatiotemporal shaping PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C5.1 SP - 179 EP - 180 AN - OPUS4-50897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konthur, Zoltán A1 - Riedel, Soraya A1 - Bayram, Rabia A1 - Döring, Sarah A1 - Schneider, Rudolf T1 - Utilizing Aspergillus niger Fumonisin Amine Oxidase for the Electrochemical Detection of Fumonisin N2 - Fumonisins are a class of toxic secondary metabolites produced by various Fusarium species. The two most important producers of fumonisins are F. verticillioides and F. proliferatum but also Aspergillus niger is known to produce fumonisins. Most frequently they occur on maize, but also other grains can be contaminated with this group of mycotoxins. Exposure to fumonisins by dietary intake can have serious health effects on farm animals and also within humans. Thus, the European Commission sets legal limits for fumonisins in feed and foodstuffs. The detection of fumonisins is frequently performed in laboratories by chromatographic methods, which are costly and require trained personnel. Simplifying the analysis is therefore a major goal using portable detection systems. Electrochemical enzymatic biosensors offer great promise to meet this demand. Here we report for the first time an enzymatic fumonisin sensing approach with amperometric detection. For this purpose, an Aspergillus niger fumonisin amine oxidase (AnFAO) catalyzing the oxidative deamination of fumonisins, producing hydrogen peroxide, was recombinantly produced in E. coli. It was found that the specific activity of AnFAO using 20 μM Fumonisin B1 as substrate is higher than for 20 μM Fumonisin B2 with 0.122 U mg-1 and 0.058 U mg-1, respectively. It was possible to show a dependence of enzyme activity with enzyme – and substrate-concentration. For fumonisin B1 detection, the enzyme was coupled covalently to magnetic particles and the enzymatically produced H2O2 was detected amperometrically in a flow injection system using Prussian blue carbon electrodes. The developed method allows to quantify fumonisin B1 concentrations down to 1.5 µM and demonstrates that the recombinantly produced AnFAO was able to deaminate different concentrations of fumonisin even in immobilized form. Thus, this enzyme is well suited to develop an enzyme based electrochemical biosensor for fumonisin contaminated food and feed. T2 - Affinity 2023 - the 25th meeting of the International Society for Molecular Recognition CY - Lisbon, Portugal DA - 05.06.2023 KW - Mycotoxin KW - Amperometry KW - Biosensor KW - Food analysis PY - 2023 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. AN - OPUS4-57717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A. A1 - Crasselt, C. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537176 DO - https://doi.org/10.1088/2050-6120/ac2da0 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Vacuum hot extraction: Detection of volatiles N2 - Der Vortrag gibt einen Überblick über die Möglichkete und Grenzen der Methode der Vakuum-Heiß-Extraktion an der BAM T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Heißgasextraktion KW - Glas PY - 2019 AN - OPUS4-50434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS system using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - European Mass Spectrometry Conference CY - Saarbrücken, Germany DA - 10.03.2018 KW - Tandem MS KW - Vacuum Ultraviolet PY - 2018 AN - OPUS4-44484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS System using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - EMSC 2018 CY - Saarbruecken, Germany DA - 4.3.2018 KW - Tandem MS PY - 2018 AN - OPUS4-45671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin M. A1 - Heck, Christian A1 - Meiling, T. A1 - Milosavljevic, A. A1 - Giuliani, A. A1 - Bald, Ilko T1 - Vacuum-UV and low-energy electron induced DNA strand breaks - Influence of the DNA sequence and substrate N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7 - 2.3 x 10-16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies < 3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - Vacuum-UV KW - Low-Energy KW - DNA KW - DNA-Sequence PY - 2019 DO - https://doi.org/10.1002/cphc.201801152 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -