TY - JOUR A1 - Ou, D. A1 - Schumacher, David A1 - Zscherpel, Uwe A1 - Xiao, Y. T1 - Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector N2 - Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography. KW - Photon Counting Detectors KW - Dual Energy Imaging KW - Data Processing KW - X-ray PY - 2019 DO - https://doi.org/10.1088/1748-0221/14/02/P02018 SN - 1748-0221 VL - 14 SP - P02018, 1 EP - 13 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-47573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marquardt, J. A1 - Gurieva, G. A1 - Stephan-Scherb, Christiane A1 - Schorr, S. T1 - The Effect of Copper Vacancies on the Anion Position of Chalcopyrite Type CuGaS2 N2 - The prediction of structural parameters and optoelectronic properties of compound semiconductors is very important. However, calculations often neglect chemical variability and structural defects. In chalcopyrite type semiconductors one of the major defects are copper vacancies (V Cu). The four cation neighbors of the anion determine its position in the chalcopyrite type structure expressed by the Wyckoff position 8d (x, 1/4, 1/8). Intrinsic point defects like V Cu and anti-sites may cause variations of the Anion position in the middle of the cation tetrahedron, especially in the Anion position Parameter x. For stoichiometric chalcopyrite type compounds a formalism according to the principle of conservation of tetrahedral bonds (CTB) can be applied to calculate the anion position parameter, but it fails in the case of off-stoichiometric chalcopyrites. This case study of chalcopyrite type CuGaS 2 and Mn-substituted GuGaS 2 shows that the experimentally determined anion position Parameter x deviate from values calculated by CTB approach. The systematic investigation of off-stoichiometric CuGaS 2 and Mn-substituted GuGaS 2 demonstrates the effect of copper vacancies on the average radii of the cation sites (Wyckoff positions 4a and 4b) as well as on the anion position Parameter x. By applying an elaborated CTB Approach implementing copper vacancies an agreement between experimental and calculated anion position Parameter x can be obtained. KW - Chalcogenides KW - Neutron diffraction KW - Copper vacancies PY - 2019 DO - https://doi.org/10.1002/pssa.201800882 VL - 216 IS - 15 SP - 1800882 PB - Wiley AN - OPUS4-47748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Ramkorun-Schmidt, Benita A1 - Grundlach-Graham, A. A1 - Koch, J. A1 - Grass, R. N. A1 - Jakubowski, Norbert A1 - Günther, D. T1 - Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing N2 - Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) has become an effective tool for the detection and quantification of inorganic nanoparticles (NPs). While sizing of NPs suspended in water is relatively straightforward by sp-ICP-MS, accurate mass quantification of NPs in complex media, such as consumer products and natural systems still remains a challenge. When NPs are suspended in a complex medium, the matrix may affect the analyte sensitivity and lead to inaccurate NP sizing. Here, we investigate the use of an online microdroplet calibration system to size NPs in a single step. In this setup, microdroplets—which are used as the calibrant to determine elemental sensitivities—and nebulized NP-containing solutions are introduced concurrently into the ICP via a dual-inlet sample introduction system. Because calibrant microdroplets and analyte NPs experience the same plasma conditions, both the microdroplets and the NPs are subjected to the same matrix-related signal enhancement or suppression. In this way, the microdroplet calibration standards are automatically matrix matched with the NP-containing solution. The online microdroplet calibration system is combined with an ICP-TOFMS instrument for simultaneous measurement of multiple elements in microdroplets and NPs. We investigate the ability of online microdroplet calibration to compensate for matrix effects through a series of experiments, in which Ag and Au NPs are measured with variable plasma-sampling positions, varying concentrations of HCl and HNO3, varying concentrations of single element solutions, and high concentrations of a salt matrix, i.e. phosphate buffered saline (PBS). Through these experiments, we demonstrate that the online microdroplet calibration strategy provides a matrix-independent mass quantification of analyte NPs in the presence of several established types of matrix effects, including acid effects, space-charge effects, and ionisation suppression. In results presented here, we focus on the size determination of the NPs. KW - Nanoparticle KW - ICP-MS KW - Calibration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477589 DO - https://doi.org/10.1039/c8ja00397a SN - 0267-9477 VL - 34 IS - 4 SP - 716 EP - 728 PB - Royal Society of Chemistry CY - London AN - OPUS4-47758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Madkour, Sherif A1 - Pleskunov, P A1 - Tafiichuk, R A1 - Shelemin, A A1 - Hanus, J A1 - Gordeev, I A1 - Sysolyatina, E A1 - Ermolaeva, S A1 - Titov, V A1 - Schönhals, Andreas A1 - Choukourov, A T1 - Cu nanoparticles constrain segmental dynamics of crosslinked polyethers: a trade -off between non-fouling and antibacterial properties N2 - Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether Plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereasolyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer Phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced Protein adsorption; however, the constrained segmental dynamics leads to the Deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. KW - Nanocomposites KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c8sm02413h VL - 15 IS - 13 SP - 2884 EP - 2896 PB - RSC AN - OPUS4-47765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ali, Naveed A1 - Komal, N. A1 - Malik, Z. A1 - Chaudhary, A.J. T1 - Synthesis, characterization and properties of hierarchically assembled antimony oxyhalides nanonetworks N2 - The novel synthesis route has been developed for hierarchically structured; nanorods and nanosheets of Sb4O5Cl2 from a single precursor, with dimension range between 57–90 nm. X-ray powder diffraction analysis confirmed the monoclinic crystal symmetry in P21/c(14)with structure type Sb4O5Cl2 for both forms; the nanorods and nanosheets. Rietveld refinements and crystallite size investigations of the powder patterns revealed significant enhancement in intensity with subtle variation in the lattice parameters and crystallite size decrease in case of nanosheets in comparison to the nanorods assembly. Through scanning electron microscopy, a composition commensurate to Sb4O5Cl2 at% with averaged dimensions; dia.∼90 nm, l ∼ 2 μm for nanorods and dia.∼50–150 nm for nanosheets got corroborated. Owing to the quantum confinement a band gap widening was observed while moving from bulk to nano regime, i.e. 3.25, 3.31 and 3.34 eV, for bulk, nanosheets, and nanorods, respectively. In the case of nanosheets, the highest value of dielectric constant was observed, i.e. 87, as compared to nanorods and the bulk, i.e. 40 and 35.5, respectively. The nanosheets also showed the highest value of dielectric and tangent loss with an increase in frequency due to the least crystallite size of these nanonetworks. Nanosheets depicted the higher AC conductivity at low frequency due to the alignment of the charges but its value decreases at the higher frequency due to lack of time for charge reorientation. The hopping phenomenon was observed in all three cases with the most prominent one in bulk case at higher frequencies. KW - Nanorods KW - Nanosheets KW - Antimony oxychloride ( Sb4O5Cl2) KW - Optical properties KW - Dielectric properties PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab0da9 SN - 2053-1591 VL - 6 IS - 6 SP - 065035 PB - IOP AN - OPUS4-47734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Basedau, Frank A1 - Hofman, Detlef A1 - Beck, Uwe T1 - Fiber Bragg Gratings for In-Situ Stress Monitoring of Electrochemical Deposition N2 - The in-situ monitoring of electrochemical deposition (ECD) processes is still a challenge regarding the measurement of the effective temperature of the substrate and the formation of mechanical stress in the layer under given plating conditions. Monitoring problems can be solved by applying a pre-coated fiber Bragg grating (FBG) to the electrolytic process as the shift of the Bragg wavelength is affected by both the temperature of the electrolyte near the substrate and the stress formation in the growing layer. The experimental FBG set-up and the quantitative determination of temperature- and stress-related strain is described for a nickel-iron electrolyte. KW - Fiber Bragg grating (FBG) KW - Electrochemical deposition (ECD) KW - Optical fibers PY - 2019 DO - https://doi.org/10.1149/2.0111906jes SN - 0013-4651 VL - 166 IS - 6 SP - B312 EP - B315 PB - Electrochemical Society CY - Pennington, NJ AN - OPUS4-47738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Kroh, L.W. A1 - Lörchner, Dominique T1 - 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione: kinetic studies and phototransformation products N2 - 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) is an emerging brominated flame retardant which is widely used in several plastic materials (electric and electronic equipment, musical instruments, automotive components). However, until today, no photochemical studies as well as the identification of possible phototransformation products (PTPs) were described in literature. Therefore, in this study, UV-(C) and simulated sunlight irradiation experiments were performed to investigate the photolytic degradation of TDBP-TAZTO and to identify relevant PTPs for the first time. The UV-(C) Irradiation experiments show that the photolysis reaction follows a first-order kinetic model. Based on this, the photolysis rate constant k as well as the half-life time t1/2 were calculated to be k = (41 ± 5 ×10−3) min−1 and t1/2=(17±2) min. In comparison, a minor degradation of TDBP-TAZTO and no formed phototransformation products were obtained under simulated sunlight. In order to clarify the photochemical behavior, different chemicals were added to investigate the influence on indirect photolysis: (i) H2O2 for generation of hydroxyl radicals and (ii) two quenchers (2-propanol, sodium azide) for scavenging oxygen species which were formed during the irradiation experiments. Herein, nine previously unknown PTPs of TDBP-TAZTO were detected under UV-(C) irradiation and identified by HPLC-(HR)MS. As a result, debromination, hydroxylation, and dehydrobromination reactions could be presumed as the main degradation pathways by high-resolution mass spectrometry. The direct as well as the OH radical-induced indirect photolysis were observed. KW - UV irradiation KW - HRMS KW - Debromination KW - Hydroxylation KW - Emerging brominated flame retardant PY - 2019 DO - https://doi.org/10.1007/s11356-019-04815-w SN - 0944-1344 VL - 26 IS - 16 SP - 15838 EP - 15846 PB - Springer AN - OPUS4-47857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Flemig, Sabine A1 - Koellensperger, G. A1 - Rusz, M. A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - High-resolution laser ablation inductively coupled plasma mass spectrometry used to study transport of metallic nanoparticles through collagen-rich microstructures in fibroblast multicellular spheroids N2 - We have efficiently produced collagen-rich microstructures in fibroblast multicellular spheroids (MCSs) as a three-dimensional in vitro tissue analog to investigate silver (Ag) nanoparticle (NP) penetration. The MCS production was examined by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). MCSs were incubated with Ag NP suspensions with a concentration of 5 μg/mL for 24 h. For this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to visualize Ag NP localization quantitatively. Thin sections of MCSs were analyzed by LA-ICP-MS with a laser spot size of 8 μm to image distributions of 109Ag, 31P, 63Cu, 66Zn, and 79Br. A calibration using a NP suspension was applied to convert the measured Ag intensity into the number of NPs present. The determined numbers of NPs ranged from 30 to 7200 particles in an outer rim of MCS. The particle distribution was clearly correlated with the presence of 31P and 66Zn and was localized in the outer rim of proliferating cells with a width that was equal to about twice the diameter of single cells. Moreover, abundant collagens were found in the outer rim of MCSs. For only the highest seeding cell number, NPs were completely captured at the outer rim, in a natural barrier reducing particle transport, whereas Eosin (79Br) used as a probe of small molecules penetrated into the core of MCSs already after 1 min of exposure. KW - Laser ablation KW - ICP-MS KW - Nanoparticle KW - Cell KW - Speroid PY - 2019 DO - https://doi.org/10.1007/s00216-019-01827-w SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 16 SP - 3497 EP - 3506 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke T1 - Plasmaspectrochemistry in material sciences N2 - Plasmas as atomization and ionization/excitation sources have been used for more than 50 years. The term plasma spectrochemistry was introduced in the 1980s and is nowadays a topic of annual reviews and different conferences such as the Winter Conference on Plasma Spectrochemistry (held in USA), the European Winter Conference on Plasma Spectrochemistry, and The Nordic conference on Plasma Spectrochemistry. The development of advanced materials is inherently connected with improvements in analytical chemistry, and often is the driving force for method development in plasma-based spectrometry. Besides the determination of physical characteristics such as tensile strength, density, and conductivity, the investigation of their chemical constituents down to the trace and ultra-trace levels becomes more and more important and, therefore, the demand of sensitive and precise analytical methods is growing. In some cases, the determination of the average content is a sufficient result, for instance for the characterisation of raw material or waste management. However, lately laterally resolved analysis, depth profiling of layered materials and characterization of high purity materials are of growing importance. The aim of this article is to give an introduction into plasma spectrometry and its application in materials science. A theoretical overview of the used plasma techniques and a review on applications with a special focus on direct solid sampling will be presented. KW - Material Science KW - Plasma KW - Plasmaspectrochemistry PY - 2019 DO - https://doi.org/10.1002/9780470027318.a9341.pub2 SP - 1 PB - John Wiley & Sons CY - Hoboken, New Jersey AN - OPUS4-47840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gonzales-Gago, C. A1 - Smid, P. A1 - Hofmann, T. A1 - Venzago, C. A1 - Hoffmann, V. A1 - Gruner, W. A1 - Pfeifer, Jens A1 - Richter, Silke A1 - Kipphardt, Heinrich T1 - Investigations of matrix independent calibration approaches in fast flow glow discharge mass spectrometry N2 - The performance of glow discharge mass spectrometry (GD-MS) is investigated for the accurate quantification of metallic impurities and oxygen in solid samples using the fast flow source GD-MS instrument ELEMENT GD. Different quantification approaches based on relative and absolute sensitivity factors are evaluated for the determination of metallic impurities using three sample matrixes (Al, Cu and Zn). The effect of the discharge conditions (voltage, current, discharge gas pressure/flow) on the sensitivity is investigated and the parameters are optimized to favour matrix independent calibrations. Improved standard relative sensitivity factors (StdRSFs) are calculated under optimal conditions based on multi-matrix calibrations. The sputtering rate corrected calibration is also presented as a multi-matrix calibration approach. The capabilities of GD-MS for oxygen determination are also investigated using a set of new conductive samples containing oxygen with mass fractions in the percent range in three different matrices (Al, Mg and Cu) produced by a sintering process. Poor limits of detection (in the order of g/kg) were obtained as consequence of the reduced sensitivity of oxygen in GD-MS and high oxygen background signal intensity as well as its variations. The absolute sensitivity procedure is shown as a matrix-independent approach, which provides quantitative values consistent with those obtained by carrier gas hot extraction (CGHE). KW - Fast flow GD KW - GDMS KW - Calibration KW - Matrix independent calibration PY - 2019 DO - https://doi.org/10.1039/c9ja00023b SN - 1364-5544 SN - 0267-9477 VL - 34 IS - 6 SP - 1109 EP - 1125 PB - Royal Society of Chemistry CY - London AN - OPUS4-47842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -