TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Recknagel, Sebastian T1 - The USE of GDMS in the certification procedure of reference materials N2 - Reference materials are essential, when the accuracy and reliability of measurement results need to be guaranteed in order to generate confidence in the analysis. These materials are frequently used for determining measurement uncertainty, for validation of methods, suitability testing and quality assurance. Especially direct solid sampling methods require reference materials for calibration. They guarantee that measurement results can be compared to recognized reference values. This presentation gives an overview about the use of GDMS in various certification procedures. Because it represents a fast, sensitive, multielement analyses technique without extensive sample preparation it plays a special role for the purity determination of high purity standards. Various calibration strategies and the preparation of traceable matrix matched calibration standards will be discussed. For the certification of analyte content in matrix materials mainly techniques with solvent sample preparation are used. Here GD-MS is used to identify possible loss or contamination with analytes during the sample preparation step. Typically used acids to dissolve matrices lead to interferences in the ICP- mass spectrometric detection of various analytes and their quantification. Here GD-MS as direct method can also add an important contribution in the certification process. T2 - 4th IGDSS CY - Berlin, Germany DA - 15.04.2018 KW - GDMS KW - Reference materials PY - 2018 AN - OPUS4-46222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Hesse, R. A1 - Denecke, R. A1 - Werner, W. A1 - Unger, Wolfgang T1 - The use of ionic liquids for the determination of the spectrometer transmission function in X-ray photoelectron spectroscopy (XPS) N2 - The uncertainty of measurement in quantitative XPS analysis can be reduced by using a calibrated spectrometer transmission function T (E), which is usually determined by taking spectra from Au, Ag, Cu and Ge elemental reference materials. However, this approach is quite time-consuming due to required sample preparation steps like sputter cleaning etc., and the relatively big number of samples to be measured. This contribution proposes the use of the ionic liquids [C2C1im][NTf2] and [C3C1im][NTf2] as reference materials for a determination of T(E). These multi-elemental samples deliver five intensive photoemission peaks, F 1s, O 1s, N 1s, C 1s and S 2p, in an energy window from 160 eV to 700 eV which is of specific interest for applications of quantitative XPS for surface chemical analysis of soft matter, one of the major applications of XPS. KW - Quantitative XPS KW - Ionic liquid KW - Transmission function PY - 2019 DO - https://doi.org/10.1016/j.elspec.2019.03.008 VL - 233 SP - 51 EP - 56 PB - Elsevier B.V. AN - OPUS4-48019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönhals, Andreas T1 - Thermal behavior of high preformance polymers - Fast Scanning Calorimetry and more N2 - The glass tranistion behavior of polymers of intrinsic microporosity and polynornornes is discussed. T2 - Flash DSC Conference 2021 CY - Online meeting DA - 06.12.2021 KW - Polymer of Intrisic Maicroporosity KW - Highly permeable polynorbornenes PY - 2021 AN - OPUS4-53938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blotevogel, J. A1 - Lu, W. A1 - Rappé, A. A1 - Kennedy, E. A1 - Stockenhuber, M. A1 - Weber, N. A1 - Lucas, J. A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Holm, O. T1 - Thermal Destruction of PFAS N2 - Thermal treatment processes are currently the only full-scale option for thedestruction of per- and polyfluoroalkyl substances (PFAS) in large waste streams. While all organic molecules including PFAS are susceptible to thermal destruction, their decomposition rates are controlled by process variables such as temperature, reaction atmosphere, and residence time. Concerns exist about the formation of products of incomplete destruction and their emission from hazardous waste incinerators. This talk will summarize the current stateof-the-art of thermal PFAS destruction, identify research needs, and showcase future research designed to address critical knowledge gaps. T2 - Department of Defense's (DoD) Energy and Environment Innovation Symposium CY - Washington DC, USA DA - 28.11.2023 KW - Thermal treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2023 AN - OPUS4-58974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Thermal Radiation Investigations of Real-Scale Hydrogen Jet Flames at High Pressure N2 - In order to reduce global warming, the use of hydrogen as a renewable energy source is becoming more important. To enable this transition, unprecedently large amounts of hydrogen need to be safely transported and stored. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety distances. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames. To verify the applicability of these models to hydrogen, real-scale tests are carried out at the BAM Test Site for Technical Safety (BAM-TTS) with the aim to assess the flame geometry and the emitted thermal radiation. Parameters such as leakage diameter (currently up to 30 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In particular, the focus will be laid on the measurement and modelling of the thermal radiation. The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from literature are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. Following from the experimental investigations, modelling parameters such as the Surface Emissive Power (SEP) and the radiant heat fraction for hydrogen and methane will be compared to literature data. T2 - Center for Hydrogen Safety Americas Conference, American Institute of Chemical Engineers CY - Las Vegas, NV, USA DA - 21.05.2024 KW - Thermal radiation KW - Hydrogen KW - Release KW - Jet flame PY - 2024 AN - OPUS4-60195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536163 DO - https://doi.org/10.1016/j.carbon.2021.08.008 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - Thermal Super Resolution Image Reconstruction Using Structured Laser Heating N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. The measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 7th Autumn School METTI (Thermal Measurements and Inverse Techniques) CY - Porquerolles Island, Hyères, France DA - 29.09.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - VCSEL array KW - Joint sparsity KW - Compressed sensing PY - 2019 AN - OPUS4-49881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -