TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 DO - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J T1 - Spatiotemporal spectroscopic characterization of plasmas induced by non-orthogonal laser ablation N2 - Ablation geometry significantly affects the plasma parameters and the consequent spectroscopic observations in laser-induced breakdown spectroscopy. Nevertheless, plasmas induced by laser ablation under inclined incidence angles are studied to a significantly lesser extent compared to plasmas induced by standard orthogonal ablation. However, inclined ablation is prominent in stand-off applications, such as the Curiosity Mars rover, where the orthogonality of the ablation laser pulse cannot be always secured. Thus, in this work, we characterize non-orthogonal ablation plasmas by applying plasma imaging, tomography, and spectral measurements. We confirm earlier observations according to which non-orthogonal ablation leads to a laser-induced plasma that consists of two distinct parts: one expanding primarily along the incident laser pulse and one expanding along the normal of the sample surface. Moreover, we confirm that the former emits mainly continuum radiation, while the latter emits mainly sample-specific characteristic radiation. We further investigate and compare the homogeneity of the plasmas and report that inclined ablation affects principally the ionic emissivity of laser-induced plasmas. Overall, our results imply that the decreased fluence resulting from inclined angle ablation and the resulting inhomogeneities of the plasmas must be considered for quantitative LIBS employing non-orthogonal ablation. KW - Radon transformation KW - Laser induced plasma KW - Plasma tomography PY - 2020 DO - https://doi.org/10.1039/d0an01996h VL - 146 IS - 3 SP - 920 EP - 929 PB - The Royal Society of Chemistry AN - OPUS4-51774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grossegesse, M. A1 - Hartkopf, F. A1 - Nitsche, A. A1 - Schaade, L. A1 - Doellinger, J. A1 - Muth, Thilo T1 - Perspective on Proteomics for Virus Detection in Clinical Samples N2 - One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted. KW - COVID-19 KW - Mass spectrometry KW - Virus diagnostics KW - Virus detection KW - Targeted mass spectrometry KW - Proteomics PY - 2020 DO - https://doi.org/10.1021/acs.jproteome.0c00674 SN - 1535-3907 VL - 19 IS - 11 SP - 4380 EP - 4388 PB - ACS AN - OPUS4-51633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sajulga, R. A1 - Easterly, C. A1 - Riffle, M. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Mehta, S. A1 - Kumar, P. A1 - Johnson, J. A1 - Gruening, B. A1 - Schiebenhoefer, H. A1 - Kolmeder, C. A1 - Fuchs, S. A1 - Nunn, B. A1 - Rudney, J. A1 - Griffin, T. A1 - Jagtap, P. T1 - Survey of metaproteomics software tools for functional microbiome analysis N2 - To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform. KW - Bioinformatics KW - Metaproteomics KW - Mass spectrometry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516358 DO - https://doi.org/10.1371/journal.pone.0241503 SP - e0241503 AN - OPUS4-51635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Roethke, A. A1 - Rienitz, O. A1 - Matschat, Ralf A1 - Schiel, D. A1 - Jaehrling, R. A1 - Goerlitz, V. A1 - Kipphardt, Heinrich T1 - SI-traceable monoelemental solutions on the highest level of accuracy: 25 years from the foundation of CCQM to recent advances in the development of measurement methods N2 - Within the Working Group on Inorganic Analysis (IAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) international key comparisons and pilot studies related to inorganic analysis are carried to ensure consistency in this field at the highest level. Some of these comparisons deal directly with the preparation and characterization of monoelemental solutions or with topics, closely related. The importance of monoelemental solutions lies in the fact that almost every measurement in inorganic analysis relies on the comparison with either a reference material, or references in form of solutions, usually (mono)elemental solutions. All quantitative measurement approaches, e.g. isotope dilution or standard addition, need an accurate reference solution made from a well characterized reference material, prepared under full gravimetric control. These primary (monoelemental) solutions do not only serve as arbitrary references/calibration solutions, but they also link up measurement results to the International System of units (SI), this way establishing the so-called metrological traceability to a measurement unit of the SI. Without such solutions on the highest possible level of accuracy and with the smallest possible associated uncertainties (for e.g. element content and/or impurities), an analysis itself can never be as good as it could be with appropriate reference solutions. This article highlights select key comparisons and pilot studies dealing with monoelemental solution related topics within the IAWG from the foundation of CCQM – 25 years ago – up to latest achievements in the field of inorganic analysis. KW - Metrology KW - SI Traceability KW - CCQM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496080 DO - https://doi.org/10.1088/1681-7575/ab5636 SN - 0026-1394 SN - 1681-7575 SP - 1 EP - 23 PB - IOP CY - Bristol AN - OPUS4-49608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frunza, S. A1 - Frunza, L. A1 - Ganea, C. P. A1 - Zgura, I. A1 - Schönhals, Andreas T1 - Density of adsorbed surface species for cyanophemyl benzoates confined to Aerosil 380: Development of the evaluating algorithm for Attachment by two types of bonds N2 - We found previously how to estimate the density of the adsorbed surface species in the case of the molecules interacting to the oxide support surface by one type of bond. Here this algorithm is developed for the case of the molecules which can be bonded to the support surface by two types of bonds. The adsorption assumptions are similar to those considered in the case of only one type of bond. The calculation is exemplified for some composites of cyanophenyl alkylbenzoates (CPnBs) (n is the number of carbon atoms in the alkyl chain) interacting with Aerosil A380. The interaction takes place by hydrogen bonding between the –OH groups or the support and the functional groups of the CPnB molecules. The estimated values of the total surface density of CPnBs agree well with those found for the composites containing related but simpler molecules. KW - Surface species PY - 2019 SN - 1223-7027 VL - 81 IS - 4 SP - 232 EP - 236 PB - University Politehnica of Bucharest CY - Bucharest AN - OPUS4-49615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Powierza, Bartosz A1 - Gollwitzer, C. A1 - Wolgast, D. A1 - Staude, A. A1 - Bruno, Giovanni T1 - Fully experiment-based evaluation of few digital volume correlation techniques N2 - Digital Volume Correlation (DVC) is a powerful set of techniques used to compute the local shifts of 3D images obtained, for instance, in tomographic experiments. It is utilized to analyze the geometric changes of the investigated object as well as to correct the corresponding image misalignments for further analysis. It can therefore be used to evaluate the local density changes of the same regions of the inspected specimens, which might be shifted between measurements. In recent years, various approaches and corresponding pieces of software were introduced. Accuracies for the computed shift vectors of up to about 1‰of a single voxel size have been reported. These results, however, were based either on synthetic datasets or on an unrealistic setup. In this work, we propose two simple methods to evaluate the accuracy of DVC-techniques using more realistic input data and apply them to several DVC programs. We test these methods on three materials (tuff, sandstone, and concrete) that show different contrast and structural features. KW - DVC KW - Finite-element analysis KW - Image processing KW - Stress strain relations KW - Computed tomography PY - 2019 DO - https://doi.org/10.1063/1.5099572 SN - 1089-7623 VL - 90 IS - 11 SP - 115105 PB - AIP Publishing AN - OPUS4-49671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liens, A. A1 - Reveron, H. A1 - Douillard, T. A1 - Blanchard, N. A1 - Lughi, V. A1 - Sergo, V. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Bruno, Giovanni A1 - Schomer, S. A1 - Fürderer, T. A1 - Adolfsson, E. A1 - Courtois, N. A1 - Swain, M. A1 - Chevalier, J. T1 - Phase transformation induces plasticity with negligible damage in ceria-stabilized zirconia-based ceramics N2 - Ceramics and their composites are in general brittle materials because they are predominantly made up of ionic and covalent bonds that avoid dislocation motion at room temperature. However, a remarkable ductile behavior has been observed on newly developed 11 mol.% ceria-stabilized zirconia (11Ce-TZP) composite containing fine alumina (8 vol.% Al2O3) and elongated strontium hexa-aluminate (8 vol.% SrAl12O19) grains. The as-synthesized composite also has shown full resistance to Low Temperature Degradation (LTD), relatively high strength and exceptionally high Weibull modulus, allowing its use in a broader range of biomedical applications. In this study, to deepen the understanding of plastic deformation in Ce-TZP based composites that could soon be used for manufacturing dental implants, different mechanical tests were applied on the material, followed by complete microstructural characterization. Distinct from pure Ce-TZP material or other zirconia-based ceramics developed in the past, the material here studied can be permanently strained without affecting the Young modulus, indicating that the ductile response of tested samples cannot be associated to damage occurrence. This ductility is related to the stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation, analogue to Transformation-Induced Plasticity (TRIP) steels, where retained austenite is transformed to martensite. The aim of this study is to corroborate if the observed plasticity can be associated exclusively to the zirconia t-m phase transformation, or also to microcraking induced by the transformation. The t-m transformed-zones produced after bending and biaxial tests were examined by X-ray refraction and SEM/TEM coupled with Raman. The results revealed that the observed elastic-plastic behavior occurs without extensive microcracking, confirming a purely elastic-plastic behavior driven by the phase transformation (absence of damage). KW - Zirconia KW - Ceria KW - Ceramic matrix composite KW - Plasticity KW - Phase transformation KW - X-Ray Refraction PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S1359645419307177 DO - https://doi.org/10.1016/j.actamat.2019.10.046 SN - 1359-6454 VL - 183 SP - 261 EP - 273 PB - Elsevier Ltd. AN - OPUS4-49740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Boehn, B. A1 - Scholtz, Lena A1 - Imbihl, R. T1 - Reactivity and Stability of Ultrathin VOx Films on Pt(111) in Catalytic Methanol Oxidation N2 - The growth of ultrathin layers of VOx (<12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron difraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium difuses into the Pt subsurface region. Exposure to O2 causes part of the V to difuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar. KW - Vanadium oxide catalysts KW - Pt(111) KW - Supported catalyst KW - Methanol oxidation KW - Stranski–Krastanow growth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517376 DO - https://doi.org/10.1007/s11244-020-01321-z SN - 1022-5528 VL - 63 IS - 15-18 SP - 1545 EP - 1556 PB - Springer AN - OPUS4-51737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -