TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Multielemental analysis of MIC organisms grown on solid steel samples by means of single cell-ICP-ToF-MS N2 - Inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) enables the analysis of the multi-element fingerprint of individual cells due to a (quasi-)simultaneous detection of about 70 elements of the periodic table. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed which ensures the analysis of intact cells. It allows the studies of archaea at a single cell level which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - DGMS Young Scientists Fall Meeting 2022 CY - Hünfeld, Germany DA - 28.09.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-55910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs – Results of a research project N2 - Since 1997, the Committee for Health-related Evaluation of Building Products (AgBB) has been developing the basis for building regulations for protection against indoor health risks that may arise when building products are used. In 2009, the AgBB decided to include relevant VVOCs in the assessment procedure. The ISO 16000-6 (2021) states that the use of the thermal desorption gas chromatography technique is appropriate for VVOCs, if adaptations are considered. However, a suitable method for the trustworthy quantification of VVOC emissions from building products and in the indoor air is still missing. This webinar will present the results of a research project on the development of a procedure for VVOC analysis: • identification of the gaps towards standardization • investigations on gas standards and the suitability of chromatography columns • investigations on sorbent combinations and water management • validation of the method and screening of VVOC emissions from building products. T2 - Webinar organized by Umweltbundesamt and BAM CY - Online meeting DA - 13.09.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Benemann, Sigrid A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - This study presents a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Core-shell particles KW - 3D image analysis KW - Roughness KW - SEM tilting KW - Batch analysis PY - 2022 AN - OPUS4-55452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - New possibilities in single cell analysis via ICP-ToF-MS – zooming into the region where materials meet environment N2 - Materials are key for our modern communities; current life seems nearly impossible without concrete, plastic and metal. In particular metals play important roles in all areas of our daily life - from building materials to high tech products. However, due to the increasing consumption of metals and corresponding waste production, an elevated release of metals from buildings and consumer goods into the environment takes place. Furthermore, metals in direct contact with the environment undergo corrosion processes which leads also to a release of metals into the (aquatic) environment. Besides this immediate metal release, the lifespan of products/buildings are substantially reduced – hence unnecessary economic costs arise. Thus, research in this regard is needed within the force field of metal/material  environment. However, to evaluate the environmental impact of materials as well as developing “safe” materials, new analytical methods are highly needed. One promising powerful tool in this regard is single cell-ICP-ToF-MS for multi-elemental analysis on a single cell/organism level. Within this presentation the concept, strength as well as challenge of single cell-ICP-MS are briefly introduced. Afterwards, two application examples are presented: (i) assessing the environmental impact of metals and (ii) the impact of the environment on metal-based materials and the derivation of potential environmental-friendly material protection strategies. These applications highlight the strength of new analytical approaches to explore the durability and safety of newly developed materials. Thus, analytical chemistry is one corner stone to transformation of modern society into circular economy (CEco). (i) Diatoms are located at the bottom of the food chain. Thus, toxicological relevant metals taken up by diatoms can possibly accumulate within the food web and cause harmful effects. Diatoms are a common test system in ecotoxicology. To investigate potential metal uptake and harmful effects on a single cell level, we developed an on-line single cell-ICP-ToF-MS approach for multi-elemental diatom analysis. Our approach is a new potential tool in ecotoxicological testing for metal-based materials. (ii) Next to classical corrosion processes, microorganisms are responsible for so called microbially influenced corrosion (MIC). MIC is a highly unpredictable process relying on the interaction pathways between cells and the metal surface. To shed light on MIC processes and derivate potential metal protection strategies, we applied single cell-ICP-ToF-MS for MIC research on a single bacteria/archaea level. It turned out that microorganism are taking up particular metals from alloys - thus, single bacteria-ICP-ToF-MS will enable the development of environmental friendly corrosion protection strategies. T2 - 10th Nordic Conference on Plasma Spectrochemistry CY - Loen, Norway DA - 12.06.2022 KW - sc-ICP-ToF-MS KW - Material - Environment interaction KW - Diatom, Bacteria PY - 2022 AN - OPUS4-55533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Quantification of surface functional groups on inorganic and organic nanomaterials using cleavable reporters N2 - Engineered nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing and electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties. Especially, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, is an important key driver for the performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, methods for functional group quantification can foster the sustainable development of functional and safe(r) NM. Aiming at the development of simple, versatile and multimodal tools for the quantification of common bioanalytically relevant functional groups, we designed a catch-and-release assay based on cleavable probes that enable the quantification of the cleaved-off reporters in the supernatant after particle separation. Thus, the approach circumvents interferences resulting from particle light scattering and sample-inherent absorption or emission. To study the potential of the assay, commercially available and in-house synthesized aminated and carboxylated polymer and silica nanoparticles of different functional group densities were tested. Our cleavable probe strategy can be easily adapted to other analytical techniques requiring different reporters, or to different types of linkers that can be cleaved thermally, photochemically, or by variation of pH, utilizing well-established chemistry. In addition, it can contribute to the development of multi-method characterization strategies to provide a more detailed picture of the intrinsic physicochemical property - performance/safety relationships and thus can support the design of tailored nanomaterials with better controlled properties. T2 - E-MRS Spring Meeting 2021 / ALTECH 2021 - Analytical techniques for precise characterization of nanomaterials CY - Online meeting DA - 31.05.2021 KW - Surface modified nano- and microparticles KW - Optical assays KW - Particle surface analysis KW - Surface functional group quantification PY - 2021 AN - OPUS4-55596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, Jenny A1 - Landmann, Mirko A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 - The International Symposium on Nendestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Material classification KW - Circular economy KW - LIBS KW - Recycling PY - 2022 AN - OPUS4-55554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Multifaceted laser induced plasma: spectroscopy and beyond N2 - In this presentation, I will give a brief overview of my personal experience with laser induced plasma (LIP). I will start from my and colleagues’ early works, where we used LIP as an atomic reservoir for laser induced fluorescence (LIP). We applied LIP-LIF for a sensitive detection of trace elements in various materials and demonstrated that under certain conditions the technique can even be used for isotope analysis. Next, I will discuss the application of LIP spectroscopy, i.e., LIBS, to material identification that nowadays constitutes one of the best applications of this technique. In those early days, we used correlation analysis for spectra processing; it is now replaced by more powerful chemometric methods. Further, I will stop on our efforts in modeling LIP that we first intended for the improved quality of spectroscopic analysis and later extended to non-spectroscopic fields such as chemical vapor deposition and surface structuring. We developed a version of calibration-free LIBS, in which we iterated model-generated spectra until a close match was achieved between experimental and synthetic spectra to determine concentrations. Next, I will briefly overview our recent developments in plasma modeling that include plasma chemistry. This was important in view of widening application of LIBS as a molecular technique. I will also address several plasma diagnostics, e.g., Radon transform tomography that we developed to get more insight about LIP that was helpful for both analytic spectroscopy and modeling. Finally, I will mention several exotic applications of LIP such as LIP-based lasers and chemical reactors to illustrate a real multifaceted character of laser induced plasma and usefulness of its study for many science fields. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Emission spectroscopy KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-55968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Given, Joseph A1 - Lehleitner, Johannes T1 - First insights into the human-related risks of tunnel inspection N2 - Whereas human factors (HF) in the non-destructive testing (NDT) of metallic components are a poorly investigated topic (in comparison to other industrial fields such as aviation), HF in the inspection of concrete components are even less known. Studies have shown that there is always some variability between individuals in their inspection results and that HF affect the reliability of NDT inspections. The aim of the ongoing WIPANO project is to draft a standard for a holistic reliability assessment, with concrete inspection as one case study. This includes also the HF. A human-oriented Failure Modes and Effects Analysis (FMEA) was carried out to do the following: a) identify possible human-related risks in tunnel inspection processes using a laser scan method (including data collection,evaluation, and assessment of tunnel damage) and b) evaluate these human-related risks as regards their possible causes, consequences and probability of occurrence – in addition with respect to existing and possible preventive measures. The results show that the causes for possible failures can lie within people, the physical environment, technology, organisation, and extra-organisational environment. Whereas current preventive measures rely mostly on the individual and quality management practices, there is potential for even larger improvement at the organisational and extra-organisational level. The FMEA results were also used to develop a quantification method to further understand the HF in tunnel inspection, which could possibly be included in the information into the overall reliability assessment. The usage of qualitative and quantitative data collected through the human-FMEA within the proposed quantification method shows promise that HF can be quantified and could offer broader understanding of HF influences on inspection in various industries. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Human Factors KW - Failure Modes and Effects Analysis KW - FMEA KW - Tunnel Inspection KW - NDT Reliability KW - Quantification PY - 2022 AN - OPUS4-56015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture distribution in amorphous porous materials N2 - Mesopores dominate the material moisture and influence the gas diffusion through materials such as concrete or sandstone T2 - Nano@bam Round Table Nano Materials CY - Berlin, Germany DA - 14.10.2022 KW - Physisorption KW - Mesopores KW - Amorphous materials PY - 2022 AN - OPUS4-55998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - Non-destructive testing application examples using the NMR core-analyzing tomograph N2 - Nuclear magnetic resonance (NMR) with focus on 1H protons is increasingly applied for non-destructive testing applications. Besides mobile NMR, laboratory devices such as the NMR core-analyzing tomograph are used. As their magnetic field is more homogeneous, they enable measurements with higher signal-to-noise ratios (SNR), but with limited sample sizes. The tomograph presented here (8.9 MHz) was constructed for a maximum sample diameter of 70 mm and length of up to 1 m. The resolution, the echo time (min. 50 µs), the SNR and the measurement type can be adjusted by means of exchangable coils. The tomograph enables measurements along the complete sensitive length, slice-selective and even 2- or 3-dimensional measurements. A movable sample lifting system thereby allows a precise positioning of the sample. T2 - Magnetic Resonance in Porous Medie (MRPM) 2022 CY - Online meeting DA - 21.08.2022 KW - Spalling KW - Nuclear magnetic resonance KW - Tomography KW - Moisture transport KW - Frost salt attach PY - 2022 AN - OPUS4-55828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -