TY - CONF A1 - Meermann, Björn T1 - Von Elementspezies, Isotope und Zellen oder: wie kommt man eigentlich von Westfalen nach Berlin N2 - Im Rahmen des Vortrages werden die Möglichkeiten der Elementanalytik an Applikationsbeispielen aus Umwelt und life-sciences aufgezeigt. Hierbei kommen ICP-MS Kopplungstechniken, stabile Isotope und Einzellen- und Partikelanalytik (sc-/sp-ICP-ToF-MS) zum Einsatz. T2 - DAAS PhD Seminar CY - Online meeting DA - 20.09.2021 KW - Elementspezies & Isotope KW - ICP-MS & HR-CS-GFMAS KW - Kopplungstechniken PY - 2021 AN - OPUS4-53378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. T1 - On-line hyphenation of CE with multicollector-icp-ms for species-specific isotopic analysis of sulfur N2 - In many scientific fields, isotopic analysis can offer valuable information, e.g., for tracing the origin of food products, environmental contaminants, forensic and archaeological samples (provenance determination), for age determination of minerals (geochronological dating) or for elucidating chemical processes. Up to date, typically bulk analysis is aimed at measuring the isotopic composition of the entire elemental content of the sample. However, the analyte element is usually present under the form of different species. Thus, separating species of interest from one another and from matrix components prior to isotope ratio measurements can provide species-specific isotopic information, which could be used for tracing the origin of environmental pollutants and elucidation of (environmental) speciation. Using on-line hyphenations of separation techniques with multicollector-ICP-MS (MC-ICP-MS) can save time and effort and enables the analysis of different species during a single measurement. In this work, we developed an on-line hyphenation of CE with multicollector-ICP-MS (CE/MC-ICP-MS) for isotopic analysis of sulfur species using a multiple-injection approach for instrumental mass bias correction by standard-sample bracketing. With this method, the isotopic composition of sulfur in sulfate originating from river water could be analyzed without sample preparation. The results were compared to data from off-line analysis of the same samples to ensure accuracy. The precision of the results of the on-line measurements was promising regarding the differentiation of the river systems by the isotopic signature of river water sulfate. The great potential of this method is based on the versatility of the applied separation technique, not only in the environmental field but also for, e.g., biomolecules, as sulfur is the only covalently bound constituent of proteins that can be analyzed by MC-ICP-MS. T2 - 12th International Conference on Instrumental Methods of Analysis-Modern Trends and Applications (IMA) CY - Online meeting DA - 20.09.2021 KW - CE/MC-ICP-MS KW - Species-specific Isotope Analysis KW - Environmental & life science application KW - Speciation Analysis PY - 2021 AN - OPUS4-53379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langenhan, Jennifer A1 - Lisec, Jan A1 - Jaeger, Carsten T1 - PEGomics: A meta-study on factors affecting polyethylene glycol (PEG) levels in human blood N2 - Polyethylene glycols (PEGs) are widely used in everyday items such as food additives and in personal care products. In addition, they have multiple medical applications: as laxatives, excipients, and covalently coupled to drug molecules leading to improved pharmacokinetics (PEGylation). While generally regarded as biologically inert, the human body is known to produce antibodies against PEGylated molecules. In addition, PEGs have been shown to be part of a biomarker signature to predict colon cancer outcome, suggesting a more complex and yet unknown behavior of PEGs in the human body. Here, we introduce PEGomics, a retrospective screening approach of publicly available LC-MS data. Using a custom R script to process entire studies, the presence of PEGs was reveled in most human plasma, serum and whole blood samples investigated. Several PEG species and adducts were identified and their correlation with different diseases and health conditions was investigated further. Blood PEG levels significantly differed between patient groups in multiple clinical studies related to e.g. pregnancy duration, fasting and smoking. We discuss possible causes for these effects in the light of recent reports of allergies against PEGs and outline our further strategies to identify the source of PEGs in the human body as well as possible metabolic transformations. T2 - ACS Spring 2021 CY - Online meeting DA - 05.04.2021 KW - PEG KW - Polyethylene glycole KW - PEGomics KW - Retrospective analysis KW - Meta-study PY - 2021 AN - OPUS4-53392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Adaption of fluidic devices for SHM of hydrogen tanks N2 - Frequency analysis of the tank during every filling Passive actuator is integrated inside filling nozzle/ pressure vessel Frequency from 5 kHz to 150 kHz Frequency sweep (Chirp) can be performed Works with every fluid: air, hydrogen, oxygen, argon, water. T2 - H2Safety Kompetenzzentrum CY - BAM Berlin, Germany DA - 07.07.2021 KW - Fluidic device KW - Structural health monitoring KW - Hydrogen tank KW - Ultrasound PY - 2021 AN - OPUS4-52930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Evsevleev, Sergei A1 - Plotzki, David T1 - AdvanCT Virtual CT N2 - Simulation becomes more and more important in modern CT imaging. It is increasingly used to optimize techniques for complex applications, and for educational purposes. Simulation can also be used for uncertainty estimation of dimensional CT measurements. The radiographic simulator aRTist is a modelling tool which simulates X-ray imaging using a hybrid analytical and Monte-Carlo method to efficiently model the radiation transport. In addition to the relevant physical effects such as absorption and scattering, simplified fast models are employed to describe the characteristics of the X-ray source and the detector. aRTist is well equipped to model realistic X-ray imaging setups due to the ability to load exported CAD object descriptions. By repetitive simulation runs aRTist can function as virtual CT device. A simple CT scan module is contained in aRTist which allows the simulation of standard (circular cone beam) scanning trajectories. AdvanCT is a module for aRTist which allows to set up more complex scanning trajectories by attaching geometrical modification functions to the objects in the radiographic scene. In this way, advanced scanning modes can be realized. In addition to deterministic motion, also random variations can be introduced. By combining random variations with deterministic motion, non-ideal (realistic) CT scan geometries can be simulated, e.g. focal spot drift and mechanical instability of the axis of rotation. The AdvanCT module conveniently allows to construct these scenarios in a graphical interface and provides a preview before starting the (potentially long running) batch job. Therefore, deviations from ideal CT scan trajectories can be easily adjusted which is a necessary step towards uncertainty determination from simulation. T2 - dXCT conference 2021 CY - Online meeting DA - 17.05.2021 KW - X-ray Virtual Computer Tomography Simulation PY - 2021 AN - OPUS4-52953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, J. J. A1 - Polyakov, D. S. A1 - Samokhvalov, A. A. T1 - Reverse deposition of TI-oxides under nanosecond laser ablation of TI N2 - Processes of laser induced oxidation of metals are typically studied in the framework of heterogeneous chemical reactions occurring on the irradiated surface, which lead to the formation of dense oxide films deposited on it. Such technology has many applications like color-laser marking technology and laser recording on thin metal films for creation of diffractive optical elements . Under the conditions of strong laser ablation, another oxidation mechanism becomes possible: evaporated atoms react with oxygen in a surrounding atmosphere and the products of such reaction are redeposited back onto the substrate. The chemical and phase composition of such deposited layer, its density, morphology and structure depend on the conditions of laser ablation. By varying these conditions, the main properties of such coating can be controlled that is important for some potential application (for example in biomedicine). In our report we present the study of the processes of redeposition of oxides structure under the conditions of multipulse nanosecond laser ablation of titanium (Grade 2) in air atmosphere at normal conditions. Our experiments show that titanium-implants with such deposited oxide layer have increased biocompatibility. Modelling of chemical reaction in laser-induced plasma coupled with experimental methods of plasma optical emission spectroscopy allows us to determine the types of main chemical reactions in laser plasma as well as it influences on the plume dynamics and vapor condensation kinetics. As a result, we propose the general physical picture of reverse deposition of oxides structure under the condition of strong nanosecond laser ablation. The formation of the titanium oxide precipitate is explained not only by collisions in the plasma, but also by the chemical interaction of titanium and oxygen, which leads to the formation of а low pressure area near the substrate and additionally stimulates the reverse deposition of oxides. We expect, similar processes are valid not only for titanium but also for other metals and, possibly, semiconductors. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pech May, Nelson Wilbur A1 - Paul, A. A1 - Ziegler, Mathias T1 - Pulse-compression laser thermography using a modified Barker code: Enhanced detection of subsurface defects N2 - Pulse-compression thermography is an emerging technique that has shown versatility by combination of pulsed and lock-in thermography. Accordingly, several aspects of this technique are still unexplored, and some others not fully developed yet. Barker codes were widely used in radar applications due to their simplicity and their optimum autocorrelation function. Nevertheless, applications were limited by the amplitude of the sidelobes present in the autocorrelation function and therefore, several filters have been developed which aim to reduce the sidelobes. However, the filters usually depend on empirical parameters which must be determined for each application. A better alternative would improve the applicability of the Barker codes. In this work, we further develop the pulse-compression thermography technique by introducing a 13-bit modified Barker code (mBC): This allows to drastically reduce the sidelobes characteristic of the 13-bit Barker code (BC). Consequently, the thermographic impulse response, obtained by cross-correlation, is almost free of such sidelobes. Deeper defects become easier to detect in comparison with using a 13-bit Barker code. Numerical simulations using the finite element method are used for comparison and experimental measurements are performed in a sample of steel grade St 37 with machined notches of three different depths: 2 mm, 4 mm and 6 mm. T2 - SPIE Defense + Commercial Sensing 2021 CY - Online meeting DA - 13.04.2021 KW - Pulse-compression laser thermography KW - Barker codes KW - Non-destructive testing PY - 2021 AN - OPUS4-53249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Schneider, S. A1 - Peters, S. T1 - Development of a standard series for ellipsometry N2 - Ellipsometry is a powerful tool, which allows the investigation of material properties over a broad spectral range. Over the course of several years, the ellipsometry lab at BAM has become an accredited testing lab according to ISO/IEC 17025 laying bare the need of better methods for accuracy and traceability. Despite its wide range of application in both research and development as well as industry, there have been no generally accepted standards dealing with model validation and measurement uncertainties. Based on the first German standard DIN 50989 – 1: 2018 Ellipsometry - Part 1: Principles (currently international standard ISO 23131: 2021) and under consideration of GUM [1] a series of standards for ellipsometry was developed. The entire 6-part series covers several model-based application cases. This standards series avoids having narrow and material specific application cases but instead classifies applications of ellipsometry according to the sample complexity. The concept of ellipsometric transfer quantities (Ψ and Δ or alternatively the elements of transfer matrices) is implemented in the series. For each application case a model-based validation strategy was developed. Thus, the standards are applicable to all materials, instruments and measuring principles. The uniform structure concept of the series facilitates its practical applicability for users. The standards include the model-based GUM-compliant determination/estimation of the measurement uncertainties. In addition, the appendices of the documents contain numerous measurement and simulation examples as well as recommendations for measuring practice. In this contribution we present the application cases and basic structure of the standards developed in collaboration with Accurion GmbH and SENTECH Instruments GmbH in the project SNELLIUS. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Standardization of ellipsometry KW - DIN 50989 Parts 1 – 6 KW - ISO 23131: 2021 KW - Validation concepts of ellipsometric measurements KW - Uncertainty budgets KW - GUM-compliance PY - 2021 AN - OPUS4-53250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob T1 - Structural characterization using small-angle X-ray scattering (SAXS) N2 - A short introduction to small-angle scattering, followed by a "choose your own adventure" style of talk on the characterisation of different materials using SAXS/WAXS. T2 - Operando workshop “SAXS and Ptychography” at the Paul Scherrer Institut CY - Villigen, Switzerland DA - 17.08.2021 KW - SAXS KW - Materials KW - Characterisation PY - 2021 AN - OPUS4-53188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -