TY - JOUR A1 - Neuschaefer-Rube, U. A1 - Illemann, J. A1 - Sturm, M. A1 - Bircher, B. A1 - Meli, F. A1 - Bellon, Carsten A1 - Evsevleev, Sergei T1 - Validation of a fast and traceable radiographic scale calibration of dimensional computed tomography N2 - A fast and highly precise method of determining the geometrical scale factor of computed tomography (CT) measurements has been validated successfully by Bundesanstalt für Materialforschung und -prüfung (BAM), the Federal Institute of Metrology (METAS) and Physikalisch-Technische Bundesanstalt (PTB) within the scope of AdvanCT (Advanced Computed Tomography for dimensional and surface measurements in industry), a project funded in the European Metrology Programme for Innovation and Research (EMPIR). The method has been developed by PTB and requires only two radiographic images of a calibrated thin 2D standard (hole grid standard) from two opposite directions. The mean grid distance is determined from both radiographs. From this and with the help of the calibration result, the radiographic scale and therefore the voxel size is determined. The procedure takes only a few minutes and avoids a time-consuming CT scan. To validate the method, the voxel sizes determined via this method were compared with voxel sizes determined from CT scans of calibrated objects. Relative deviations between the voxel sizes in the range of 10−5 were achieved with minimal effort using cone-beam CT systems at moderate magnifications. KW - Dimensional metrology KW - Voxel size KW - Industrial CT KW - Geometrical magnification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553271 DO - https://doi.org/10.1088/1361-6501/ac74a3 SN - 0957-0233 VL - 33 IS - 9 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, R. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shkrunin, V. A1 - Ermakov, A. T1 - Features of hydrogen reduction of SiF4 in ICP plasma N2 - Probe diagnostics is used to determine the electron temperature and electron number density in a low pressure inductively coupled plasma (ICP) ignited in the mixture of SiF4, Ar and H2. Emission spectra of mixtures with different stoichiometry of components are investigated and the electron density distribution function (EDDF) is estimated. The optimal conditions for high conversion of SiF4 into Si are found by studying the dependence of the yield of silicon upon the ratio of reagents. The maximum achieved yield of silicon is 85% under the optimal conditions. Based on the analysis of IR and MS spectra of exhaust gases, 5% of initial SiF4 converts into volatile fluorosilanes. A rate of production of Si is 0.9 g/h at the energy consumption 0.56 kWh /g. KW - Plasma enhanced chemical vapor deposition KW - PECVD KW - Silicon tetrafluoride KW - Emission spectroscopy KW - Probe diagnostics PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106502 SN - 0584-8547 VL - 195 SP - 106502 PB - Elsevier B.V. AN - OPUS4-55316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clark, P.C.J A1 - Andresen, Elina A1 - Sear, M. J. A1 - Favaro, M. A1 - Girardi, L. A1 - van de Krol, R. A1 - Resch-Genger, Ute A1 - Starr, D.E. T1 - Quantification of the Activator and Sensitizer Ion Distributions in NaYF4:Yb3+, Er3+ Upconverting Nanoparticles Via Depth-Profiling with Tender X-Ray Photoemission N2 - The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000–6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+, [Er3+]/[Yb3+], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs’ dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3·6H2O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+]/[Yb3+] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs. KW - Shell KW - Nanomaterial KW - Nano KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface KW - Coating KW - Core-shell KW - XPS KW - Intermixing KW - HAXPES KW - Method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552075 DO - https://doi.org/10.1002/smll.202107976 SN - 1613-6813 SP - 1 EP - 13 PB - Wiley-VCH-Verlag CY - Weinheim, Germany AN - OPUS4-55207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, P. M. A1 - Kjærvik, Marit A1 - Willneff, E. A. A1 - Unger, Wolfgang T1 - In-depth analysis of iodine in artificial biofilm model layers by variable excitation energy XPS and argon gas cluster ion sputtering XPS N2 - Here, we present a study on agarose thin-film samples that represent a model system for the exopolysaccharide matrix of biofilms. Povidone-iodide (PVP-I) was selected as an antibacterial agent to evaluate our x-ray photoelectron spectroscopy (XPS)-based methodology to trace specific marker elements, here iodine, commonly found in organic matrices of antibiotics. The in-depth distribution of iodine was determined by XPS analyses with variable excitation energies and in combination with argon gas cluster ion beam sputter cycles. On mixed agarose/PVP-I nanometer-thin films, both methods were found to solve the analytical task and deliver independently comparable results. In the mixed agarose/PVP-I thin film, we found the outermost surface layer depleted in iodine, whereas the iodine is homogeneously distributed in the depth region between this outermost surface layer and the interface between the thin film and the substrate. Depletion of iodine from the uppermost surface in the thin-film samples is assumed to be caused by ultrahigh vacuum exposure resulting in a loss of molecular iodine (I2) as reported earlier for other iodine-doped polymers. KW - Biofilm KW - XPS KW - Argon gas cluster ion sputtering KW - Variable excitation KW - Iodine PY - 2022 DO - https://doi.org/10.1116/6.0001812 SN - 1934-8630 VL - 17 IS - 3 SP - 1 EP - 8 PB - AVS AN - OPUS4-54973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549836 DO - https://doi.org/10.1364/oe.448932 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Kerndorff, A. A1 - Ricking, M. A1 - Bednarz, M. A1 - Obermaier, N. A1 - Lukas, M. A1 - Asenova, M. A1 - Bordós, G. A1 - Eisentraut, Paul A1 - Hohenblum, P. A1 - Hudcova, H. A1 - Humer, F. A1 - István, T. G. A1 - Kirchner, M. A1 - Marushevska, O. A1 - Nemejcová, D. A1 - Oswald, P. A1 - Paunovic, M. A1 - Sengl, M. A1 - Slobodnik, J. A1 - Spanowsky, K. A1 - Tudorache, M. A1 - Wagensonner, H. A1 - Liska, I. A1 - Braun, U. A1 - Bannick, C. G. T1 - Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach N2 - In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. KW - Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), monitoring KW - Microplastics KW - River KW - Suspended particulate matter (SPM) KW - Sedimentation box (SB) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551444 DO - https://doi.org/10.1021/acsestwater.1c00439 VL - 2 IS - 7 SP - 1174 EP - 1181 PB - ACS Publications AN - OPUS4-55144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The finite volume method in the context of the finite element method N2 - The finite volume method (FVM), like the finite element method (FEM), is a numerical method for determining an approximate solution for partial differential equations. The derivation of the two methods is based on very different considerations, as they have historically evolved from two distinct engineering disciplines, namely solid mechanics and fluid mechanics. This makes FVM difficult to learn for someone familiar with FEM. In this paper we want to show that a slight modification of the FEM procedure leads to an alternative derivation of the FVM. Both numerical methods are starting from the same strong formulation of the problem represented by differential equations, which are only satisfied by their exact solution. For an approximation of the exact solution, the strong formulation must be converted to a so-called weak form. From here on, the two numerical methods differ. By appropriate choice of the trial function and the test function, we can obtain different numerical methods for solving the weak formulation of the problem. While typically in FEM the basis functions of the trial function and test function are identical, in FVM they are chosen differently. In this paper, we show which trial and test function must be chosen to derive the FVM alternatively: The trial function of the FVM is a “shifted” trial function of the FEM, where the nodal points are now located in the middle of an integration interval rather than at the ends. Moreover, the basis functions of the test function are no longer the same as those of the trial function as in the FEM, but are shown to be a constant equal to 1. This is demonstrated by the example of a 1D Poisson equation. KW - Finite Volume Method KW - Finite Element Method KW - Variational Calculation KW - Numerical Methods PY - 2022 DO - https://doi.org/10.1016/j.matpr.2022.05.460 SN - 2214-7853 VL - 62 SP - 2679 EP - 2683 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -