TY - JOUR A1 - Kornev, R. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shkrunin, V. A1 - Ermakov, A. T1 - Features of hydrogen reduction of SiF4 in ICP plasma N2 - Probe diagnostics is used to determine the electron temperature and electron number density in a low pressure inductively coupled plasma (ICP) ignited in the mixture of SiF4, Ar and H2. Emission spectra of mixtures with different stoichiometry of components are investigated and the electron density distribution function (EDDF) is estimated. The optimal conditions for high conversion of SiF4 into Si are found by studying the dependence of the yield of silicon upon the ratio of reagents. The maximum achieved yield of silicon is 85% under the optimal conditions. Based on the analysis of IR and MS spectra of exhaust gases, 5% of initial SiF4 converts into volatile fluorosilanes. A rate of production of Si is 0.9 g/h at the energy consumption 0.56 kWh /g. KW - Plasma enhanced chemical vapor deposition KW - PECVD KW - Silicon tetrafluoride KW - Emission spectroscopy KW - Probe diagnostics PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106502 SN - 0584-8547 VL - 195 SP - 106502 PB - Elsevier B.V. AN - OPUS4-55316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling, Diagnostics and Applications of Laser Induced Plasma N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, and material processing. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of chemical vapor deposition of molybdenum borides and micro processing and coating of titanium dental implants. T2 - University of Saragossa, Department of Chemistry CY - Saragossa, Spain DA - June 30, 2022 KW - Laser ablation KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Surface coating PY - 2022 AN - OPUS4-55166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, Y. Y. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. T1 - Equilibrium model of titanium laser induced plasma in air with reverse deposition of titanium oxides N2 - A chemical-hydrodynamic model of laser induced plasma is developed to study a process of deposition of titanium oxides from titanium laser induced plasma to the titanium target surface. The model is relevant to texturing and coating of titanium bone implants that is done by scanning the ablation laser across implant surfaces. Such the procedure improves the biocompatibility and durability of the implants. The model considers plasma chemical reactions, formation of condensed species inside the plasma plume, and deposition and accumulation of these species on the ablation surface. A chemical part of the model is based on minimization of Gibbs free energy of the chemical system; it is used to calculate the chemical composition of the plasma. A hydrodynamic part uses the 2D fluid-dynamic equations that model a 3D axisymmetric plasma plume and assumes the mass and energy exchange between the plasma and the surface. The initial parameters for the model are inferred from experiment. The model shows that condensed titanium oxides, mostly TiO2, form in a peripheral plasma zone and gradually adhere to the surface during the plasma plume evolution. The model predicts the major component and thickness of the deposit and can be applied for the optimization of experiments aimed at surface modification. KW - Fluid dynamic model KW - Plasma chemistry KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106449 SN - 0038-6987 SN - 0584-8547 VL - 193 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. A1 - Karlagina, J. A1 - Samokhvalov, A. A1 - Polyakov, D. T1 - Back Deposition of Titanium Oxides under Laser Ablation of Titanium: Simulation and Experiment N2 - Titanium is widely used in medicine for implants and prostheses, thanks to its high biocompatibility, good mechanical properties, and high corrosion resistance. Pure titanium, however, has low wear resistance and may release metallic titanium into surrounding tissues. Structuring and coating its surface with oxide layers are necessary for high wear resistance and improved biocompatibility. In this work, a combination of theoretical and experimental methods was used to study processes responsible for deposition of titanium oxides during ablation of titanium in air. The deposition process was modeled via the Navier-Stokes equations that accounted for the material removal and accumulation of the deposit on the ablation surface. The chemical part was based on the equilibrium model embedded into the hydrodynamic code. Simulations showed that the most active zone of production of condensed titanium oxides were at plasma periphery whereas a zone of strong condensation of titanium metal was above the molten pool. In experiment, a pulsed Yb fiber laser was scanned across a titanium surface. The temperature and composition of the plasma were inferred from plasma emission spectra. The post-ablation surface was analyzed by SEM, TEM, STEM, AFM, and XRD. The developed model well reproduced the main features of experimental data. It was concluded that the deposition of condensed metal oxides from the plasma is a principal mechanism of formation of nanoporous oxide layer on the metal surface. The method of surface structuring and modification by nanosecond laser ablation can be developed into a useful technology that may find applications in medicine, photonics, and other areas. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Surface coating KW - Laser ablation KW - Plasma modeling PY - 2022 AN - OPUS4-55969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kornev, R. A. A1 - Veiko, V. P. T1 - Molecule formation in reactive LIBS plasmas: model and experiment N2 - Formation and detection of molecules in laser induced plasmas (LIP) is a hot topic. In analytical plasmas like LIBS, the detection of molecules is important for identification of geological and other materials, analysis of isotopes and difficult elements (Cl, F, etc.) via molecular emission. In chemical plasmas, like PECVD (plasma enhanced chemical vapor deposition) or PLD (pulsed laser deposition), molecules formed in the plasma determine a composition and a thickness of deposits. Similarly, molecules play an important role in microstructuring and oxidizing metal surfaces by laser ablation. It is unfortunate that different communities, which utilize plasma methods and seek for solutions of similar problems, do not strongly overlap, and do not fully use knowledge accumulated by each other. In this presentation, mechanisms of formation of molecules will be analyzed on the example of LIPs used for chemical vapor deposition and metal microstructuring. Theoretical analysis includes equilibrium chemistry calculations combined with plasma hydrodynamics. First, LIP excited in a gas mixture of BCl3 or BF3 with H2 or CH4 will be analyzed; this chemical system is used for obtaining deposits of refractory solid boron and boron carbide. Second, a breakdown in the SiF4 + SiCl4 gas mixtures will be described; this method allows synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3), the good etching agents (Figure). Third, solid ablation of Mo in BF3+H2 and Ti in air will be considered aimed at obtaining deposits of high hardness MoxBy and films of TixOy on textured Ti surfaces, correspondingly. In experiment, reaction gases before and after laser illumination, and solid deposits are analyzed by optical emission spectroscopy (OES), IR and mass spectrometry (MS), SEM, X-ray, and AFM. It will be shown that the hydrodynamic-chemical model adequately predicts the composition of LIPs, zones of molecular formation, dependence on reactant stoichiometry, plasma temperature and pressure. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Gijon, Spain DA - 29.11.2021 KW - Laser induced plasma KW - Plasma chemistry KW - Molecules formation KW - Plasma enhanced chemical deposition PY - 2021 AN - OPUS4-53850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giuseppe, Pignatelli A1 - Anne, Strasse A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. T1 - Online monitoring of 3D printing of steel via optical emission spectroscopy N2 - Additive manufacturing by laser metal deposition (LMD) requires continuous online monitoring to ensure quality of printed parts. Optical emission spectroscopy (OES) is proposed for the online detection of printing defects by monitoring minute variations in the temperature of a printed spot during laser scan. A two-lens optical system is attached to a moving laser head and focused on a molten pool created on a substrate during LMD. The light emitted by the pool is collected by an ultraviolet–visible (UV–vis) spectrometer and processed. Two metrics are used to monitor variations in the surface temperature: the spectrally integrated emission intensity and correlation coefficient. The variations in the temperature are introduced by artificial defects, shallow grooves, and holes of various widths and diameters carved on a substrate surface. The metrics show sufficient sensitivity for revealing the surface defects, except for the smallest holes with an under-millimeter diameter. Additionally, numeric simulations are carried out for the detection of emission in the UV–vis and near-infrared (NIR) spectral ranges at various surface temperatures. It is concluded that both the metrics perform better in the NIR range. In general, this work demonstrates that spectrally resolved OES suits well for monitoring surface defects during 3D metal printing. KW - Process control KW - Additive manufacturing KW - Laser metal deposition KW - Optical emission spectroscopy KW - Optical sensor PY - 2022 DO - https://doi.org/10.1515/mt-2021-2082 VL - 64 IS - 1 SP - 24 EP - 32 PB - De Gruyter AN - OPUS4-54413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling Equilibrium Chemistry in Laser Induced Plasmas and Plasma Chemical Reactors N2 - A brief introduction will be given on modeling chemical reactions in laser induced plasmas using stoichiometric and non-stoichiometric approaches. Several applications will be considered, which can benefit from such modeling. Those include plasma enhanced chemical vapor deposition (PECVD), surface modification and surface coating, and molecular analysis by LIBS. Each application will be illustrated by simulations of relevant chemical systems. For PECVD, chemical systems are BCl3/H2/Ar, BF3/H2/Ar, BCl3/BF3, Mo/BF3/H2; for surface modification/coating it is Ti/air; for molecular LIBS they are CaCO3/Ar, Ca(OH)2/Ar, and CaCl2/Ar. Advantages and shortcomings of equilibrium chemical hydrodynamic models of laser induced plasmas will be discussed. T2 - 1st NIP Conference National Institute of Physics (IKF), the Albanian Academy of Sciences CY - Online meeting DA - 10.02.2022 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Emission spectroscopy KW - Hydrodynamic model KW - Plasma chemistry PY - 2022 AN - OPUS4-54328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures and electron number density). Particular emphasis will be placed on laser induced plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, temporal and spatial resolution. T2 - 2022 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 17.01.2022 KW - Thermal equilibrium KW - Excitation processes KW - Electron number density KW - Temperatures KW - Spatial information KW - Emission line profiles PY - 2022 AN - OPUS4-54288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -