TY - CONF A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Jurtz, N. A1 - Thiede, T. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Additively manufactured Flow Cells for Inline Mixing and Reaction Monitoring with Low-Field NMR Spectroscopy N2 - The demand for increasing product diversity in the chemical process industry calls for new production processes that enable greater flexibility. Therefore, plants are needed that produce significant quantities for market supply that can be scaled up to several tons per year. Compared to traditional batch processes, intensified continuous production enables not only flexibility but also the production of compounds that are difficult to produce. Custom-designed small-scale reactors significantly improve heat and mass transfer through micro mixing and can improve safety, e.g. in the case of high grade exothermic or high-pressure reactions, and might play an important role for customized, modular production facilities.1 Combined with optimally designed flow cells, compact NMR instruments currently present promising analytical tools for use in flow chemistry applications.2,3 In recent process monitoring applications, the flow cell and the mixing unit are usually separated parts leading to a severe time delay between mixing and first data acquisition. In this work, we present a comprehensive workflow for the design of a flow cell−mixer combination based on CFD simulation and other design principles.4 Due to the increasing opportunities in additive manufacturing of ceramics, it was possible to realize an optimized SMX-type mixer with a fully integrated NMR flow cell (cf. Fig. 1). Validation studies exhibited 1H NMR spectra with a quality comparable to common NMR glass tubes. So far, the mixing performance of the system has been evaluated for different mass flow rates within the intended working range of 5–120 seconds region and compared to ideally mixed samples. Thus, the integrated flow cell−static mixer combination can be used for different purposes such as evaluation of fluid properties, equilibration studies, or reaction monitoring of two instantaneously mixed samples. The ceramic flow cell was additively manufactured and analyzed through x-ray microtomography revealing surface characteristics due to the manufacturing process (cf. Fig. 2). Furthermore, the working range of the whole system was characterized leading to an operational specification for further applications. In summary, the role of custom-designed components for modular, chemical production, amongst other essential factors like fast development of reliable evaluation models is discussed. References [1] Bornemann-Pfeiffer et al., Chem. Ing. Tech. (2021), 93: 1–10 [2] Kern et al., Anal. Bioanal. Chem. (2018) 410: 3349–3360 [3] Kern et al., Anal. Bioanal. Chem. (2019) 411: 3037–3046 [4] Bornemann et al., Ind. Eng. Chem. Res. (2019), 58: 19562−19570 T2 - EUROPACT - European Conference on Process Analytics and Control Technology CY - Online meeting DA - 15.11.2021 KW - Process analytical technology KW - NMR spectroscopy KW - Additive manufacturing KW - Computational fluid dynamics PY - 2021 AN - OPUS4-53804 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Laquai, René A1 - Wieder, Frank A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Serrano Munoz, Itziar T1 - The combined use of X-ray refraction and trans-mission radiography and computed tomography N2 - Alternative to conventional transmission-based radiography and computed tomography, X-ray refraction techniques are being increasingly used to detect damage in light materials. In fact, their range of application has been recently extended even to metals. The big advantage of X-ray refraction techniques is that they are able to detect nanometric defects, whose size would lie below the resolution of even state-of-the-art synchrotron-based X-ray computed tomography (SXCT). The superiority of synchrotron X-ray refraction radiography and tomography (SXRR and SXRCT) has been shown in the case of light materials, in particular composites. X-ray refraction techniques also yield a quantitifaction of the amount of damage (the so-called relative internal specific surface) and can well be compared with damage models. At the same time, it is impossible for SXRR and SXRCT to image single defects. We show that the combination of refraction- and transmission-based imaging techniques yields an impressive amount of additional information about the type and amount of defects in microstructured materials such as additively manufactured metals or metal matrix composites. We also show that the use of data fusion techniques allows the classification of defects in statistically significant representative volume elements. T2 - 11th Conference on Industrial Computed Tomography CY - Online meeting DA - 08.02.2022 KW - X-ray refraction radiography KW - Computed Tomography KW - Synchrotron radiation KW - Additive manufacturing KW - Damage evolution PY - 2022 AN - OPUS4-54327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 3D imaging and residual stress analysis of AM Materials N2 - In this seminar, the capabilities for materials characterization at Division 8.5, BAM will be shon. Particular focus will be given to residual stress analysis and defect imaging in additively manufactured materials and components T2 - Skoltech - The 3rd International Workshop of Advanced Manufacturing Technologies CY - Online meeting DA - 18.04.2023 KW - Neutron Diffraction KW - X-ray diffraction KW - X-ray Computed Tomography KW - X-ray refraction radiography KW - Residual stress KW - Additive manufacturing PY - 2023 AN - OPUS4-57360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Evseleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, C. A1 - Bruno, Giovanni T1 - 3D Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of complex structures. The quality of the feedstock material receives increasing attention, as it depicts the first part of the L-PBF process chain. The powder quality control in terms of flowability and powder bed packing density is therefore mandatory. In this work, a workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape for three different powder batches. The polydisperse particle size distribution (PSD) was transformed into a statistically equivalent bidisperse PSD. The ratio of the small and large particles helped to understand the powder particle packing density. While the particle shape had a neglectable influence, the particle size distribution was identified as major contributor for the packing density. T2 - AM- Workshop BAM CY - Online meeting DA - 20.04.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - Powder KW - Particle size distribution KW - Packing density PY - 2021 AN - OPUS4-53477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Current Digitalization Approaches in Quality Infrastructure -The QI-Digital Initiative N2 - The talk provides an overview on the importance and drivers of digital transformation in quality infrastructure (QI) as well as the approach the initiative QI-Digital takes to provide solutions. Special emphasis is given to the pilot projects implemented at BAM. T2 - Global Technical Regulation and Standardization Board Meeting CY - Erlangen, Germany DA - 20.07.2023 KW - Quality Infrastructure KW - Conformity Assessment KW - Quality-X KW - Smart standard KW - Additive manufacturing KW - Hydrogen fueling station KW - Digitalization PY - 2023 AN - OPUS4-58118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - A Modern Quality Infrastructure: Digital and Networked N2 - The presentation provides an overview and introduction to the need and drivers for the digital transformation of the quality infrastructure (QI). It illustrates the tools and processes that are the fundation of a digital QI and how the initiatve QI-Digital aims at developing accordant solutions. Special emphasis is given to the pilot projects at BAM. T2 - Visit of Indian delegation at BAM hosted by GIZ and BMWK CY - Berlin, Germany DA - 24.04.2023 KW - Quality Infrastructure KW - Conformity Assessment KW - Quality-X KW - Smart standard KW - Additive manufacturing KW - Hydrogen fueling station KW - Digitalization KW - Digital certificate PY - 2023 AN - OPUS4-58119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - A Modern Quality Infrastructure: Digital and Networked N2 - Introduction to the initiative QI-Digital and the BAM pilot projects, especially hydrogen fueling station, that seek to develop solutions for a modern and digital Quality Infrastructure (QI). T2 - Meeting mit Korea Delegation (Motie RHS Projekt) CY - Online meeting DA - 28.02.2023 KW - Quality Infrastructure KW - Conformity Assessment KW - Quality-X KW - Smart standard KW - Additive manufacturing KW - Hydrogen fueling station KW - Digitalization KW - Digital certificate PY - 2023 AN - OPUS4-58120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Tiede, Tobias A1 - Mishurova, Tatiana A1 - Laquai, René A1 - Bruno, Giovanni T1 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures N2 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - SLS KW - X-ray computed tomography KW - Refraction KW - Neutron diffraction KW - Additive manufacturing KW - Industry 4.0 PY - 2018 AN - OPUS4-45924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -