TY - GEN A1 - Bühling, Benjamin T1 - Acoustic and flow data of an ultrasonic fluidic switch and an ultrasonic piezoelectric transducer T2 - Harvard Dataverse Repository N2 - This dataset contains acoustic and flow data of an ultrasonic fluidic switch, which have been acquired using a microphone, a hot-wire anemometer and a pitot tube. Furthermore, acoustic data of a commercial piezoelectric transducer is provided. KW - Fluidics KW - Air-coupled ultrasound KW - Ultrasound KW - Non-destructive testing KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2020 DO - https://doi.org/10.7910/DVN/OQYPC9 PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-52392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Strangfeld, Christoph A1 - Maack, Stefan A1 - Schweitzer, T. T1 - Experimental analysis of the acoustic field of an ultrasonic pulse induced by a fluidic switch JF - The Journal of the Acoustical Society of America N2 - Ultrasonic inspection is a common tool for non-destructive testing in civil engineering (NDT-CE). Currently, transducers are coupled directly to the specimen surface, which makes the inspection time-consuming. Air-coupled ultrasound (ACU) transducers are more time-efficient but need a high pressure amplitude as the impedance mismatch between the air and the concrete is high and large penetration depth is needed for the inspection. Current approaches aim at eliminating the impedance mismatch between the transducer and the air to gain amplitude; however, they hardly fulfill the NDT-CE requirements. In this study, an alternative approach for ultrasound generation is presented: the signal is generated by a fluidic switch that rapidly injects a mass flow into the ambience. The acoustic field, the flow field, and their interaction are investigated. It is shown that the signal has dominant frequencies in the range of 35–60 kHz, and the amplitude is comparable to that of a commercial ACU transducer. KW - Air-coupled ultrasound KW - Non-destructive testing KW - Ultrasonic transducer KW - Acoustic-flow interaction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523862 DO - https://doi.org/10.1121/10.0003937 VL - 149 IS - 4 SP - 2150 EP - 2158 AN - OPUS4-52386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers JF - Data in brief N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -