TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel, Part III N2 - Efficiency and flexibility are currently a major concern in the design of modern power plants and chemical processing facilities. The high requirements for economic profitability and in particular climate change neutrality are driving this development. Consequently, plant equipment and chemical reactor components are designed for higher operating pressure and temperature. Creep-resistant CrMo steels had been used as constructional materials for decades but came to operational limitations, for example the resistance against so-called high-temperature hydrogen attack in petrochemical reactors. For that purpose, 20 years ago V-modified CrMo steels had been developed for use in the petrochemical industry due to their very good creep-strength and hydrogen pressure resistance at elevated temperatures enabling long service life of the respective components. For example, the 13CrMoV9-10 steel is applicable for process temperatures of up to 482 °C and hydrogen pressures of up to 34.5 MPa. Due to the large dimensions and wall thickness of the reactors (wall thickness up to 475 mm) and the special alloy concept, reliable weld manufacturing of the components is extremely challenging. First, low toughness and high strength of the weld joint in the as-welded condition are critical regarding weld cracking. High welding residual stresses are the result of the highly restrained shrinkage of the component welds. For this purpose, the entire component must be subjected to Post-Weld Heat Treatment (PWHT) after completion of the welding operation. The aim is to increase the toughness of the weld joints as well as to reduce the welding induced residual stresses. Before and during PWHT, extreme caution is required to prevent cracking. Unfortunately, V-modified CrMo steels possess an increased susceptibility to cracking during stress relaxation the so-called stress relief cracking (SRC). Available literature studies have largely focused on thermal and metallurgical factors. However, little attention has been paid on the influence of the welding procedure on crack formation during PWHT considering actual manufacturing conditions. For that reason, we investigated in our previous studies (part I and II), the influence of heat control on the mechanical properties by simulating actual manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3D- acting testing facility. The focus of part I was put on the influence of the welding heat control on mechanical stresses and the effect on cracking during PWHT. Part II was mainly dedicated to the metallurgical causes of SRC during PWHT and the interaction with the occurring mechanical stresses. It could be shown that not only high welding-induced stresses due to increased weld heat input cause higher susceptibility for SRC formation. It was further intensified by an altered precipitation behaviour in presence of mechanical stresses that are caused by the component related restraint. The present part III shows how residual stresses, which are present in such welded components and significantly influence the crack formation, can be transferred to the laboratory scale. As a result, the effect on the residual stresses on the SRC behaviour can be evaluated on simplified small-scale specimens instead of expensive mock-ups. For this purpose, experiments with test set-ups at different scales and under different rigidity conditions were designed and carried out. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 AN - OPUS4-51587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels Part 1: Restraint and Cold cracking risk N2 - The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses, and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. T2 - IIW Annual Assembly 2023 CY - Singapore DA - 16.07.2023 KW - Repair-welding KW - MAG welding KW - High-strength steels KW - Cold cracking KW - Residual stresses PY - 2023 AN - OPUS4-59253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels Part 2: Heat Control and Stress Optimization N2 - In welding of high-strength steels, e.g., for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, particularly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. T2 - IIW Annual Assembly 2023 CY - Singapore DA - 16.07.2023 KW - Repair-welding KW - High-strength steels KW - Cold cracking KW - Residual stresses PY - 2023 AN - OPUS4-59254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -