TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Halder, Karabi A1 - Balasooriya, Winoj A1 - Hausberger, Andreas A1 - Kaiser, Andreas T1 - Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers N2 - This study presents the influence of high-pressure hydrogen environment on the physical and mechanical properties of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers. Based on the CSA/ANSI standard, static exposures in hydrogen experiments were performed up to 100 MPa at 120 °C. Characterization before and after exposure was conducted by means of density and hardness measurements, dynamic mechanical analysis (DMA), tensile tests, compression set, FT-IR and AFM analyses to assess effects after decompression. While the effect of high-pressure exposure is significant immediately after exposure, most of the physical and mechanical properties recover after 48 hours. FT-IR, AFM, SEM and compression set results indicate, however, permanent effects. KW - Hydrogen KW - Mechanical properties KW - Elastomers KW - High-pressure hydrogen environment PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597102 SN - 0360-3199 VL - 58 SP - 389 EP - 399 PB - Elsevier Ltd. AN - OPUS4-59710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengiesser, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Schröpfer, Dirk A1 - Witt, Julia A1 - Özcan-Sandikcioglu, Özlem A1 - Kannengießer, Thomas T1 - Processing and application properties of multiple principal element alloys (MPEA) N2 - The presentation gives an overview of BAM's activities on processing influences and application properties of MPEAs in the form of joined and machined high and medium entropy alloys (CoCrFeMnNi and CoCrNi). In the case of welding, the focus is on defect-free welded joints with sufficient mechanical properties. In the case of machining, the focus is on the possible influence on the surface quality of the materials through adequate milling parameters. In addition, the hydrogen absorption and diffusion properties as well as the electrochemical corrosion behavior are fundamentally examined. T2 - FAU-Department Werkstoffwissenschaften, Seminar: Aktuelle Probleme der Werkstoffwissenschaften CY - Erlangen, Germany DA - 25.04.2024 KW - Welding KW - Application properties KW - Machining KW - High-entropy alloy KW - Hydrogen PY - 2024 AN - OPUS4-59975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining technologies for hydrogen components: current need and future perspectives N2 - The study provides an overview of the aspects of joining and its importance in manufacturing of components for the more and more important field of hydrogen as key factor for the energy transition to a decarburized future. To this end, the fundamentals of the technology fields of hydrogen production, storage, transport, and application are presented and the state of the art of manufacturing of components for hydrogen technologies by joining is summarized. Based on representative examples from practice, research and development, the importance of joining technology in hydrogen technologies is clearly highlighted and perspectives for the future are derived. From a macroeconomic perspective, the focal points, or trends of joining technologies here include: the erection of new infrastructure for hydrogen storage and transport, and the safe conversion of existing natural gas infrastructure and its challenges for welded materials. In addition, we show the problems that are anticipated with in-service repair welding of hydrogen pipelines. In hydrogen applications, the efficient mass production of fuel cells and electrolysers is becoming increasingly important. For that reason, the importance of additive manufacturing is highlighted. Finally, the challenges for technical regulations and standardization by using hydrogen are shown. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen KW - Infractstructure KW - Joining KW - Welding KW - Research PY - 2023 AN - OPUS4-58674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Steurer, Florian T1 - Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L N2 - Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. T2 - 47th MPA-Seminar CY - Stuttgart, Germany DA - 10.10.2023 KW - High-entropy alloy KW - Hydrogen KW - Diffusion KW - Thermal desorption analysis KW - Multiple-principal element alloy PY - 2023 AN - OPUS4-58675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586701 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Repair welding of in service hydrogen pipelines N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. In that context, large diameter long-distance transmission pipelines for hydrogen will be the backbone in the European Union with service pressures from 70 to 90 bar (e.g., depending on national regulations). It is a major goal to rededicate the existing LNG infrastructure despite the necessity of new pipelines. From that point of view repairing of such transmissions pipelines via welding can be necessary. For the LNG infrastructure, it is state of the art that repair welding is conducted at pipelines under service, i.e., the LNG is still flowing as pressurized gas in the steel pipes. The reason is that a shut-down of large diameter pipelines is not so easy or sometimes impossible. In fact, as long no oxygen enters the pipeline, there would be any combustion or (in the worst case) explosion. At the moment, it is entirely open if current repair welding procedures for LNG pipelines can be transferred to pure hydrogen pipelines. In opposite to LNG, hydrogen can be way easier absorbed to the pipeline steels and diffuses through the material. If it accumulates in susceptible regions, i.e., in the welded joint, hydrogen assisted embrittlement could occur. The planned welding procedure requires a so-called preheating and maintenance of the weld joint of up to 300°C for several hours. This temperature is way higher compared to the typical service temperature of max. 40 to 50°C at operational pressures of 100 bar. In accordance to API 941, these low-alloyed pipeline steels are subjected to short-term service loads, which they are not designed for. For that reason, a collaborative project between BAM and DVGW (German Association for Gas and Water professions) was initiated in 2022 to answer the following questions by experiments and numerical simulation of: (1) How many hydrogen is additionally absorbed during the heating of the material to max. 300°C under remaining operational pressures? (2) Is the hydrogen concentration sufficient to reach a critical condition? (3) Which material and weld microstructure is the most susceptible? (4) Is there a significant difference in the repair welding behavior of LNG pipelines that had been already in use for long-term? (5) Which welding parameters and joint dimensions must be ensured for safe repair welding repair of typical pipelines? For that reason, the present study gives an overview on the current practice in repair welding of in-service pipelines, the industrial importance of this topic for the hydrogen-based energy transition and summarizes first results. T2 - Eurocorr 2023 - The European Corrosion Congress CY - Brussels, Belgium DA - 27.08.2023 KW - Hydrogen KW - Repair Welding KW - Pipeline KW - In-service KW - High-pressure PY - 2023 AN - OPUS4-58334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Hydrogen determination in welded metallic materials: Necessity and challenges N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. According to ISO 3690, carrier gas hot extraction (CGHE) can be used. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. T2 - Eurocorr 2023 - The European Corrosion Congress CY - Brussels, Belgium DA - 27.08.2023 KW - Hydrogen KW - Carrier gas hot extraction KW - Welding KW - ISO 3690 KW - Measurement PY - 2023 AN - OPUS4-58305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Intended weld repair of in service hydrogen pipelines N2 - In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. In that context, large diameter long-distance transmission pipelines for hydrogen will be the backbone in the European Union with service pressures from 70 to 90 bar (e.g., de-pending on national regulations). It is a major goal to repurposing the existing natural gas (NG) infrastructure despite the necessity of new pipelines. From that point of view repair welding or further welding of branch pipe etc. can be necessary during in-service, i.e., permanent flow of pressurized hydrogen. The reason is that a shut-down of large diameter pipelines is not easy or sometimes merely impossible. At the moment, it is entirely open if current repair welding procedures for NG pipe-lines can be transferred to pure hydrogen pipelines. For that reason, a collaborative project between BAM, DVGW (German Association for Gas and Water Professions) and a large number of gas grid operators, pipeline manufacturers and construction companies was initiated in 2023 to answer questions on: (1) How many hydrogen is additionally absorbed during the preheating and maintaining at interpass temperature under remaining operational pressures? (2) Is the hydrogen concentration sufficient to reach a critical condition? (3)Which material and weld microstructure are the most susceptible? (4) Is there a difference in the repair welding behavior of NG pipelines with materials in “used” condition? (5) Which welding parameters and joint dimensions must be ensured for safe repair welding? The final aim of this project is the publication of a recommended practice for repair welding of in-service hydrogen pipelines. For that reason, the present study gives an overview on: (A) current practice in repair welding of in-service pipelines and (b) plans for hydrogen pipelines and first results of international research projects. T2 - IIW Annual Assembly, Meeting of Commission XI CY - Singapore DA - 19.07.2023 KW - Hydrogen KW - Repair Welding KW - Pipelines KW - Research PY - 2023 AN - OPUS4-57975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -