TY - GEN A1 - Bäßler, Ralph T1 - Review: Materials Handbook–A Concise Desktop Reference T2 - Materials and Corrosion N2 - This concise reference book,consisting of 2 volumes, provides “key scientific and technical properties and data” for “materials scientists, metallurgists, engineers,chemists, and physicists as well as academic staff, technicians, and students” dealing with such kind of materials. Within its 3rd edition the previous work was extended by a chapter on occupational health and safety issues of materials, beside of the update of whole content. Within 22 chapters materials properties and data are summarized in many tables. Some facts are illustrated by drawings and diagrams for better understandability. Each chapter ends with a part on further reading arranged accordingly. KW - Corrosion KW - Materials KW - Corrosivity KW - Resistance PY - 2020 DO - https://doi.org/10.1002/maco.202070034 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 3 SP - 509 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Schmidt, Anita A1 - Goedecke, Thomas T1 - Combined impact of UV radiation and nitric acid on HDPE containers during outdoor exposure T1 - Kombinierte Einwirkung von UV-Strahlung und Salpetersäure auf HDPE-Behälter bei der Freibewitterung JF - Materials Testing N2 - Unpigmented HDPE jerrycans filled with nitric acid (55%) and water respectively had been exposed to outdoor conditions for one Berlin summer season. As both liquids underwent equal temperature progression, exposure effects of UV radiation and nitric acid as well as of their combination can be separated and compared. On the basis of various property changes after these exposures, synergistic action is evaluated and compared to a damaged Intermediate Bulk Container (IBC) from a transport accident. It is found that carbonyl formation goes along with lightness increase in color measurement due to microcracking and with a worsening in mechanical behavior, all of them showing synergistic effects of UV and nitric acid exposure. In contrast, embedding nitrogen compounds goes along with yellowing of the material but cannot be correlated to oxidation. The reason for intensified damaging is the decomposition of the 55-percent nitric acid and formation of nitrogen oxides even at ambient temperatures, caused by UV radiation. Thus, damaging effects become similar to those caused by fuming nitric acid exposure at temperatures above 60 °C, with the result of strong oxidative degradation of the polyethylene. In contrast, exclusive exposure to the 55-percent nitric acid at 40 °C does not cause any failure. It can therefore be assumed that also the damaged IBC had been exposed to both UV radiation and nitric acid, probably outdoors. KW - Polyethylene KW - Nitric acid KW - UV radiation KW - Outdoor weathering KW - Resistance PY - 2018 DO - https://doi.org/10.3139/120.111148 SN - 0025-5300 VL - 60 IS - 3 SP - 257 EP - 264 PB - Carl Hanser Verlag CY - München AN - OPUS4-44567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -